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ABSTRACT 
In this paper, we consider a number of analytic 
approaches to identifying or accounting for possible 
deception tactics being employed by an adversary. 
These are equally applicable to military or civil 
intelligence, or even law enforcement.  As well as 
examining the Analysis of Competing Hypotheses 
(ACH) methodology, employed by some intelligence 
agencies, we focus on the contribution of methods for 
reasoning under uncertainty, particularly Bayesian 
networks (BNs). We also discuss the combination of 
these approaches as suggested by other authors. It is 
shown that the incorporation of negative evidence in 
addition to positive observations improves the 
performance of the BNs. 
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intelligence, intelligence analysis 

 
1. INTRODUCTION 
Deception is an integral part of human adversarial 
interaction. However, despite its well-proven and 
widely accepted value, including many historical 
accounts, there is relatively little scientific literature 
regarding its worth. In this paper, we view deception in 
the context of uncertain reasoning and so adopt a 
probabilistic modelling approach. This is aimed 
particularly at detecting possible deceptions. 

Although deception is inextricably linked to 
psychology, the focus of this paper is on modelling 
issues rather than psychological ones. In particular, we 
focus on analytic approaches to detecting deception. 
Such approaches are applicable in a wide range of 
settings, including military and civilian intelligence and 
law enforcement situations. Weiss (2008) discusses 
some of the more general issues regarding uncertainty 
and its communication in the intelligence domain. 

Deception can take many different forms. The two 
most general varieties, however, involve denial or 
hiding evidence which would be valuable to an 
adversary, or providing false and misleading evidence 
which it is hoped that the adversary will observe and 
believe.  

The primary conceptual framework which we 
employ for considering deception is reasoning under 
uncertainty. In particular, Bayesian networks (Pearl, 

1988) provide a powerful modern tool for such 
reasoning, based on probability theory. We also discuss 
the Analysis of Competing Hypotheses (ACH) 
methodology (Heuer, 1999) which is well known to 
many US intelligence analysts. Since deception 
frequently involves the use of misleading evidence, we 
also briefly consider some characteristics of evidence 
and the combination of evidence. 
 
2. BAYESIAN NETWORKS 
Bayesian network models are powerful and flexible 
decision support tools, supporting a wide range of 
analyses. The framework is practically proven in 
diverse application areas such as medicine, forensic 
analysis and industrial fault diagnosis. BNs permit the 
fusion of disparate information, combining observations 
with subjective expert opinion. They are robust to 
missing information, facilitate value of information 
assessments and can represent variable source 
credibility, a key requirement for intelligence analysis.  

At heart, a BN is a compact and efficient 
representation of a joint probability distribution over a 
domain of variables of interest. What makes it so 
powerful and flexible is the ease with which it supports 
different types of reasoning or inference. Furthermore, 
although we might expect probabilistic calculations 
performed over a domain of many variables to be slow 
and cumbersome, BN software typically employs some 
sophisticated algorithms, making use of local 
computations (Lauritzen and Spiegelhalter, 1988). 
These local computations, themselves made possible by 
conditional independence assumptions regarding the 
variables in the domain, avoid the need to work with the 
whole joint probability distribution when making 
inferences, thus speeding up the task considerably.  

The qualitative structure of a BN is represented by 
a directed acyclic graph (DAG), portraying probabilistic 
dependencies and independencies within the domain. 
Each node in the graph represents a variable in the 
domain of interest. Although continuous variables are 
permitted, they are usually discretised so that each 
variable typically has a small number of mutually 
exclusive states which it can be in. An arc between two 
nodes indicates a direct probabilistic dependence 
between them, while the absence of an arc indicates a 
conditional independence relation. Hence, the DAG 
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contains a great deal of information, even before we 
consider any probability distributions. A fully specified 
BN, however, also requires the construction of 
conditional probability tables (CPTs) for each node. For 
parentless nodes, which have no arcs entering them, 
only a single prior marginal distribution has to be 
specified. For nodes with a single parent, a conditional 
probability distribution needs to be specified for each 
possible state of the parent variable. Finally, for chance 
nodes with several parents, a conditional probability 
distribution is usually required for every possible 
combination of parent states. While initially this may 
appear burdensome, in practice the requirement can 
often be relaxed, e.g. by making use of so-called Noisy-
OR gates (Pearl, 1988) and their generalizations. This 
amounts to making certain reasonable independence 
assumptions, in exchange for a much simpler 
parameterization of the model.  

There are many potential orderings of variables in a 
network, and the ordering chosen for a BN should 
represent the assumed dependencies and independencies 
as efficiently as possible. This usually means that the 
direction of an arc should follow the direction of 
causality when the relationship between two variables is 
causal. So, for example, it is the activities (or intent 
indicators) undertaken by a combat force which cause 
reports to be generated, the reports do not cause the 
activities to take place. Not all relationships in a BN 
have to be causal - weaker probabilistic dependencies 
will often be present. Exactly how such relationships 
should be represented and which way the arcs should be 
directed usually becomes clearer once the modeller has 
thought through their dependency implications. An 
invaluable guide in this respect is the d-separation 
criterion. See Pearl (1988) or Jensen (2001) for more 
details of this and for an introduction to Bayesian 
networks, more generally.  

 
3. SCENARIO CONSIDERED 
Here we employ a scenario described in McNaught et 
al. (2005). In it, a Blue HQ is trying to infer the 
intentions of a hostile Red force. The four possibilities 
considered are main attack (M), advance (A), defend 
(D) and withdraw (W). It is assumed that these are 
mutually exclusive, i.e. the Red force will only pursue a 
single course of action (CoA) at any given time. It is 
further assumed that each of these CoAs are equally 
likely at time zero, although this is not a general 
requirement and any prior distribution could be adopted. 
Several information cues or indicators of enemy intent 
are searched for by the Blue side in order to infer the 
Red CoA. Some cues may be associated with more than 
one CoA and some cues may be detected by more than 
one mechanism. 

3.1. Bayesian Network of the Scenario 
Space constraints prevent illustration of the entire BN 
so we present just a portion of it in Figure 1. This shows 
that the likely presence of indicators of enemy intent 
such as the establishment of airfields and counter-recce 
activities depend on the Red side’s CoA. Furthermore, 

the probabilities of the two intent indicators displayed 
being observed or not by various mechanisms (e.g. air 
recce or ground recce) depend on the presence or 
absence of those indicators. Part of the timeline 
associated with this scenario is shown in Table 1.  

 
Table 1: Timeline for Scenario. 

Time 
Step 

Actions Taken by the Red Side and 
Indicators Detected by the Blue Side 

1 Blue establishes air and ground recce. 
 
2 

Red deploys air and ground recce as 
deception; Red increases counter-recce 
activities as deception; Red establishes 
dummy airfields as deception. 

 
3 

Red establishes demolition on bridges; Blue 
sub-unit reports sighting of Red recce 
(S3MA1); Blue ground recce reports Red 
counter-recce activities (S2MAD4); Blue air 
recce reports sighting of Red aux airfields 
(S1MA3). 

 
4 

Red conducts feint attacks; Blue ground 
recce report sighting of Red aux airfield 
(S2MA3) and demolition on bridges 
(S2DW15); Blue sub-unit reports local 
attacks (S3M8). 

 
5 

Red evacuates non-essential services; Blue 
sub-unit reports sighting of demolition on 
bridges (S3DW15). 

 
6 

Red employs smoke and jamming and a 
defensive frontage; Blue ground recce 
reports sighting of Red evacuation of non-
essential services (S2W19) and Red’s use of 
smoke (S2MW10); Blue sub-unit reports 
Red’s use of smoke (S3MW10) and 
jamming (S3MW11); Blue Signals report 
Red’s jamming (S4MW11); Blue sub-unit 
reports Red’s defensive frontage (S3W18). 

 
7 

Red begins systematic destruction of 
bridges and commences withdrawal; Blue 
air and ground recce report sightings of Red 
destruction of bridges (S1W20 and S2W20). 

 
3.2. Initial Results 
As time progresses and fresh observations are made by 
the Blue side, the BN updates our belief in each Red 
CoA as shown in Figure 2. 

The final probability distribution of 'Enemy Intent' 
is: 

( | All evidence) 0.39; ( | All evidence) 0.06;
( | All evidence) 0.04; ( | All evidence) 0.51.

P M P A
P D P W

= =
= =

 
Although the BN eventually ‘got it right’, the true intent 
of the Red side only became apparent towards the end. 
For much of the time, 'Main Attack' seemed the likeliest 
CoA. 
3.3. Results After Negative Evidence is Included 
Events associated with one Red CoA or another which 
were not observed to take place were previously 
assumed unknown. Now, such events are treated as 
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Red CoA
M
A
D
W

25.0
25.0
25.0
25.0

Red Aux  Airfields Established
True
False

50.0
50.0

Red Counter-Recce
Present
Absent

50.0
50.0

RAAE Observed by Ground Recce
True
False

50.0
50.0 RAAE Observed by Air Recce

True
False

50.0
50.0

RCR Observed by Ground Recce
True
False

50.0
50.0

RCR Observed by Air Recce
True
False

50.0
50.0

 
Figure 1: Partial BN of the scenario. 
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Figure 2: Probability Distribution of Enemy Intent vs 
Time 
 
definitely not having occurred. The same underlying 
events are generated as in the first experiment, and the 
same positive intelligence reports are received at the 
same times. The difference is that in addition to the 
positive intelligence reports, there are now a number of 
'negative' intelligence reports indicating that certain 
things have not been reported. 
 In deciding when to instantiate a report node with 
negative evidence, we have looked at the latest time we 
would expect a positive report to be received across the 
four possible states of Enemy Intent. If it has not been 
received by that time, we have instantiated a negative 
report for that indicator in the next time-step. The 
revised results for this scenario, incorporating the 
effects of negative evidence, are shown in Figure 3.  

Clearly, this time the BN performs much better 
when the negative evidence is also taken into account. 
Firstly, the final distribution of 'Enemy Intent' is more 
decisive in each case. In Figure 3, the final distribution 
of enemy intent is now given by: 

( | All evidence) 0.01; ( | All evidence) 0.005;
( | All evidence) 0.01; ( | All evidence) 0.975.

P M P A
P D P W

= =
= =

  

Secondly, the correct option is identified earlier by the 
network. While it is difficult to quantify the benefit 
obtained by identifying the true enemy course of action 
sooner, this could be addressed in a simulation study. 
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Figure 3: Probability Distribution of Enemy Intent vs 
Time with Negative Evidence Included  
 
3.4. Conflict Measure as a Possible Indicator of 

Deception or a Missing Hypothesis 
We investigate the use of a recognised BN conflict 
measure as a possible indicator of deception or a 
missing hypothesis. This measure is the ratio of the 
product of each piece of observed evidence’s marginal 
probability to the joint probability of the observed 
evidence set, i.e.  

),...,,(
)()...()(

21

21

n

n

eeeP
ePePeP

. 
The rationale behind this ratio is that when the 

observed pieces of evidence are generally in agreement, 
i.e. taken together they form a coherent hypothesis, the 
evidence will tend to be positively correlated and so the 
joint probability of the various observations in the 
denominator will be greater than the product of the 
marginal probabilities in the numerator, leading to a 
ratio less than 1. A ratio in the region of 1 would only 
be expected if the evidence variables were largely 
independent of each other. However, a ratio greater than 
1 implies that the joint probability of the observations is 
less than the probability of their occurrence if they were 
independent. In other words, the evidence does not paint 
a coherent picture, which might indicate in an 
adversarial context that a deception is being undertaken 
or that a more realistic hypothesis has not been 
considered. 

Figure 4 shows how this ratio changes over time in 
this scenario both when only positive observations are 
taken into account and when negative evidence is also 
included. The ratio is notably lower when negative 
evidence is included. 
Using the above example, we now consider the situation 
where the correct hypothesis is not being considered. 
Hence, the Red CoA ‘Withdraw’ is removed as a 
possible hypothesis. After making this change to the BN 
and then entering the same set of positive evidence as 
before, the final probability distribution over the 
remaining Red CoAs  is: 
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Figure 4: Conflict Ratio vs Time 

 
P(M|Positive evidence) = 0.829; P(A|Positive evidence) 
= 0.103; P(D|Positive evidence) = 0.068. However, 
when negative evidence is also included, the final 
probability distribution becomes: P(M|All evidence) = 
0.329; P(A|All evidence) = 0.209; P(D|All evidence) = 
0.463. Clearly, when only positive evidence is 
considered, we may be mis-lead into believing that the 
Red CoA is a main attack. When negative evidence is 
included, however, the situation is much less clear with 
the single most likely hypothesis now being Red 
defence, the closest option to the true but unconsidered 
hypothesis of withdrawal. The conflict measure ratio is 
also plotted for these two cases in Figure 5. Note that 
this ratio never falls below 0.1. Although we cannot use 
such a threshold more widely, in a new situation we 
could possibly try to estimate it via simulation. A higher 
value could indicate, as here, that a new hypothesis 
needs to be considered, possibly one that is being 
masked by an adversary or otherwise seems 
implausible. 
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Figure 5: Conflict vs Ratio with the ‘Withdraw’ 
Hypothesis Removed 
 

The next change that we consider is to introduce a 
new general hypothesis ‘Other’ while still leaving out 
the ‘Withdraw’ hypothesis. This represents a situation 
where the correct hypothesis is not among those being 
considered but nonetheless other possibilities are still 
being entertained. Such an approach is recommended 
within the ACH-CD method described in section 4.3. 
Results when only positive evidence is considered are 

presented in Figure 6. Results when negative evidence 
is included as well are presented in Figure 7. 
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Figure 6: P(Enemy Intent) vs Time with Correct 
Hypothesis Removed and ‘Other’ Hypothesis Added 
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Figure 7: P(Enemy Intent) vs Time with Correct 
Hypothesis Removed and ‘Other’ Hypothesis Added 

 
It is clear that the inclusion of negative evidence 

again improves the inference. The ‘Other’ hypothesis 
finishes strongly ahead of the remaining hypotheses, 
indicating that new possibilities need to be considered 
to explain the situation. 
 
4. ANALYSIS OF COMPETING HYPOTHESES  
Analysis of Competing Hypotheses (ACH) is a 
methodology developed by Heuer (1999) to help 
intelligence analysts overcome various cognitive biases, 
particularly confirmation bias. This is the tendency to 
overlook or underweigh evidence which contradicts the 
currently most favoured hypothesis, while 
overweighing supportive evidence. A matrix is 
developed in which the columns correspond to the set of 
plausible hypotheses and the rows correspond to items 
of evidence. The elements of the matrix record the 
extent to which each item of evidence supports or 
contradicts each hypothesis. Relevant negative evidence 
can and should also be included as rows in the matrix.  
 
4.1. The ACH Framework 
The basic outline of ACH is as follows: 
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1. Identify the alternative hypotheses to be 
considered. 

2. Identify what evidence and assumptions are 
relevant to these hypotheses. 

3. Construct the ACH matrix where the 
alternative hypotheses are the columns and 
each separate piece of evidence and 
assumption is a row. 

4. In the matrix, indicate what evidence 
(including negative evidence) and assumptions 
supports or contradicts each of the alternative 
hypotheses, and by how much, removing that 
which does not discriminate between 
hypotheses. 

5. Compare the relative likelihoods of all 
hypotheses, paying particular attention to 
evidence which contradicts a hypothesis, and 
identify future milestones when discriminating 
new evidence might come to light. 

 
4.2. Partial ACH Example Matrix 
Table 2 displays five example rows for an ACH matrix 
related to the scenario presented above. Evidence 
observations E1 and E2 are only weakly diagnostic as 
we might reasonably expect them to be present 
regardless of the Red CoA, although they are only 

Table 2: Partial ACH Matrix 
 Main 

Attack 
Advance Defend Withdraw 

E1: Red 
Radio 
Silence 

++ + ++ + 

E2: Red 
conducts 
feint 
attacks 

++ + + + 

E3: Red 
Evacuation 
of Various 
Services 

- - - ++ 

¬E4:No 
observed 
forward 
movement 
of logistics 

- - + + 

¬E5:No 
AT assets 
observed 
at frontline 

+ + -- + 

E6: Red 
Counter-
Recce 
Forces 
Operating 

++ ++ ++ - 

 
slightly more likely for some CoAs than others. E3 is 
strongly associated with a Red Withdrawal. Failure to 
observe E4 (negative evidence) makes Defence or 
Withdrawal more likely than either offensive CoA 
while failure to observe E5 makes Defence a much less 
likely Red CoA. E6 is much less likely for the 
Withdrawal CoA but is employed as a means of 
deception in this scenario. While the Main Attack 
column may contain the most plus signs, note that 

overall, however, the Withdraw CoA column has the 
fewest minus signs and this is seen as more important in 
ACH. While human nature often makes us look for 
confirming positive signs, disconfirming negative signs 
may prove more valuable in many situations. This is a 
key motivation for the ACH framework and is 
particularly aimed at overcoming confirmation bias. 

 
4.3. Combining ACH and BNs 
ACH-CD (the CD standing for counter-deception) is an 
approach combining ACH and BNs, proposed by 
Elsaesser and Stech (2007). An example is provided 
concerning the Battle of Midway in which the position 
of US aircraft carriers is the basis of the deception. In 
another example concerning the D-Day landings, it is 
the transportable port facilities known as Mulberry 
which lies at the centre of the deception. 

 In their approach, a particular hypothesis of 
interest, H, is instantiated and the conditional 
probabilities of each piece of observable evidence given 
the hypothesis ( | )iP e H recorded. Similarly, the 
condition ‘not H’ is then instantiated and the values of 

( | )iP e H¬ are obtained from the network. The ratio 
( | )

( | )
i

i

P e H
P e H¬

 indicates how important this piece of 

evidence is in discriminating between H and not H. In 
statistics, this ratio is well known as the likelihood ratio. 
Since it does not depend on the prior probability of the 
hypothesis, it is a direct measure of the weight of the 
evidence. For this reason, it has also become 
increasingly popular among forensic scientists, e.g. see 
Taroni et al. (2006).  

 
5. EVIDENCE CHARACTERISTICS  
A piece of evidence has many characteristics. These 
include relevance to the question being addressed, 
timeliness, since we might expect a newer observation 
to carry greater weight than an older one of the same 
type, and source credibility, particularly where  human 
intelligence is involved. In reasoning about some 
adversary’s intentions, we frequently need to combine 
multiple pieces of uncertain evidence with different 
degrees of relevance, different time stamps and coming 
from sources with varying degrees of credibility.  
Identifying unreliable sources is particularly important 
to reduce vulnerability to deception, as is identifying 
common or highly dependent sources.  
 Deception may affect the evidence marshalling 
process, described by Schum (2001). This concerns the 
organisation of evidence to make a case and might 
include analysis of evidence gaps, and notions of 
evidence thresholds to take different actions such as 
more intrusive surveillance or making an arrest. 
 These aspects could again be modelled utilizing the 
framework of a static BN. In the experimental, visual 
analytic ‘Jigsaw’ system (Stasko et al. 2008) developed 
to help intelligence analysts navigate a vast array of 
potentially relevant documents, provision is made for a 
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‘shoebox’ which is essentially an evidence marshalling 
tool. Such a tool can help an analyst to organise the 
available evidence, so aiding the construction of a 
coherent case.  
 As well as organising available evidence, such a 
tool can help highlight gaps in the evidential support for 
a hypothesis. With often very limited resources, support 
is required to identify the most promising gaps to 
investigate. Probabilistic decision support tools such as 
Bayesian networks can help in such situations. 

 
6. CONCLUSION 
Deception fundamentally involves reasoning under 
uncertainty and probabilistic modelling therefore 
suggests itself as a potentially useful framework for 
modelling and trying to detect deception activities. In 
this paper, we presented a scenario involving a Red 
adversary with four possible courses of action available, 
representing the set of alternative hypotheses being 
considered. We showed how a Bayesian network of the 
situation could be constructed and used to update our 
belief distribution over the alternative hypotheses as 
new observations were made by our recce units and 
other assets. In particular, we noted that the 
incorporation of negative evidence alongside positive 
observations improved the ability of the BN to infer the 
correct course of action.  

We also examined what would happen if the 
correct hypothesis was not even under consideration. 
When the correct ‘Withdraw’ hypothesis was simply 
removed, leaving the other three, the BN performed 
poorly with only positive evidence. It did improve, 
however, when negative evidence was also included. 
When a general alternative hypothesis of ‘Other’ was 
added to the three remaining CoAs, however, the BN 
performed better.  Although still coming to the wrong 
final conclusion of ‘Main Attack’ when using only 
positive evidence, the ‘Other’ hypothesis was 
considered the second most likely with a sizeable 
posterior probability of 0.33. When negative evidence 
was also included, however, the hypothesis ‘Other’ 
ended up the most likely with a posterior probability of 
0.77, leaving all other hypotheses trailing well behind. 

 While deeper and more wide-ranging investigation 
is required, this suggests that in highly uncertain 
situations, particularly where deception is prevalent, we 
should more routinely consider adding such an 
alternative to the set of hypotheses being considered.   
 
REFERENCES 
Elsaesser, C. and Stech, F., 2007. Detecting deception. 

In: Kott, A. and McEneaney, W.M., eds. 
Adversarial Reasoning – Computational 
Approaches to Reading the Opponent’s Mind. 
Boca Raton, FL: Chapman & Hall, 101-124. 

Pearl, J., 1988. Probabilistic Reasoning in Intelligent 
Systems: Networks of Plausible Inference. San 
Mateo, CA: Morgan Kaufmann.  

Heuer, R., 1999. The Psychology of Intelligence 
Analysis. Washington DC: Center for the Study of 
Intelligence, CIA. 

Jensen,  F.V., 2001. Bayesian Networks and Decision 
Graphs. New York: Springer. Mercer, P.A. and 
Smith, G., 1993. 

Lauritzen, S.L. and Spiegelhalter, D.J., 1988. Local 
computations with probabilities in graphical 
structures and their application to expert systems. 
Journal of the Royal Statistical Society, Series B, 
50, 157-224. 

McNaught, K.R., Ng, B. and Sastry, V.V.S., 2005. 
Investigating the use of Bayesian networks to 
provide decision support to military intelligence 
analysts. In: Merkuryev, Y., Zobel, R. and 
Kerckhoffs, E.J.H. (Eds.), Proc. 19th European 
Conference on Modelling and Simulation, 72-79. 
June 2005, Riga, Latvia. 

Schum, D.A., 2001. Evidence marshaling for 
imaginative fact investigation. Artificial 
Intelligence and Law, 9, 165-188.  

Stasko, J., Gorg, C. and Liu, Z., 2008. Jigsaw: 
supporting investigative analysis through 
interactive visualization. Information 
Visualization, 7, 118-132. 

 Taroni, F., Aitken, C., Garbolino, P. and Biedermann, 
A., 2006. Bayesian Networks and Probabilistic 
Inference in Forensic Science. Chichester: Wiley. 

Weiss, C., 2008. Communicating uncertainty in 
intelligence and other professions. International 
Journal of Intelligence and Counter-Intelligence, 
21, 57-85. 

 
AUTHOR’S BIOGRAPHY 
Ken R. McNaught is a senior lecturer in Operational 
Research (O.R.) at Cranfield University’s School of 
Defence and Security situated at the UK’s Defence 
Academy in Shrivenham. He has an MSc in O.R. from 
Strathclyde University and a  PhD in O.R. from 
Cranfield University. He leads the Decision Analysis 
and Risk Modelling Lab where his research interests 
include simulation, combat modelling and decision 
support, particularly making use of probabilistic 
graphical approaches such as Bayesian networks and 
influence diagrams. He also teaches on a number of 
specialized MSc courses, including Military Operational 
Research and Defence Simulation and Modelling. 
 

134
ISBN 978-88-903724-3-8


