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ABSTRACT 
This paper presents a brief history of models of opinion 
dynamics and summaries of the work from the creation 
of the Bounded Confidence (BC) model through to the 
more recent development of the Relative Agreement 
(RA) model and finally of the Relative Disagreement 
(RD) model. As a result of the re-examination and 
correction of the original specification of the RA model 
given by Meadows and Cliff, and subsequent first 
investigation of the RA model operating within non-
trivial but realistic social networks the RD model was 
proposed as not only an extension but a significant 
improvement. Given that these two highly successful 
approaches have been taken with the RA model, it is 
now necessary to present a full exploration of the new 
RD model operating within the same non-trivial 
topologies.  

 
Keywords: relative disagreement model, opinion 
dynamics, Klemm-Eguiluz networks, extremist 
behaviour 

 
1. INTRODUCTION 
 

1.1. Opinion Dynamics 
The term “opinion dynamics” has come to cover a 
broad range of different models applicable to many 
fields ranging from sociological phenomena to ethology 
and physics (Lorenz 2007). The focus of this paper is on 
an improvement to the “Relative Disgreement” model 
(Meadows and Cliff 2013b), that was originally 
developed as an improvement to a model designed to 
assess the dynamics of political, religious and 
ideological extremist opinions, and the circumstances 
under which those opinions can rise to dominance via 
processes of self-organisation (i.e., purely by local 
interactions among members of a population) rather 
than via exogenous influence (i.e. where the opinion of 
each member of a population is influenced directly by 
an external factor, such as mass-media propaganda). 
The RA model was developed with the aim of helping 
to explain and understand the growth of extremism in 

human populations, an issue of particular societal 
relevance in recent decades where extremists of various 
religious or political beliefs have been linked with 
significant terrorist acts.  

Suppose a group of n experts are tasked with 
reaching an agreement on a given subject. Initially, all 
the experts will possess an opinion that for simplicity 
we imagine can be represented as a real number x, 
marking a point on some continuum. During the course 
of their meeting, the experts present their opinion to the 
group in turn and then modify their own opinion in light 
of the views of the others, by some fixed weight. If all 
opinions are equal after the interaction, it can be said 
that a consensus has been reached, otherwise another 
round is required. It was demonstrated by de Groot 
(1974) that this simple model would always reach a 
consensus for any positive weight. Although highly 
abstract and clearly not particularly realistic, this simple 
model has become the basis for further analysis and 
subsequent models (e.g. Chatterjee & Seneta 1977; 
Friedkin 1999). 

Building on the de Groot model, the Bounded 
Confidence (BC) model included the additional 
constraint that the experts would only consider the 
opinions of others that were not too dissimilar from 
their own (Krause 2000); this is also known as the 
Hegselmann-Krause model. The BC model adds the 
idea that each expert has a quantifiable conviction about 
their opinion, their uncertainty, u. It was demonstrated 
that although a consensus may be reached in the BC 
model, it is not guaranteed (Hegselmann & Krause 
2002). It was observed that when the BC model is set in 
motion with every agent having an initially high 
confidence (low uncertainty) about their own random 
opinion, the population disaggregates into large 
numbers of small clusters; and as the uncertainty was 
increased, so the dynamics of the model tended towards 
those of the original de Groot model (Krause 2000). 
Later, the model was tested with the inclusion of 
“extremist” agents, defined as individuals having 
extreme value opinions and very low uncertainties. In 
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the presence of extremists it was found that the 
population could tend towards two main outcomes: 
central convergence and bipolar convergence 
(Hegselmann & Krause 2002). In central convergence, 
typical when uncertainties are low, the majority of the 
population clustered around the central, “moderate” 
opinion. In contrast, when uncertainties were initially 
high, the moderate population would split into two 
approximately equal groups one of which would tend 
towards the positive extreme and the other towards the 
negative: referred to as bipolar convergence.     

Although these two phenomena have occurred in 
real human societies, there is a third well-known 
phenomenon that the BC model is unable to exhibit: an 
initially moderate population tending towards a single 
extreme (and hence known as single extreme 
convergence). 

Shortly after the publication of the BC model, 
Deffuant, Amblard, Weisbuch, and Faure (2002) 
reported their exploration of the BC model and 
proposed an extension of it which they named the 
Relative Agreement (RA) model (Deffuant et al. 2002). 
The RA model was intended to be capable of exhibiting 
single extreme convergence in its dynamics.  

    There are two main differences between the RA 
model and the BC model. The first change is that agents 
are no longer expressing their opinion to the group as a 
whole followed by a group-wide opinion update. 
Instead, in the RA model pairs of agents are randomly 
chosen to interact and update. This is repeated until 
stable clusters have formed. The second change relates 
to how agents update their opinions. In the BC model an 
agent only accepted an opinion if it fell within the 
bounds of their own uncertainty, and the weight that 
was applied to that opinion was fixed. In the RA model 
however, an opinion is weighted proportional to the 
degree of overlap between the uncertainties of the two 
interacting agents.  

    These changes represent a push for increased realism. 
In large populations, individuals cannot necessarily 
consider the opinion of every other agent; therefore 
paired interactions are far more plausible. More 
importantly, the RA model also allows for agents with 
strong convictions to be far more convincing than those 
who are uncertain (Deffuant 2006). Thus, although the 
RA model is stochastic, the only random element of the 
model is in the selection of the individuals for the 
paired interactions (Lorenz 2005). As expected, the RA 
model was able to almost completely replicate the key 
results of the BC model (Deffuant et al. 2000).  

    Having demonstrated that RA model was comparable 
to the BC model under normal circumstances, Deffuant 
et al. then added the extremist agents to the population, 
to see if they could cause shifts in the opinions of entire 
population. An extremist was defined as an agent with 
an opinion above 0.8 or below -0.8 and with a very low 
uncertainty. Conversely, a moderate agent is one whose 
absolute opinion value is less than 0.8 and with a fixed, 

higher uncertainty who is therefore more willing to be 
persuaded by other agents. Under these circumstances, 
Deffuant et al. reported that there are large areas of 
parameter space in which all three main types of 
population convergence could occur. The fact that the 
RA model offers realistic parameter-settings under 
which single extreme convergence regularly occurs is a 
particularly novel attraction. 

To classify population convergences, Deffuant et al. 
(2002) introduced the y metric, defined as: y = p’+2 + 
p’-2 where p’+ and p’- are the proportion of initially 
moderate agents that have finished with an opinion that 
is classified as extreme at the positive and negative end 
of the scale respectively. Thus, central, bipolar and 
single extreme convergences have y values of 0.0, 0.5 
and 1.0, respectively. 

While these findings are particularly striking, it 
raises the question of where the initially extreme agents 
may have come from. Interestingly, an answer presents 
itself from the field of psychology. Social Judgement 
Theory states that the opinions of others may fall within 
a latitude of acceptance in which case we may see a 
converging opinion update (Sherif and Hovland 1961). 
Conversely, opinions may fall within the latitude of 
rejection, which may result in a diverging opinion 
update. It is clear that the models given up to now, only 
one of these dynamics has been taken into 
consideration. Thus, the Relative Disagreement (RD) 
model was created (Meadows and Cliff 2013b). With 
this model it was shown that by utilising an analogous 
dynamic for quantifying disagreement as with 
agreement in the RA model, it was possible to replicate 
all three population convergences without the artificial 
need for extremist agents. A full specification of this 
model is given in the next section, as it is central to the 
research presented in this paper. 

1.2. Social Networks 
While much of the work described previously has taken 
place with agents represented as nodes on a fully 
connected graph, there is a growing movement towards 
examining these models under non-trivial topologies. 
Small World (SW) networks were introduced by Watts 
& Strogatz (1998), and a full introduction is beyond the 
scope of this paper. Suffice it to say that SW networks 
exhibit both low average path lengths and social 
clustering. Watts and Strogatz introduced an attractively 
simple stochastic algorithm for constructing SW 
networks. Nevertheless, one limitation of SW networks 
as models of human social networks is the extent to 
which SW networks have unrealistic degree 
distributions. In real social networks, the majority of 
nodes often have few connections, while a small 
number have very high degrees. A well-known possible 
resolution of this was proposed by Barabási and Albert 
(1999). The Barabási-Albert (BA) algorithm could 
construct random graphs with low average path lengths 
that also obeyed a power law in degree distributions 
(scale free networks). However, the BA model is unable 
to generate networks that exhibit clustering levels as 
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high as those in observed social networks and so, 
although both SW and BA models were useful as 
research tools, neither could claim to be entirely 
realistic. 

To construct a graph that would exhibit all three 
qualities observed in real social networks (short average 
path lengths, high clustering, and a power-law degree-
distribution) algorithms have been developed that 
produce hybrid networks that mix SW and BA 
characteristics. The KE algorithm introduced by Klemm 
& Eguíluz (2002) is the one used in this paper. The KE 
model begins by taking a fully connected graph of size 
m, the nodes of which are all initially considered active. 
A network is then “grown” by adding nodes iteratively 
to all of the currently active nodes in the graph after 
which a random active node is deactivated and the 
newest node is assigned to be active. When adding these 
nodes however, with a probability µKE each new 
connection the node forms is assigned to a node using 
preferential treatment (a node with a higher degree is 
more likely to be randomly chosen) as in the BA model. 
With this addition, we see that when µKE=1.0 the 
resulting network is identical to the BA model and with 
µKE=0.0 the network is generated with topological 
characteristics as in the SW model. As Klemm and 
Eguiluz (2002) note, for values of µKE between 0.0 and 
1.0, KE networks exhibit properties that are “hybrid” 
mixes of the properties of SW and BA networks. For 
that reason, in this paper we use KE networks to explore 
the dynamics of the RA model in nontrivially structured 
populations.  

 
2. SPECIFICATION 

For completeness, it is important to now provide a 
full specification of the RD model to allow for 
replication and extension work. Returning to the 
population of n agents, each individual i is in possession 
of two variables; an opinion x, and an uncertainty u, 
both of which are represented by real numbers. In the 
RA model, opinion was initially set in the range of -1.0 
to 1.0, with extremists being defined as agents whose 
opinions lay below -0.8 or above 0.8. As the goal of the 
RD model was to replicate the behaviour seen in the RA 
model but without extremist agents, opinions may not 
be initially set outside the range of -0.8 and 0.8, 
although the maximal values are retained from before. 
With no extremist agents, there is no longer any 
constraint on uncertainties used and so they are assigned 
randomly using a simple method to bias agents towards 
being uncertain (as it is in uncertain populations that 
more interesting results are to be found) given by: 

u = min(random(0.2, 2.0) + random(0.0, 1.0), 2.0) 
 

Random paired interactions take place between 
agents until a stable opinion state is produced. Unlike in 
the original RA and RD models, this no longer means 
two agents randomly chosen from the population but 
instead requires taking one agent at random followed by 
a randomly chosen neighbour of that agent as defined 

by the KE network. The relative agreement between 
agents i and j is calculated as in the RA model by taking 
the overlap between the two agents’ bounds hij, given 
by: 

 
hij = min(xi + ui, xj + uj) – max(xi – ui, xj – uj) 

 
Followed by subtracting the size of the non-overlapping 
part given by: 

 
2ui – hij 

 
So the total agreement between the two agents is given 
as: 

 
hij – (2ui – hij) = 2(hij – ui) 

 
Once that is calculated, the relative agreement is then 
given by: 
 

2(hij – ui) / 2ui = (hij / ui) – 1 
 
Then if hij > ui, then update of xj and uj is given by: 

 
xj := xj + µRA[(hij / ui) – 1](xi – xj) 
uj := uj + µRA[(hij / ui) – 1](ui – uj) 

 
Similarly, the relative disagreement between agents i 
and j is calculated by a very similar method to find gij: 

 
gij = max(xi – ui, xj – uj) – min(xi + ui, xj + uj) 

 
Followed by subtracting the size of the non-overlapping 
part given by: 

 
2ui – gij 

 
So the total disagreement between the two agents is 
given as: 
 

gij – (2ui – gij) = 2(gij – ui) 
 
Once that is calculated, the relative disagreement is then 
given by: 
 

2(gij – ui) / 2ui = (gij / ui) – 1 
 

An analogous method for calculating the agents’ 
disagreement was chosen for ease of understanding as it 
also facilitates the need for calculating relative 
disagreement. Given that we would not want the 
disagreement update to occur in every instance of 
disagreement, as SJT suggests that this would not occur 
in every real-world instance of disagreement. Therefore 
if gij > ui and with a probability λ, the update of xj and uj 
is given by: 
 

xj := xj – µRD[(gij / ui) – 1](xi – xj) 
uj := uj + µRD[(gij / ui) – 1](ui – uj) 
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Note that if all disagreement updates are capped so 
that agents’ opinions may not exceed the initial bounds 
of -1.0 to 1.0. 

 
3. PARAMETERS 
 

3.1. Size Variation 
Firstly, it is necessary to analyse the variations as 

the scale of the model is altered. If the work is 
applicable for all values of n, we are often able to gain 
the clearest picture with large populations, as the level 
of noise is proportionally lower. To that end, Figure 1 
shows how the overall dynamic of the model is altered 
as n increases with varying values of µRD with λ = 1.0. 

 

 
Figure 1: Average standard deviation heat map for 
varying values of µRA and µRD (treated as a single value 
µ) and n, when agents have randomised values of u, 
with λ = 1.0, m = 6, and µKE = 0.6. 
 

Here we see some very interesting, and possibly 
unexpected results. If we compare with the effect on the 
RA model (Meadows and Cliff 2013a), it was observed 
that as n grew, the stability of the population was 
increased. Much like with the later discussion of µKE, it 
can be seen that the influence of extremist agents is 
weakened because, in order to have an impact, they 
must rely on the subsequent influence of the moderate 
agents with which they interact. In the RD model, this is 
no longer a factor as disagreement interactions can be 
caused, in theory, by all agents (although in practice 
some agents will have such large uncertainties coupled 
with central opinions that they rarely cause a 
disagreement). Thus we see that the increase in stability 
typically caused by increasing n in the RA model with 
KE networks, is missing here.  
 
3.2. Disagreement Probability λ 
It is clear that when we set µRD to 0.0 no disagreement 
updates are possible, and similarly setting λ to 0.0, 
causes a similar result as no disagreement can lead to an 
update. Thus, when comparing extreme values of λ we 
must use low, but non-zero values, and high values of λ 
as shown in Figure 2. 

 
Figure 2: Average standard deviation heat map for 
varying values of µRA and µRD when agents have 
randomised values of u, m = 6, n = 200 and µKE = 0.5. 
In the top heat map λ = 0.25 and in the bottom λ = 1.0. 

  
As one may expect, an increase in λ leads directly 

to an increase in population instability. Given that when 
λ = 0.0 there are no disagreements that cause a repelling 
update occurring over the course of the simulation, we 
can understand that with a low value of λ there will 
similarly be a low proportion of repelling updates. 
However, with the λ set to its maximal value, every 
disagreement leads to an update and so we see a greater 
level of instability in the population. This clearly makes 
sense. What is surprising is that it is possible to observe 
the overriding importance of the disagreement update 
weight µRD. As before, we can see that when µRD > 0.2 
there is a significant increase in average instability, 
regardless of λ. This is interesting as it means that the 
effect of a disagreement must have a minimum impact 
in order to be influential. 
 
3.3. Initial Network Size m 
To further aid the comparison of the RD model with the 
RA model, consideration must be made to the effect of 
the initial network size m, from the KE algorithm. 
Figure 3 presents this analysis of the weight µ (where µ 
= µRA = µRD) and m. 
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Figure 3: Average standard deviation heat map for 
varying values of µRA and µRD (treated as a single value 
µ) and m, when agents have randomised values of u, 
with λ = 1.0, n = 200 and µKE = 0.5. 

The first observation must be that instability grows as m 
increases. The nature of that growth is certainly 
interesting however. For very low values of m, in all 
cases of µKE, we can see that only when the update 
weights µRA and µRD are significant values can any 
instability be reliably inferred. As m grows, we see that 
the minimum values required from µRA and µRD for 
instability decrease. This is in line with the finding in 
Meadows and Cliff (2013a), which discusses how the 
typical agent degree is linked with the size of the m. It is 
the agent degree that we rely on most heavily for 
instability, as we have found repeated examples that 
show the greater the connectivity within a population 
the greater the opportunity for instability. 

Another interesting observation is that when m 
increases, the “height” of the unstable region on the heat 
map graph shows diversity itself. With high values of µ, 
we see a smoother area with a lower variance, but as µ 
decreases, we see the data become noisier and with 
greater diversity in the possible variances. This 
unexpected result is quite interesting as it shows an 
interesting nuance of the RD model. The cause of this 
result can be explained by the fact that the weight µ was 
lower. When this occurs it allows for a slower 
convergence (as each interaction is less influential to an 
agent’s opinion), but with a higher value of m, the 
agents are exposed to multiple viewpoints and as such 
can allow for greater swings in the possible 
convergence. 

 

3.4. Mixing Parameter µKE 
In Meadows and Cliff (2013a) it can be seen most 
clearly that the RA model operating within a clustered 
population was far more stable when compared to a BA 
network and certainly more so than a fully connected 
graph. Here the main reason was that the RA model’s 
extremist agents struggled to exert their influence over 
longer path lengths (i.e. they only able to exert their 

influence over the majority of moderates through the 
moderates with which they are connected).  

In contrast we can see very clearly in Figure 4 that 
the effect of clustering, although present, is severely 
limited. When compared to the RA model’s behaviour 
in a clustered population however, this effect is barely 
noticeable.  

 

 
Figure 4: Average standard deviation heat map for 
varying values of µRA and µRD when agents have 
randomised values of u, m = 6, n = 200 and λ = 0.5. In 
the top heat map µKE = 0.0 and in the bottom µKE = 1.0. 
 

The cause of this difference lies in the dynamics of 
the model. In the RA model, a select few extremist 
agents are responsible for causing overall instability, 
which results in their effects being severely limited 
when their reach is similarly cut off. This does represent 
an interesting insight into the dynamics of opinion 
exchange in real life, considering that real world social 
networks are themselves highly clustered. Given that it 
has been established that real world terrorist networks 
exhibit high levels of clustering and that they are a 
particularly resilient to external influence, the RA 
model’s contribution to study is clearly of merit. 
However, this outlook fails to explain how in the real 
world, highly clustered populations can still lead to 
examples of single extreme or bipolar convergence.  

The RD model offers a solution to this difficulty 
by the way that extremism propagates. Instead of only a 
limited number of agents causing instability, the 
instability is a product of the interaction of every agent. 
That is, any two agents that would otherwise be 
considered to be moderate can still produce instability 
through a disagreement. Thus we see that even in 
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clustered populations, when compared with BA 
networks, agents have approximately equal average 
degrees, and so the effect of clustering is almost 
negated. The effect is not entirely ruled out because 
when agents are pushed towards extremism, their 
influence on other agents is still dependent on those that 
they have connections to. Therefore clustering still 
plays a role in maintaining a slight degree of stability in 
the population, but simply not to the same level as with 
the RA model. 

While it should not be claimed that this particular 
difference between the RA and RD models shows an 
improvement over the RA model, it is an interesting and 
alternative insight. Instead the two models should be 
thought of as analysing different aspects of the same 
problem, with the relevant dynamic being used as 
required. 
 
4. FURTHER WORK 
It is clear that there is much that can be learned from the 
RD model with the primary focus being to further 
understanding the dynamics involved in the creation 
and propagation of extremism in a population. In 
particular, this application has been most closely linked 
to the study of terrorist development. The link between 
this field and the abstract work is clear, however what is 
currently lacking is a concrete demonstration of the 
parallels that validate this theoretical work. While the 
body of work that has been produced is too large to be 
applied directly to the empirical evidence, it is obvious 
that researchers of the abstract must find ways to 
establish the validity of their research. This “application 
work” has been largely lacking in many fields, 
including opinion dynamics (Sobkowicz 2009). 
Therefore, demonstrating real world examples of 
behaviours exhibited by the RA and RD models, in 
particular the convergence types, in relation to political 
and ideological extremism is the most important step 
for real world validation. 

Although it is clear that that the given work is most 
easily applied to these areas, this arbitrary restriction 
limits the potential use of the RA and RD models. By 
expanding the real world applications of these models, 
it can be seen that many areas are in fact overlapping, 
although potentially unaware of their related qualities. 
Ignoring surprisingly related bodies of work because “it 
is from a different field” or because researchers are 
simple unaware of each other’s work, is not an 
acceptable justification. What one field has learnt 
should not need to be relearnt by another. Therefore, 
finding and demonstrating these overlaps in knowledge 
is crucial and should be a main focus for future work. 
 
5. CONCLUSION 
There were many aims for this work, including 
demonstrating further reliability of the RD model from 
its earlier introduction. The most crucial element of this 
proof relies on the RD model operating under these 
constraints maintaining comparable behaviour to both 
the RA model under KE topologies as well as its own 

behaviour with a fully connected network It has been 
found that even under non-trivial topologies, the RD 
model is still capable of producing instances of all three 
types of convergence. While it is also clear that the 
disagreement interaction is more influential for 
instability than the agreement, both are required for 
single extreme convergence. Replicating the three 
convergences is clearly the most basic requirement that 
any model hoping to improve upon the RA model must 
satisfy. Furthermore, it is possible to see similar overall 
dynamics in the behaviour of the RD model when 
compared with its operation in a fully connected graph. 

Given that the RA model maintained comparable 
behaviour over various networks, it is encouraging that 
the same can be said for the RD model. 

In comparison to the RA model itself, it is clear that 
many of the dynamics that applied to the RA model 
operating within Klemm-Eguíluz networks apply also to 
the RD model under the same constraints. We see that 
in both models when the agent network is not a 
complete graph, population stability is slightly 
increased.  In addition, when the social network is 
highly clustered the stability of the population is further 
increased, however, this further increase is not as great 
as with the RA model, because of the differences of 
how extremism is caused in the two models. The RA 
model shows that a clustered population remains stable 
and relatively invulnerable to external influence while 
the RD model shows that influence exerted through 
disagreements in a social network can still cause 
extremism.  

One of the earlier aims of the RD model was to 
represent a further push for realism and answer the 
questions surrounding instability without the need for 
extremist agents. While it is appears more than 
reasonable to state that this aim has been fulfilled, it 
appears that there are a number of subtle differences 
that can be highlighted between the RA and RD models. 
Although it would be necessary for differences to be 
present, the dynamic previously alluded to (that instead 
of a proportion of agents being the destabilising factor 
in the RA model, while the whole population causes 
instability with RD) suggests that there is still work to 
be done analysing the RA model. The question of how 
extremism may spontaneously appear without the need 
for already present extremism is one of the key factors 
that the RA model has been unable to answer. The RD 
model offers one possible, and very plausible 
explanation based on empirical evidence. Also, showing 
how highly clustered populations may still result in a 
single extreme convergence, something that clearly has 
happened in the real world, implies that the 
improvements of the RD model are worth further 
research. 

It is prudent, therefore, to state that although the RD 
model offers a number of realistic and useful 
improvements over the RA model, both models 
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represent useful tools to further learn about the dynamic 
of opinion spread. 

Before any further work should be undertaken it is 
important to validate the findings and dynamics of both 
the RA and RD models. As has been discussed in the 
previous section, there are many disparate fields that are 
pursuing very similar lines of research apparently 
oblivious to other work that may be of use. For that 
reason, highlighting further applicability of these 
models, as well as looking for further validation of the 
models themselves, is an essential step in the 
development of our understanding of these dynamics. 
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