
SERIOUS GAME DEVELOPMENT METHODOLOGY VIA INTEROPERATION
BETWEEN A CONSTRUCTIVE SIMULATOR AND A GAME APPLICATION USING

HLA/RTI

Changbeom Choi,(a) Moon-Gi Seok,(b) Seon Han Choi,(c) Tag Gon Kim,(d) and Soohan Kim(e)

(a) (b) (c) (d) Dept. of Electrical Engineering, Korea Advanced Institute of Science and Technology
(b) Video Display Biz. Technical Planning Group, Samsung Electronics HQ

(a)cbchoi@smslab.kaist.ac.kr, (b)mgseok@smslab.kaist.ac.kr, (c)shchoi@smslab.kaist.ac.kr, (d)tkim@ee.kaist.ac.kr,

(e) ksoohan@samsung.com

ABSTRACT
This paper proposes a serious game development
methodology that utilizes interoperation between an
existing virtual world application and constructive
simulators. For time synchronization and data
conversion between them, the proposed methodology is
comprised of three specified processes: game loop
analysis, game agent design and development, and
parameter tuning. We use a High-Level Architecture
(HLA) to ensure interoperation. By interoperating a
constructive simulator with an existing virtual world
application, a serious game developer can save effort by
extending a serious game application, rather than
building a serious game from scratch. In addition,
trainees can obtain more realistic experiences.

Keywords: Interoperation, System of Systems,
Constructive Simulator, Serious Game, Virtual Military
Training

1. INTRODUCTION

With the impressive growth of the game industry
over the last several decades, serious games have
emerged to educate and train learners, rather than
provide entertainment. Serious games allow learners to
experience situations that are impossible in the real
world due to safety, cost, and/or time. For this reason,
the game industry has developed various types of
serious games, including games for military,
manufacturing, and medical purposes.

In the military field, several commercial serious
games, such as Virtual Battle Space 2 (VBS2), Military
Open Simulator Enterprise Strategy (MOSES), and
Delta3D, are already available in the market. The main
purpose of these games is to simulate military situations,
and they fundamentally allow users to edit terrain and
scenarios to create specific war environments.
Nevertheless, a problem with these serious games is the
limited accessibility granted to their operating systems;
thus, these games only enable war scenarios and terrain
within a limited scope (Gwenda, 2004). In addition,
these games are based on game engines that lack
modifiable script languages. Therefore, the creation of

new war scenarios, modeling of combat entities, and
reuse of such entities are greatly hindered, which results
in a failure to adapt expandable war scenarios (Part et
al., 2010). Such limitations restrict more detailed and
expandable representations of military simulation
development.

Our approach, therefore, overcomes the precedent
limitations of utilizing existing military serious games
for expandable war scenarios. To this end, we have paid
attention to separating game applications from scenario
interpreters. Game applications are existing military
serious games, such as VBS2, MOSES, and Delta3D,
whereas scenario interpreters are constructive
simulators that generate dynamic situations based on the
users’ requests. Specifically, users generate war
scenarios through a constructive simulator, and the
simulator sends the scenario to the game application for
battlefield visualization. While users conduct training
through the scenario within the game application,
mutual interactions frequently occur between the game
application and the constructive simulator. Accordingly,
the key issue for this approach is the method of
interaction between these two separated parts.

The Federation Development and Execution
Process (FEDEP) is a standardized process for
developing interoperable systems. Because FEDEP is a
general-purpose process that needs to describe two
specific kinds of systems (the game application and the
constructive simulator) and represent the characteristics
of their interactions, we have customized the existing
FEDEP and propose the new Military Serious Game
Development and Execution Process (MSGDEP). The
primary purpose of the MSGDEP is to provide not only
a process, but also facilities that assist the existing game
application in utilizing expandable war scenarios.
 Thus, in this paper, we propose the MSGDEP for
interoperation between game applications and
constructive simulators. Specifically, the proposed
methodology centers on two ideas: 1) time
synchronization and 2) data conversion. To satisfy both
ideas efficiently, the MSGDEP is comprised of three
specified processes: game loop analysis, game agent
design and development, and parameter tuning. To

Proceedings of the International Defense and Homeland Security Simulation Workshop 2013,
ISBN 978-88-97999-21-8; Bruzzone, Buck, Longo, Sokolowski and Sottilare Eds.

7

interoperate between the game application and the
constructive simulations, we use a High-Level
Architecture (HLA), which is used for distributed
computer simulation systems. In our empirical study,
we achieved time synchronization and data conversion
based on the HLA (IEEE 1516-2010). By interoperating
the constructive simulator with the existing virtual
world application, serious game developers can save
effort by extending a serious game application, rather
than building a new serious game from scratch; in
addition, trainees can acquire more realistic experience.
 As a case study, we built and developed a military
training scenario for a Nuclear/Bio-Chemical (NBC)
situation. The outcomes of the case study will show the
usefulness of the proposed work, such as how the
flexibility and reconfiguration of the war game scenario
improve, as well as how effectively the users can train
within the scenario. The successful execution of this
study can offer an immediate application for military
training, and is particularly suited to war scenarios
based in the Korean Peninsula.

The rest of the paper is organized as follows:
Section 2 introduces existing military game applications
and FEDEP. In Section 3, we explain the proposed
SGDEP via interoperation between a game application
and constructive simulators. Section 4 illustrates a case
study that incorporates the proposed methodology, and
finally, Section 5 concludes this study and proposes
future extensions for a more complete solution.

2. RELATED WORKS

In this chapter, we will first introduce the existing
serious games and describe FEDEP, which is a
standardized and recommended process.

2.1. Virtual Battlespace 2 (VBS2)
 The VBS2 is a comprehensive, open platform that
uses gaming technology to provide tactical training
experience and mission rehearsals (Virtual Battlespace
2, 2013). Several case studies have shown that VBS2
provided an immersive experience to a trainee through
lifelike virtual environments. VBS2 provides two
methods to extend its platform: integration and
interoperation. First, VBS2 provides a plug-in interface
for developers, so that other simulation systems can be
coupled tightly with VBS2. Second, VBS2 allows for
interoperation between various simulation systems via
the DIS protocol or HLA. Therefore, in order to extend
VBS2, the developer may choose between integration
and interoperation. When using the integration method,
the developer should understand the game loop of
VBS2, so that the simulation system can be tightly
integrated into VBS2. On the other hand, in order to
extend VBS2 via interoperation, VBS2 participates in
the federation and interoperates with other simulation
systems. However, to the authors’ knowledge, no
methodology has been proposed to support
interoperation between VBS2 and an existing
constructive simulator. For our research, we modified

the existing federation development methodology. By
clarifying the requirements for each development phase,
a developer can define the shared information between a
serious game and a constructive simulator, and
implement them easily.

2.2. Military Open Simulator Enterprise Strategy
(MOSES)

 The US Army Research Laboratory Simulation and
Training Technology Center (ARL-STTC) developed a
virtual world application called the Military Open
Simulator Enterprise Strategy (MOSES) for military
training needs (Maxwell et al., 2012). In order to
develop a flexible virtual training framework, the ARL-
STTC conducted research that utilized gaming and
virtual world technology. To develop a flexible virtual
training framework for trainers and trainees, the
framework needed to allow for variable fidelity, based
on the training objectives. MOSES is based on the Open
Simulator, which is an open-source project to provide a
virtual world server that can be accessed via the same
viewer as SecondLife (OpenSimulator, 2013)
 Similar to SecondLife, users of MOSES can upload
and present content, such as buildings, objects, or
training content, into the virtual world. Moreover, every
object in the virtual world is interoperable and may
have various scripted, interactive behaviors. In other
words, the virtual world server has a script engine that
allows the user to upload a script, which contains the
behavior of an object, to the server. Therefore, when a
user interacts with an object in the virtual world, the
script engine interprets its script, executes actions, and
represents them to the users via a virtual world viewer.
Such functionality enables trainers to develop flexible
training content. Trainers can arrange the positions of
buildings or place an object in the training field.
Afterwards, trainers can build scripts for each object to
determine its behavior when a trainee interacts with it
during the training course.
 However, MOSES, as well as other virtual world
applications, has limitations on extending training
content. In particular, the script engine does not support
the creation of training courses that are based on
accurate simulation results. Yet, if a trainer wants to
build a realistic training course for an evacuation
process, the script engine should support the realistic
simulation of the target environment or the systems,
such as the propagation of a chemical cloud after a
bomb detonates or the propagation of a chemical cloud
based on geographical features and environmental
factors. Moreover, even if the script engine can support
a realistic simulation, the computation of such a realistic
simulation can burden the application servers, so that
the servers cannot service the trainees.

2.3. Federation Development and Execution Process
 In the modeling and simulation fields, HLA has
been approved as an IEEE standard to specify
interoperating, heterogeneous simulations within

Proceedings of the International Defense and Homeland Security Simulation Workshop 2013,
ISBN 978-88-97999-21-8; Bruzzone, Buck, Longo, Sokolowski and Sottilare Eds.

8

distributed environments. In this standard, a standalone
simulator is called a federate, and the set of federates
that comprise a larger system to achieve the same
purpose is called a federation (IEEE 1516-2010). If a
simulator is compliant with HLA protocols, we call it
an HLA-compliant simulator. The Federation
Development and Execution Process (FEDEP) is a
recommended development process used to develop
HLA-compliant simulators and federations (IEEE
1516.3-2003). FEDEP is a standardized and
recommended process for developing interoperable,
HLA-based federations. Figure 1 shows the phases of
FEDEP.

Figure 1: Phases of Federation Development and

Execution Process

As shown in Figure 1, a developer should first
define the objectives and requirements of the federation
and confine the scope of the federation’s development
to the identified requirements. When the objectives of a
federation are fixed, a developer should perform a
conceptual analysis of the target system. Then, the
developer will design and implement the federation and
each federate. In this phase, the developer should
identify the input/output data of each federate, in order
to create the Simulation Object Model (SOM). The
SOM contains the types of data that the simulator will
exchange during the simulation. The Federation Object
Model (FOM) is the set of SOMs that constitutes the
federation data. After identifying the dataset, the
developer has three options: utilizing an existing
federate, develop a federate from scratch, or modify a
legacy simulator into an HLA-compliant simulator.
After the federates are implemented, the developer may
integrate them into a federation and test it. After
integration and testing, a user executes the federation
and analyzes the data. Finally, the federates are revised
based on the analyzed results.
 However, the FEDEP is insufficient for developing
a federation among the serious game and the
constructive simulations for several reasons. First, a
serious game has usually been implemented already;
thus, it is almost impossible to modify the game
application to support HLA protocols. Second, the time

units of the serious game and the constructive simulator
may be different; thus, the developer must tune the time
resolution between them. For example, the default time
unit of a constructive simulator may be hours, but the
default time for a serious game may be milliseconds.1
Therefore, time synchronization between a serious
game and constructive simulators is different from
interoperation between simulators. Third, standard
distance values that differ between the serious game and
the constructive simulator should be calibrated. For
example, the standard distance value of a constructive
simulator can be in kilometers, and the space of the
training ground can be 100 m² or more. However, such
a training ground will hinder the training experience in
a serious game. Usually, the designer of a virtual
training ground wants to maximize training; therefore,
training grounds are usually relatively small and
bounded. Therefore, the developer should consider and
regulate the values between the constructive simulator
and the serious game.
 In the next section, we will propose a methodology
for interoperation between a serious game and a
constructive simulator that takes the aforementioned
problems into consideration.

3. PROPOSED SERIOUS GAME

DEVELOPMENT METHODOLOGY
 Before moving to the central part of the MSGDEP,
we must identify the components of the SGMT and
their roles. The proposed SGMT consists of an existing
serious game that provides virtual battlefield situations
for training and several constructive simulators to
describe the situations in detail. Let us suppose that
trainees exercise MOUT (Military Operations in Urban
Terrain) using the proposed SGMT. In this case, the
existing serious game provides battlefield situations,
such as the number of soldiers and the constructions
that are involved, while the constructive simulators
compute numerical calculations, such as atmospheric
diffusion and damage assessment. During a simulation,
the calculations of the constructive simulators are
reflected in the serious game. Consequently, the
separation between the existing serious game and
constructive simulators enables to reuse individual
components, and trainees can experience expandable
battlefield situations easily by communicating with
various constructive simulators in the existing serious
game. From the viewpoint of system engineering, the
SGMT is considered to be a system of systems (SoS).
Therefore, developing a federation that consists of a
serious game and a constructive simulator and building
a system of systems are alike.
 In our previous research, we proposed a System of
System Entity Structure (SoSES) and Federate Base
(FB) framework to manage federates and synthesize the
federation (Kim et al., 2013). When a developer wants

1 The time unit of a constructive simulator is logical
time; thus, the designer of the simulator can decide the
unit time of the simulator.

Proceedings of the International Defense and Homeland Security Simulation Workshop 2013,
ISBN 978-88-97999-21-8; Bruzzone, Buck, Longo, Sokolowski and Sottilare Eds.

9

to build a federation, the SoSES/FB framework
supports the developer in synthesizing the federation,
based on its objectives. The SoSES denotes the
structure of the federation and helps the developer to
choose which federate will join the federation. After the
user selects a federate, the framework automatically
bring federates from the FB and synthesizes a federation
from them. In other words, the SoSES is a blueprint of a
federation, and the FB is a repository for federates.
 However, SoSES/FB is not suitable for developing
or extending a serious game via interoperation. Unlike
typical federation development, SGMT development
should consider the user’s behavior and the time
synchronization between a game and its simulators.
Generally, when the designers of a SGMT build a
virtual training field, they arrange the virtual objects to
maximize the training experience. As a result, the size
of a virtual training field is relatively small, and the
placement of the virtual objects leads the user to acquire
virtual training experience. On the other hand, the
objective of a constructive simulator is to acquire
reliable simulation results from the simulation models.
Therefore, the developer should narrow the gap between
the serious game and the constructive simulator, in
order to build and extend the SGMT via interoperation.

Figures 2 and 3 show our proposed development
methodology. First, the developer should consider the
objective of the federation and perform conceptual
analysis. During the conceptual analysis, the developer
must consider which serious game application and
constructive simulators should form a federation. In this
phase, the developer decides to develop a game agent or
federate from the beginning or utilize existing federates
from the FB. Figure 2 shows the former process, and
Figure 3 shows the latter process. The differences
between FEDEP and the MSGDEP can be characterized
by the federation synthesis, game agent development,
and parameter tuning phases. In the following section,
we will explain each phase in detail.

3.1. Federation Development Process for SGMT
 As shown in Figure 2, the proposed development
methodology extends the FEDEP. The differences
between the FEDEP and the federation development
process for SGMT are in the game loop analysis, game
agent design, game agent development, and parameter
tuning phases.

Figure 2: Federation Development for Interoperation
Between Serious Game and Constructive Simulator

Figure 3: Federation Synthesis for SGMT Development

Using HLA/RTI

3.1.1. Game Loop Analysis
In order to interoperate a constructive simulator

and a given game application, the developer should
identify the necessary information for the constructive
simulator and game application. For example, the
constructive simulator should know the position of the

Proceedings of the International Defense and Homeland Security Simulation Workshop 2013,
ISBN 978-88-97999-21-8; Bruzzone, Buck, Longo, Sokolowski and Sottilare Eds.

10

user participating the virtual training, and the game
application should know the states of the users, which
are determined by the constructive simulators. In order
to acquire such information, the developer should
understand the game loop of the game application. As
described by Valente et al. (2005), input data
acquisition, data processing, and rendering occurs
simultaneously while the game is running; in order to
handle the process, the game loop is made up of the
read player input, update, and render stages.

Therefore, in order to interoperate a serious game
application and a constructive simulator, the simulation
results from the constructive simulator should be
reflected before the render stage. In order to reflect the
simulation results before the render stage, the developer
has two options: modify the server structure of the
serious game or modify the client program of the
serious game. For example, the former option may
involve inserting additional game logic into the update
stage, while the latter option may reflect the simulation
results during the read player input stage. Between these
two options, the former option may be more suitable for
implementing interoperation features into the serious
game; however, the latter option may be more suitable
for cases in which the server and the client of a serious
game have already been developed.

In this study, we assume that the client and the
server of the serious game have already been developed.
To tackle this problem, we built a special client for a
serious game application called the Serious Game
Agent (SGA), so that the client subrogates the
constructive simulator to reflect the simulation results to
the serious game. Therefore, in the game loop analysis
phase, the developer should understand the protocol
between the server and client of the serious game.

3.1.2. SGA Design/Development

When the analysis of the game logic of a serious
game application is finished, the developer should
design and develop the SGA. As mentioned earlier, the
SGA is a gateway for the game to interchange
information between constructive simulators and a
game. The objectives of the SGA are to manage the
mapping between the information from the serious
game and the information from the constructive
simulator, and transfer the information to the other side
as quickly as possible. Therefore, the developers of the
SGA may focus on how information is managed
between the game and simulators, rather than rendering
the objects in the serious game. Figure 4 shows the
architecture of the SGA. The HLA/RTI controller of the
SGA handles the communication between the HLA/RTI
and the SGA. In particular, the HLA/RTI controller
controls the invocation of HLA services and handles the
HLA service callbacks. Correspondingly, the service
protocol between the server and the client of the serious
game is implemented in the serious game connector.
Then, the SGA transfers information from the
constructive simulator to the serious game, based on the
information mapping tables, and vice versa. Finally,

when the development of the game agent is finished, the
developed game agent is stored and federates to the FB.

Figure 4: Architecture of a Serious Game Agent

3.1.3. Parameter Tuning
 Since the game application and the constructive
simulators are different, the developer should tune the
parameters. Before we discuss this phase, we need to
analyze the characteristics of the serious game and the
constructive simulators. The objectives of a constructive
simulator are to measure and analyze the performance
index of a simulation model. A developer designs and
implements the constructive simulator to obtain reliable
simulation results. Therefore, the simulation time and
simulation space must reflect the real world.
 However, the scales of time and the space are
relative to the users. For example, the speed of a vehicle
in the simulator may be denoted as km/h, which is
important because the data affects the simulation results.
On the contrary, the trainers of a serious game will not
consider the exact speed of a vehicle; they may regard
the relative speed as more important. Moreover, the
distances between objects may differ. If the simulator
uses a different distance scale in the serious game, the
simulator may generate unintended simulation results.
In contrast, if the serious game utilizes the distance
scale of the simulator, the trainee may become bored,
because implementing a training field with real scales
will generate an enormous virtual training field. As a
result, the developer should consider the scales of time
and space and tune the parameters iteratively, until the
requirements and implementation of the federation are
met.

3.2. Federation Synthesis Process for SGMT
 As shown in Figure 3, the differences between the
federation development process and the federation
synthesis process for SGMT are in the federate and
game agent selection and federation selection phases.
The management structure of the federation and
synthesis algorithm was detailed by Kim et al. (2013).
After the selection and synthesis phases are finished, the
developer should tune the parameters.

Proceedings of the International Defense and Homeland Security Simulation Workshop 2013,
ISBN 978-88-97999-21-8; Bruzzone, Buck, Longo, Sokolowski and Sottilare Eds.

11

4. CASE STUDY: NUCLEAR/BIO-CHEMICAL
EVACUATION TRAINING SIMULATOR

 This chapter will detail our empirical research. In
order to generate dynamic situations during serious
gaming, we utilized the virtual world application In-
World Editor as a serious game and the chemical
diffusion simulator as a constructive simulator. First, we
will introduce the serious game application and the
constructive simulator. Then, we will share our
experience about interoperating both of them. Finally,
we will share what we learned during our empirical
research.

4.1. In-World Editor
 In-World Editor is a virtual world application based
on the Unity 3D Engine and Photon server application
(Unity 3D, 2013; Photon Network Engine, 2013). In
order to provide a sense of reality within a well-built
virtual training environment, the user can rearrange the
objects during gameplay. Moreover, the application
supports scripts, which allow objects in the virtual
world to interact with the users. In addition, it supports
interactions between multiple users. Each user shares a
virtual training environment and trains with other users
through each client. They can allocate virtual objects to
the field and arrange the positions of objects that other
users have allocated. Figure 5 shows a screen capture of
the In-World application.

Figure 5: In-World Editor

 To provide an immersive experience for users, this
application provides some functionality to build virtual
training environments. First, the user can allocate and
remove various objects freely, such as buildings, cars,
trees, sensors, bombs, and so on. Figure 6 shows the
object allocation in a virtual training environment. The
server of In-World Editor manages the assets, and the
client shows them when the user of In-World Editor
wants to allocate virtual objects to the virtual world.

Figure 6: Object Allocation

 In addition, users can interact with the allocated
virtual objects. For example, users cannot go through
obstacles that have been allocated onto a road.
Therefore, the trainer can lead the trainee to the training
content. Moreover, In-World Editor supports allowing
the trainer to plant a bomb, and the trainer can detonate
the bomb at any time. Using these objects, a trainer can
create a well-built virtual training environment.
Additionally, In-World Editor supports administrative
functionality. The trainer can use script commands to
control the virtual environment.

Figure 7: Interact with Object (detonate bomb)

 In-World Editor provides interaction between users
and the virtual world through 3D graphics; however, it
cannot provide realistic simulation results to trainees.
For example, if the trainer wants to build a training
scenario in which the trainee must handle an evacuation
due to chemical warfare, the developer should modify
or insert the game logic for chemical warfare. In order
to extend functionality without changing any of the
game logic for In-World Editor, we utilize the chemical
diffusion simulator by interoperating them.

Proceedings of the International Defense and Homeland Security Simulation Workshop 2013,
ISBN 978-88-97999-21-8; Bruzzone, Buck, Longo, Sokolowski and Sottilare Eds.

12

4.2. Chemical Diffusion Simulator
 The chemical diffusion simulator is a constructive
simulator that calculates the distribution of the chemical
compounds over the various geographical features. To
obtain a realistic distribution of the compounds that
considers the effects of solid walls and wind, the
constructive simulator utilizes a numerical
Computational Fluid Dynamics (CFD) model (Blazek
& Jiri, 2001). Utilizing CFD models, the user of a
constructive simulator can analyze various distributions
of chemical compounds after a chemical detonation.
Figure 7 shows a screen capture of the constructive
simulator calculating the distribution of the chemical
compounds.

Figure 8: Chemical Compound Simulator

 The CFD model discretizes the virtual space of the
game into grids and solid boundaries and then computes
the states of the grids iteratively based on the governing
equations, boundary conditions, and states of the
neighboring grids, as the simulation time advances. In
the chemical diffusion simulator, the CFD model uses
Roe approximate Riemman solvers to update the states
of the grids, such as their density, velocity, and energy,
based on the Euler equation for the governing equation,
as well as solid walls and characteristic boundary
conditions for the boundary condition, as seen in Figure
9 (Roe, 1981). When a chemical bomb explodes in the
constructive simulator, the state of the grid where the
exploded bomb is located changes, and the density of
the chemical compound increases. From that point, the
updated states influence the states of all neighboring
grids during iterative computing of the CFD models.
The distribution of chemical compounds is calculated
based on the chemical compound’s density and pressure,
and may vary according to the bomb type and the
environment.

Figure 9: Boundary Condition for the Simulator

4.3. Interoperation Between the Virtual World
Application and Constructive Simulator

 In this section, we will introduce the technologies
applied during the interoperation between the game
application and the constructive simulator. Figure 10
shows the documents used during the game loop
analysis phase. In order to speed up the pace of
development, we utilized PowerPoint documents to
determine the data structure between the constructive
simulator and the serious game.

Figure 10: Communication Documents for Drill Setup

Figure 11 shows the calibration concept during the

parameter tuning phase. The left portion of Figure 11
shows the geographical features that the trainer has
arranged. In order to control the path of the evacuation,
the trainer may place more virtual objects. The right
portion of the figure shows that the constructive
simulator has received the geographical features from
the serious game. Since every client in the game should
receive information about the objects, which are
allocated in the virtual space, the SGA receives the
information and transfers the data to the HLA/RTI.
Then, the constructive simulator receives the
information and initializes the geographical features of
the field. While transferring the geographical
information during interoperation, the SGA discretizes
the geographical data spatially.

Figure 11: Chemical Compound Simulator

Proceedings of the International Defense and Homeland Security Simulation Workshop 2013,
ISBN 978-88-97999-21-8; Bruzzone, Buck, Longo, Sokolowski and Sottilare Eds.

13

During the training session, the SGA continuously
updated the other users’ position information to the
HLA/RTI, and the constructive simulator assessed live
or killed states based on the trainee’s chemical dosage
amount. After the assessment, the simulator sent the
trainee’s state to In-World Editor through the HLA/RTI.
Finally, we utilized the administrative functionality to
make killed trainees lay down.

4.4. Lessons Learned

After developing SGMT using HLA/RTI, we
gained several insights. First, depending on the
demanded accuracy of the serious game, the
constructive simulator can utilize various turbulence
CFD models. However, several accurate CFD models
cannot guarantee the timing constraints of real-time
simulation because of the huge computational time
required. Therefore, we had to find appropriate CFD
models to satisfy the requirements of a serious game.
Moreover, after we found the appropriate CFD models,
we had to tune the parameters iteratively until they were
appropriate for the CFD model.

Second, in order to develop a federation between
the SGMT and the constructive simulator without
modifying the SGMT, the protocol between the server
and the client of the SGMT should be opened up to the
developer. Since we are developing an SGA, which acts
as a gateway to the other simulator, the developer
should understand the game loop of the serious game.
The problem is that commercial games do not offer
open game protocols. As a result, we had a difficult
time acquiring a serious game in which to develop the
federation.

Third, in order to affect the user or the virtual
objects during gameplay, a serious game should support
administrative features or server-side scripting features.
Since the serious game we used was limited for other
training contents and we are extending the serious game
using HLA/RTI, we could share information easily
from the serious game to the constructive simulator.
However, if the serious game does not provide the
functionality for the user to influence the behavior or
states of virtual objects and other users, then it will be
very limited in helping trainees to gain training
experience. For example, before we discovered In-
World Editor’s administrative functionality, we
displayed the simulation results in the chat area.
Because of its functionality, we chose this virtual world
application over several other applications. The virtual
world application can make up and arrange virtual
training fields easily, and supports server-side scripting,
so that we can influence the users and the virtual world
objects easily.

5. CONCLUSION
Extending a serious game for military training can

be tedious and difficult work. In order to support
developers in extending serious games more easily, we
have proposed a methodology to develop a SGMT
using HLA/RTI. The methodology extends the

SoSES/FB framework and its development process. The
main characteristic of the methodology is that, when a
game agent and a constructive simulator are provided, a
developer can easily synthesize the federation using the
SoSES/FB framework.

In case a game agent or a constructive simulator
does not exist, the methodology provides a means to
develop a federation. We expect that the proposed
MSGDEP will assist developers who want to extend
existing game applications to serious games, or extend
existing constructive simulators to training simulators.

ACKNOWLEDGMENTS
This work was supported by the Defense Acquisition
Program Administration and the Agency for Defense
Development under the contract UD110006MD, South
Korea.

REFERENCES
SecondLife, 2013. Available from:

< http://secondlife.com/ >.
Rippin, P., 2009. Virtual World Simulation Training

Prepares Real Guards on the US-Canadian Border:
Loyalist College in Second Life. Linden Lab.,
Available From:
<http://secondlifegrid.net.s3.amazonaws.com/docs
/Second_Life_Case_Loyalist_EN.pdf>.

Fishwick, P., Kamhawi R. Coffey, A. and Henderson, J.
2010. An Experimental Design and Preliminary
Results for a Cultural Training System Simulation:
Proceedings of Winter Simulation Conference
2010, pp. 799-810, Washington D.C. USA

Virtual Battlespace 2, 2013. Available from: <
http://products.bisimulations.com/products/vbs2/>

Maxwell, D., McLennan, K., 2012, June. Case Study:
Leveraging Government and Academic
Partnerships in MOSES (Military Open Simulator
[Virtual World] Enterprise Strategy). In World
Conference on Educational Multimedia,
Hypermedia and Telecommunications (Vol. 2012,
No. 1, pp. 1604-1616).

OpenSimulator, 2013. Available from:
<www.opensimulator.org>

IEEE1516-2010, 2010. Standard for Modeling and
Simulation High Level Architecture – Framework
and Rules, 2010.

IEEE1516.3-2003, 2003. IEEE Recommended Practice
for High Level Architecture (HLA) Federation
Development and Execution Process (FEDEP),
2003.

Kim, B.S., Choi, C.B., and Kim, T.G., 2013,
Multifaceted Modeling and Simulation Framework
for System of Systems Using HLA/RTI, 2013
Spring Simulation Multiconference, 16th
Communications and Networking Symposium
(CNS), San Diego, CA, USA.

Valente, L., Conci, A., and Feijó, B., 2005. Real time
game loop models for single-player computer
games, In: Proceedings of the IV Brazilian

Proceedings of the International Defense and Homeland Security Simulation Workshop 2013,
ISBN 978-88-97999-21-8; Bruzzone, Buck, Longo, Sokolowski and Sottilare Eds.

14

Symposium on Computer Games and Digital
Entertainment, pp. 99–107.

Unity 3D, 2013. Available from:
<www.unity3d.com>

Photon Network Engine, 2013. Available from:
< http://www.exitgames.com/Photon/Unity>

Blazek, Jiri, 2001. Computational Fluid Dynamics:
Principles and Applications: Principles and
Applications. Elsevier

Roe, Philip L., 1981. Approximate Riemann solvers,
parameter vectors, and difference schemes, In :
Journal of computational physics, 43(2), 357-372.

Park, Sang C., Kwon, Y., Seong, K., and Pyun, J., 2010,
Simulation framework for small scale engagement.
In Computer & Industrial Engineering, 2012 (59),
463–472.

Gwenda, F., 2004, Adapting COTS games for military
simulation. In: Proceedings of the 2004 ACM SIG
SIGGRAPH international conference on Virtual
Reality continuum and its application in industry ,
pp.269–272.

Proceedings of the International Defense and Homeland Security Simulation Workshop 2013,
ISBN 978-88-97999-21-8; Bruzzone, Buck, Longo, Sokolowski and Sottilare Eds.

15

