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ABSTRACT 
The application of computer simulation has been 
proposed and implemented to optimize an integrated 
manufacturing system using lean manufacturing 
principles.  
A simulation model only acts as a tool in examining 
performance. It is essentially a trial and error 
methodology, and does not directly provide 
explanations for observed system behaviors. Therefore, 
in this paper the use of design of experiment in 
simulation is studied to solve decision-making problems 
in integrated manufacturing systems. In order to achieve 
the objectives described above, the authors have 
developed a simulation model for a manufacturing 
process in packaging area. 
In particular, the authors have been modeling the 
automatic material handling and storage system served 
by automatic guided vehicles (AGV) versus packaging 
lines in a pharmaceutical plant. The lean manufacturing 
principles have been used to simulate different settings 
of the process as bottleneck removal, buffer removal 
and kitting operation introduction. The design of 
experiment 25 factorial design has been used to optimize 
the scenario.  
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1. INTRODUCTION 
The modeling and analysis of integrated manufacturing 
systems have become more and more important since 
the wide acceptance of factory automation. However, in 
many integrated manufacturing systems, production 
processes are complicated by many interactions 
between these processes such as deadlock, conflict, as 
well as uncertainties in the manufacturing environment 
such as machine failures, tool changes or variability in 
production requirements. As a result, technologies 
based on specific management objectives are necessary 
to model and analyze this class of systems (Tsai 2002). 

An approach that can assist engineers and 
managers is the application of computer simulation 
(Law 1991). Since the early development of models and 
languages, simulation has evolved into a technique, 
which is extremely useful as a facility to test on the 

model rather than the real-world system, and also to 
analyze the relationships between the parameters and 
output behavior. Moreover, there is flexibility in the use 
of simulation languages, the model can be built as close 
to reality as we need and taken as a decision-making 
support tool. Thus, it is very helpful to analyze, 
schedule or plan manufacturing systems using 
simulation instead of using complicated mathematical 
model equations (Galbraith 1994). 

Significant work has been performed over the past 
25 years in the areas of simulation language 
development, simulation model design, and 
model/memory optimization (Tsai 1997).  Less 
attention has been focused, however, on the issues 
associated with the use of the simulation model as a 
design and analysis tool. Often, once a simulation 
model has been verified and validated, the modeler will 
initiate a series of tests in a random fashion in order to 
determine the effect of these changes on the model’s 
output, or response. It is essentially a trial and error 
methodology, and does not directly provide 
explanations for observed system behaviors. This 
approach to scenario creation often results in a “good” 
solution to the design problem, but does not always 
result in an optimal solution  (Callahan 2006).  

Many existing manufacturing system design 
procedures attempt to minimize a static measure of 
material handling time or cost, but the performance of a 
manufacturing system can also depend on other factors 
such as the batch sizes of parts, scheduling rules, 
downtimes and setup times on machines, and demand. 
So, basically there is a need to determine the 
combination and level of these factors so that a measure 
of performance is optimized (Ekren and Ornek 2008). 

A simulation model only acts as a tool in 
examining performance. The activities involved in 
simulation models are to predict results from 
operational parameters and to select the best solution 
from a variety of possible options.  Combining 
simulation modeling with design of experiments 
analysis can be a powerful tool in developing near 
optimal solutions in a short period of time.  

This paper describes a systematic methodology for 
the use of DOE methods in conjunction with a system 
simulation study. An application of this methodology is 
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also presented that analyzes a specific manufacturing  
system of pharmaceutical plant. In this paper, the use of 
Factorial experiment  in the activities of simulation is 
proposed to achieve the objectives above. 

The experimental design is carried out by 
simulating the system using the ARENA 10.0 
(Hammann 1995) simulation software and analyzing 
outputs using Minitab statistical package  

 
2. USE OF DESIGN OF EXPERIMENT  
Experimental design is a strategy to gather empirical 
knowledge, i.e. knowledge based on the analysis of 
experimental data and not on theoretical models. It can 
be applied whenever you intend to investigate a 
phenomenon in order to gain understanding or improve 
performance. 

Building a design means carefully choosing a 
small number of experiments that have to be performed 
under controlled conditions. There are four interrelated 
steps in building a design (Montgomery 2005): 

 
• Define an objective to the investigation, e.g. 

better understand or sort out important 
variables or find optimum.  

• Define the variables that will be checked 
during the experiment (design variables), and 
their levels or ranges of variation.  

• Define the variables that will be measured to 
describe the outcome of the experimental runs 
(response variables), and examine their 
precision.  
 

Among the available standard designs, the modeler 
choose the more  compatible with the aims, number of 
design variables and precision of measurements, and 
reasonable cost. 

Standard designs are well-known classes of 
experimental designs. They can be generated 
automatically as soon as you have decided on the 
objective, the number and nature of design variables, 
the nature of the responses and the number of 
experimental runs you can afford. Generating such a 
design will provide you with a list of all experiments 
you must perform, to gather enough information for 
your purposes. 

Design of Experiments (DoE) is widely used in 
research and development, where a large proportion of 
the resources go towards solving optimization 
problems. The key to minimizing optimization costs is 
to conduct as few experiments as possible. DoE requires 
only a small set of experiments and thus helps to reduce 
costs 

Design models are very different among authors, 
particularly in the names of activities and in the level of 
whom tasks are defined. But the models consistently 
identify similar types of activities as central to design: 
problem identification and definition, ideation, 
evaluation and analysis, and iteration as quintessential 
examples. Furthermore, most models recognize that 
design projects transition pass through phases, or 

alternatively, that designers operate at different 
cognitive levels of abstraction over the course of a 
design project. Again, the phases, cognitive levels and 
labels can differ widely, but most models start with an 
early conceptual phase, end with a detail design phase, 
and connect the two with one or more intermediate 
phases. 

Factorial design are widely used in experiments 
involving several factors whose it is necessary to study 
the joint effect of the factors in a response.  

It is very often required to investigate the effect of 
several different sets of treatments, or more generally 
several different explanatory factors, on a response of 
interest. 

Factorial designs allow for the simultaneous study 
of the effects that several factors may have on a process. 
Tester make an experiment, varying the levels of the 
factors simultaneously rather than one at a time is 
efficient in terms of time and cost, and also allows for 
the study of interactions between the factors. 
Interactions are the driving force in many processes. 
Without the use of factorial experiments, important 
interactions may remain undetected. 

The different aspects defining treatments are 
conventionally called factors, and there is typically a 
specified, usually small, number of levels for each 
factor. 

A single treatment is a particular combination of 
levels of the factors. 

A complete factorial experiment consists of an 
equal number of replicates of all possible combinations 
of the levels of the factors. 

There are several reasons for designing complete 
factorial experiments, rather than, for example, using a 
series of experiments investigating one factor at a time. 
The first is that factorial experiments are much more 
efficient to estimate main effects, which are the 
averaged effects of a single factor over all units. The 
second, and very important, reason is that interaction 
among factors can be assessed in a factorial experiment 
but not from series of one-at-a-time experiments. 

Interaction effects are important in determining 
how the conclusions of the experiment might be applied 
more generally.  

Experiments with large numbers of factors are 
often used as a screening device to assess quickly 
important effects and interaction. For this reason it is 
only common to set each factor at two levels, with the 
aim to keep the size of the experiment manageable. The 
levels of each factor are conventionally called low and 
high, or absent and present.   

Very often experimenters do not have adequate 
time, resources and budget to carry out full factorial 
experiments. If the testers can reasonably assume that 
some higher-order interactions can be obtained by 
running only a fraction of the full factorial experiment. 
A type of orthogonal array design which allows 
experimenters to study main effects and desired 
interaction effects in a minimum number of trials is 
called a fractional factorial design. These fractional 
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factorial designs are generally represented in the form 
2(k-p) where k is the number of factors and 1/2p 
represents the fraction of the full factorial 2k. 

This paper takes full advantages of factorial 
experimental design and simulation to identify and to 
weight the importance of different factors in the 
operation of integrated manufacturing system (Antony 
2005). 

The following methodology is proposed as a 
technique for quickly and effectively gaining 
information from a simulation model.  

 
1. Develop a simulation model that addresses the 

impact of the more important factors in the 
system on output. 

2. Perform verification and validation on the 
simulation model. 

3. Determine the experimental design for a 2k 
factorial using the inputs and outputs from the 
simulation model. 

4. Adjust inputs to the simulation model in 
various combinations, as specified by the 
factorial design, and collect data from the 
simulation output. 

5. Use DOE techniques (and software) to conduct 
a factorial analysis using the inputs of the 
simulation as factors and the output of the 
simulation as the response or responses. 

6. Interpret the data and determine the best 
combination of input factor settings using the 
ANOVA, effects graphs, and interaction 
graphs. 

7. Repeat the process, if necessary, to further 
refine significant factor levels. 

 

3. A CASE STUDY OF PHARMACEUTICAL 
PLANT 

This case study is about a pharmaceutical plant and in 
particular its automated guided vehicles (AGV) system.  

The aim was the optimization of AGV’s flow 
between packaging area (called white area) and 
warehouse 

The layout is shown in figure 1. In particular this 
case study refers to packaging and warehouse areas in 
order to optimize the AGV flow.  

 

 
Figure 1: Layout area case of study 

 
The main elements in the system were: 
 

• Warehouse: it has been automated by 5 
automated storage and retrieval machines 
(ASRS) that transport units on 5 roller 
conveyors. It had a capacity of 15000 cells. 
Shelving cells are structured for euro-pallets 
dimension. At the end of the warehouse there 
were 5 roller conveyors that canalized units 
versus corridor and packaging area. 

• Shape Control: it was an activity to control the 
shape of the pallets and assigned the cell 
before storing in the warehouse. There were 3  
stations for shape control.  

• Buffers: two buffers were present in the layout. 
The first one was at the end of warehouse in 
which units are cumulate holding AGV. The 
second one was before white area, at the end of 
the corridor, in which units holds to be loading 
in the packaging lines.  

• AGV: two type of AGV were in the considered 
area.  
The AGV called “White” had the function to 
transport the pallets through the black corridor. 
The white AGV were 4 with capacity of 1200 
kg each one.  
The AGV called “Blue” had the function to 
transport as pallets as bins through White Area 
that was the packaging area of medicinal drugs. 
The blue AGV were 2 with a capacity of 2200 
kg each one.  
Pallets dimensions were 1.160 mm x 1.200 mm 
x 2.300 mm for both AGV types. Moreover 
both types was endowed with bumpers and 
sensors for automatic stopping in case of 
obstacles presence. 

 
3.1. Modeling Issue 
Following the lean manufacturing principles (Melton, 
2005), a simulation model was developed to assess: 
 

• removal of the two buffers in order to serve the 
packaging lines just in time. Resource wastes 
existed in drop & pick of AGVs in the 
different buffers. Buffers removal aimed to 
decrease AGVs cycle time and delay of the 
packaging lines starting production process 
due to the absence of processing batch 
conveyed by AGVs.  

• removal of roller conveyors at the end of the 
warehouse that were a structural bond in the 
system and bottleneck. The model simulates 
the absence of roller conveyors and the 
presence of a pick and drop station at the end 
of each automated storage and retrieval 
machines (ASRS) that could be served directly 
by AGVs.  

• optimization tool: this tool was add-on to the 
model because the AGVs were inclined to 
come back to the battery charger points after a 
mission failed according to logic that assigns 
the missions near the drop stations. The 
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optimization tool has the task to find the path 
with the less times for the mission in the whole 
possible paths. The impact of the time 
necessary to elaborate the path solution has 
been assessed with simulation model. 

• kitting activity: to avoid the presence of 
different types of material in a pallet a kitting 
activity was design at the end of the 
warehouse. In the pharmaceutical sector laws 
forbid the presence of incompatible materials 
in the same pallet. The impact of the presence 
of kitting activity on the system has been 
assessed with simulation model. 
 

The simulation model has been validated under 
different setting conditions. Simulation model design is 
shown in figure 2. 

 

 
Figure 2: Simulation model design (Arena elaboration) 

 
3.2. Design of Experiment 
In the following the steps for the analysis are shown. 

3.2.1. Factors and levels 
In the design of experiment, process variables include 
both factors and responses. The selection of these 
variables is best done as a team effort. The team should: 

 
• include all important factors;  
• check the factor settings for impracticable or 

impossible combinations;  
• include all relevant responses; 
• avoid using only responses that combine two 

or more measurements of the process. 
 
From this point of view the project team has 

identified the variables and their levels for the 
simulation experiment.  

As shown in the previous paragraph, simulation 
model deals with 5 variables critical for the system:  

 
• contemporaneous lines; 
• optimization tool; 
• kitting activity; 
• number of blu AGV; 

• number of white AGV. 
 
The response is the delay of the packaging lines 

starting production process due to the absence of 
processing batch conveyed by AGV. 

Each variable has been analyzed in order to 
determine the number of levels in 25 DOE design: 

 
• number of blu AGV: this factor, called A, is 

set in the real system in 2 AGV; in the 
simulation we are interested to assess the effect 
of 2 (+) or 1 (-) AGV in action; 

• number of white AGV: this factor, called B, is 
set in the real system in 4 AGV; in the 
simulation we are interested to asses the effect 
of 4 (+) or 3 (-) AGV in action; 

• kitting activity: this factor, called C, may 
influence the number of AGV cycles in the 
system; the levels are relating to the presence 
(+) or not (-) of this activity; 

• optimization tool: this factor, called D, may 
influence the AGV cycle time in the system; 
the levels are relating to the presence (+) or not 
(-) of this tool; 

• contemporaneous packaging lines: this factor, 
called E, influences the cycle time of system; 
the levels have been fixed to 3 (-) or 4 (+) 
contemporaneous lines after simulation runs. 

 
3.2.2. DOE: first step analysis 

The objectives for the experiments have been 
determined by a team discussion. First of all it was 
necessary to identify which factors/effects were 
important. Factorial design are widely used in 
experiments involving several factors whose it is 
necessary to study the joint effect in a response. In this 
case the number of parameters (5) yields number of 
experiments equal to 32 (25). Referring to the objectives 
of this experiment is useful to use an half reduction  
design of 16 (25-1) experiments.  

The experimental design and the alias structure 
obtained by Minitab software are shown in figure 3.  

A confounding design is one where some treatment 
effects (main or interactions) are estimated by the same 
linear combination of the experimental observations as 
some blocking effects. In this case, the treatment effect 
and the blocking effect are said to be confounded. 
Confounding is also used as a general term to indicate 
that the value of a main effect estimate comes from both 
the main effect itself and also contamination or bias 
from higher order interactions. They also occur 
whenever a fractional factorial design is chosen instead 
of a full factorial design.  

In the case it was V resolution design with 
ABCED = I: no main effect or two-factor interaction is 
aliased with any other main effect or two-factor 
interaction, but two-factor interactions are aliased with 
three-factor interaction.  

The higher the resolution, the less restrictive the 
assumptions that are required regarding which 
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interactions are negligible to obtain a unique 
interpretation of the data.  

 

 
Figure 3: First step DOE (Minitab elaboration) 
 
The result could be discussed after the simulation 

that takes one hour each one.  
Before the conclusions from the first step of DOE, 

the adequacy of the model should be checked. Factorial 
design makes  assumptions about the errors: 

 
• the errors are normally distributed with mean 

zero; 
• the error variance does not change for different 

levels of a factor or according to the values of 
the predicted response; 

• each error is independent of all other errors. In 
a designed experiment, the best way to obtain 
independent errors is to randomize the run 
order of the experimental trials. 
 

The diagnostic tool, used in the case study, is 
residual analysis shown in figure 4.  

The probability plot is used for the standardized 
residuals to check whether: 

 
• the distribution assumption is appropriate; 
• the assumption of equal shape (Weibull or 

exponential) or scale parameter (other 
distributions) is appropriate. 
 

The probability plot for standardized residuals 
combines the data to calculate one fitted line, thereby 
making it easier to determine if the plot points hug the 
fitted line. If the plot points hug the fitted line then the 
assumptions are appropriate. The assumptions can be 
violated when the line does not adequately fit the 
points. In the case study the plot points hug the fitted 
line adequately and therefore provide evidence that the 
assumptions are validated.  

A histogram of the residuals shows the distribution 
of the residuals for all observations. Testers use the 
histogram as an exploratory tool to learn about the 
following characteristics of the data: 

 
• typical values, spread or variation, and shape; 
• unusual values in the data. 
 
The histogram of the residuals should be bell-

shaped.  
In the case study the residuals didn’t appear to 

indicate the presence of an outlier confirming the 
normal distribution. 

Residuals versus fits plots the residuals versus the 
fitted values. The residuals should be scattered 
randomly about zero. This plot points out noncostant 
variance an outlier.  

In the case study the residuals appear to be 
randomly scattered about zero.   

Residual versus error graph plots the residuals in 
the order of the corresponding observations. The plot is 
useful when the order of the observations may influence 
the results, which can occur when data are collected in a 
time sequence or in some other sequence, such as 
geographic area. This plot can be particularly helpful in 
a designed experiment in which the runs are not 
randomized. The residuals in the plot should fluctuate in 
a random pattern around the center line. Testers 
examine the plot to see if any correlation exists among 
error terms that are near each other. Correlation among 
residuals may be signified by:  

 
• an ascending or descending trend in the 

residuals 
• rapid changes in signs of adjacent residuals 
 
For the case study data, the residuals appeared to 

be randomly scattered about zero. No evidence seemed 
to exist that the error terms were correlated each other.  

Therefore the validity of these assumptions in 
analysis was confirmed. 

The Pareto Chart, shown in figure 5, pointed out 
the importance on response (with significant level 
α=0,01) of all factors except for optimization tool. 
Moreover the effect of  kitting activity, number of blu 
AGV, number of white AGV was influenced by alias 
structure. Therefore, the factor optimization tool was set 
the level of (-), the factor contemporaneous lines was 
set the level (-) as discussed in the results paragraph.  

 
3.2.1. DOE: second step analysis 

A complete factorial design 23 has been performed 
including the remaining variables. 

The experimental design obtained by Minitab 
software is shown in figure 6. All terms are free from 
aliasing.  

The results have confirmed the important effect 
(with significant level α=0,01) of factors number of 
AGV blu and white as shown in figure 7. On the other 
hand, no influence of kitting activity has been foreseen. 
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The main effects plot, as shown in figure 8, shows the 
effect of the factors on the response and compare the 
relative strength of the effects.  

The factor number of blu AGV has been set the 
level of (+) and the factor number of white AGV has 
been set the level (+) as discussed in the results 
paragraph. 

The factor kitting activities has been set (+1) to 
evaluating the third combination factors by cube plot as 
shown in figure 9. 

 

 
Figure 4: Residual analysis (Minitab elaboration) 

 

 
Figure 5: Pareto chart first step DOE (Minitab 
elaboration) 

 

 
Figure 6: Second step DOE (Minitab elaboration) 

 

 
Figure 7: Pareto chart second step DOE (Minitab 

elaboration) 
 

 
Figure 8:Main effect plot second step DOE (Minitab 

elaboration) 
 

 
Figure 9: Cube plot second step DOE (Minitab 

elaboration) 
 

3.2.2. DOE Results 
Summarizing, the optimal configuration was: 
 
• Blu AGV set at the number of 2 AGV; it’s the 

most important factor for the response in the 
system with 1500 s of impact on performance 
as shown in figure 7; this is due also to the 
functionality of this type of AGV in the system 
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that may transfer both BIN missions and 
pallets as shown in the previous paragraph; 

• White AGV set at the number of 4 AGV; the 
running operation of white AGV has an 
important impact of 500 s on the response; 

• Kitting activity set at level (+1) because its 
presence is requested in the system; but , as 
shown in figure 7, the absolute value doesn’t 
have an important effect; but considering the 
combined effect with numbers of AGV, fig.7, 
factor we could conclude that the presence of 
kitting activity improve (435 s) the impact on 
final performance;  

• Optimization tool set at level (-) because its 
presence is not requested in the system; 
optimization tool improves the AGV flow in 
the system but slows down the whole 
performance due to the time for mission 
allocation; 

• Contemporaneous lines set at number of 3. 
Increasing of contemporaneous lines increases 
the traffic in the system with an important 
impact on the final response as shown in figure 
9. 

 
The design of experiment has not only allowed to 

define the optimal configuration with the delay of the 
packaging lines starting production process equal to 0 s 
but also to quantify the results of the impact in the 
system. The optimal configuration allows to reduce the 
delay of 435 s.  

 
4. CONCLUSIONS 
In this paper the application of computer simulation and 
design of experiment has been proposed and 
implemented to optimize AGV’s flow between 
packaging area (called white area) and warehouse of a 
pharmaceutical plant and in particular its automated 
guided vehicles (AGV) system.  

Manufacturing systems can be very complex with 
numerous paths of material flow and varying 
capabilities of equipment. Simulation modeling is well 
suited to represent these systems and can be enhanced 
by including design of experiments techniques as shown 
in the case study. 

Simulation modeling is well established and can be 
very useful in analyzing the performance of a 
manufacturing system. These models can become very 
complex as the number of factors and system outputs 
increase. In this article, a study was done to investigate 
the usefulness of combining DOE techniques with 
simulation modeling. The DOE techniques were used to 
determine the number of experiments and factor level 
combinations necessary to fully and efficiently 
represent all possible scenarios for the defined model. 
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