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ABSTRACT 
In this paper we describe a simple cluster approach for 
solving the Vehicle Routing Problem with Time 
Windows (VRPTW). The idea is to combine heuristic 
and exact approaches to solve the problem. This is done 
by decomposing the problem into two sub-problems. 
The first step consists of building customer clusters, in 
the second step, those clusters are solved with an exact 
method. We present computational results for the 
Solomon benchmark problems. 
 
Keywords: vehicle routing, time windows, VRPTW, 
metaheuristic, tabu search, multi-objective optimization 

 
1. INTRODUCTION 
Transportation problems arise in a lot of companies. In 
a typical supply chain these are the sourcing of raw 
materials, the in-company distribution, the distribution 
to the retailers and reverse logistics. Furthermore it is 
apparent in the supply of services like waste collection, 
public transport, mail distribution and others. 
Transportation not only causes a lot of cost but also 
pollutes the environment. The pressure of the market 
forces firms to cut cost down. Computerized planning 
of the distribution process have shown to produce 
considerable savings of about 5% to 20% (depending on 
the application) (Toth and Vigo 2001). 

Research for the Vehicle Routing Problem (VRP) 
was started nearly 50 years ago by Dantzig and Ramser 
(1959). They tried to solve a route planning problem for 
gasoline distribution, where a set N of n station points 
(or customers respectively nodes) p1, p2, ..., pn are given 
and deliveries to them are made from node p0, called 
terminal point or depot. A delivery vector is given, it 
specifies the demand qi for every node i. A fleet K of k 
trucks is available; each truck has a capacity Q, where 
Q > max qi, i.e. the demand of every node is smaller 
than the truck capacity. And there is an arc set A, where 
cij ∈ A are the travel cost from node pi to pj. They 
developed the first Linear Programming (LP) based 
approach for the VRP. At that time Integer Linear 
Programming (ILP) was in the beginning of its 
development, as noted in Dantzig and Ramser (1959). 

The next milestone was set by Clarke and Wright 
(1964) with their savings heuristic. Their approach is 
simple and fast, which explains its popularity even 
nowadays (Laporte and Semet 2001). Many solution 
concepts for more complex problems (with a lot of 
different constraints) are based on that heuristic or use it 
to compute an initial solution. 

Those two methods present two main research 
directions which were taken the last decades: exact 
versus heuristic approaches. A long time those two 
approaches were not combined. This has different 
causes. Among other things, by using heuristic 
approaches one spoils the chance to find the global 
optimum. On the other hand: exact approaches may take 
an inconsiderable long computation time (to find the 
optimum). For practitioners there is another important 
reason: most of the time it is not necessary to find the 
best solution, a solution which is better than current 
practice is often enough (Wren 1998). 

From the first appearance of the VRP until now a 
lot of different generalizations evolved. Among others 
there are the VRP with multiple depots (MDVRP, 
MVRP), the VRP with stochastic demands (SDVRP, 
SVRP), Pickup and Delivery VRP (PDVRP), VRP with 
Backhauls (VRPB), or the VRP with Time Windows 
(VRPTW) (Dorronsoro 2007; Toth and Vigo 2001).  

This work focuses on the VRPTW. It is NP-hard 
(cf. Cordeau et al. 2001) and consists of the following 
constraints: every node has a time window, i.e. a node pi 
may only be serviced between its earliest arrival time 
(ai) and latest arrival time (bi). Every stop at a node 
takes a certain service time (si). If a vehicle arrives 
before ai it must wait until then to begin service. After 
servicing the node the vehicle may leave and continue 
to service the next node or return to the depot. Every 
vehicle must return to the depot before a certain time, 
i.e. every route has a maximal time. All other 
constraints are the same as in the VRP (Cordeau et al. 
2001). Before we can give a formal description of the 
VRPTW we need to define the set V = N ∪ {p0} and the 
following variables: ijkx  define the flow of the 
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vehicles, i.e. ijkx , ( , ) ,i j A k K∈ ∈ is equal to 1 if arc 

( , )i j  is serviced by vehicle k, 0 otherwise. Time 
variables ikw define the time of service of vehicle k at 
node i. 

Now the VRPTW can be formally described: 
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The objective function (1) minimizes the length of 

the routes. Constraint (2) ensures that every node is 
visited exactly once. Constraints (3), (4) and (5) force 
every vehicle to leave the depot, move from one node to 
the next and finish the tour at the depot. Constraint (6) 
ensures that the capacity of every vehicle is not 
exceeded. Constraints (7) and (8) guarantee feasible 
schedules with respect to time windows. Constraint (9) 
enforces binary decision variables for the arcs. Finally, 
constraint (10) forces time variables to be positive. 
Please note: in this model the travel time equals the 
travel cost. 

In this formal description the objective function 
minimizes the total route length. This may not always 
be the main goal. Another often used objective function 
is to minimize the vehicle fleet size and the total length 
of the routes. Then the VRPTW is a multi-objective 
optimization problem. But there are other goals one 
might want to achieve, e.g. the minimization of the 
waiting time (e.g. transportation of passengers) or the 
minimization of the total routing time (e.g. 
transportation of hazardous materials). In this work our 
primary optimization goal is the minimization of 
vehicles/routes and the secondary optimization goal is 
the minimization of the total length of the routes. 

We will continue by giving a short literature 
review in section 2; section 3 motivates the research 
direction which this work is aimed at. Section 4 
describes our solution method; section 5 shows results 
of computational experiments and at last section 6 gives 
an outlook on further ideas, refinements and research 
directions. 

 
2. LITERATURE REVIEW 
The VRPTW was subject of intensive research. Hence 
numerous different solution concepts were developed. 
The spectrum reaches from simple one stage heuristics 
(Solomon 1987), two stage heuristics (cluster-first, 
route-second; route-first, cluster-second) (Dorronsoro 
2007; Cordeau et al. 2001), various local search 
methods (Bräysy, Hasle and Dullaert 2004), 
metaheuristics (Thangiah 1995; Potvin et al. 1996; 
Homberger and Gehring 2005) to exact approaches 
based on mathematical programming (Kallehauge, 
Larsen and Madsen 2001). 

Solomon (1987) introduced three heuristics (I1, I2 
and I3). They differ mainly in the weighting function. 
The I1 heuristic is nowadays the most popular. It is a 
sequential route construction heuristic and inserts 
customers into the current route according to a 
weighting function. It determines the best insertion 
position for all unrouted customers in the actual route 
by calculating the weighted sum of the detour and the 
shift of arrival time of the following customers. The 
customer for which the difference between the distance 
to the depot and the weighted sum of the best insertion 
position is maximized is inserted. This is repeated until 
all customers are serviced. If no customer can be 
inserted a new route is started. 

A clustering metaheuristic was proposed by 
Thangiah (1995). He developed a system called 
GIDEON. The customers are sorted according to their 
polar coordinates (the depot is origin) and clustered into 
sectors. An insertion heuristic creates routes. The 
clusters are then optimized using a genetic algorithm. 

One of the most successful metaheuristic 
approaches for large problem instances was developed 
by Homberger and Gehring (2005). It is a two phase 
metaheuristic. In the first phase an Evolution Strategy 
minimizes the number of routes, in the second phase a 
Tabu Search metaheuristic minimizes the total length of 
the routes.  

 
3. MOTIVATION FOR A CLUSTER-BASED 

APPROACH 
Even though instances up to 1000 nodes can be solved 
to optimality, benchmark problems with 100 customers 
are not yet solved to optimality (cf. Kallehauge, Larsen 
and Madsen 2001).  

Only problems up to a few dozen of nodes can 
easily be solved to optimum nowadays (cf. Toth and 
Vigo 2001). For bigger instances (50 or more nodes) 
one possibility would be to decompose the problem into 
smaller sub-problems, which then can be solved faster 
by exact methods. 
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We think that sophisticated clustering methods for 
the VRPTW would contribute to the solution process of 
large scale problems. Because the problem size 
decreases, hence the effort to calculate the exact 
solution for a single cluster decreases too. Additionally, 
as nowadays the trend goes towards parallel computing 
(multi-core personal computers, GRID computing) 
clustering algorithms may contribute to the 
parallelization of solution concepts. 

Here, an optimal clustering is a set of clusters, 
where every cluster contains the customers of the 
optimal routes. Due to the presence of time windows 
complex clusters arise. Figure 1 shows a solution for a 
50 node benchmark problem (instance R101 of the 
Solomon (1987) benchmark problems; a short 
description is in section 5). The black rectangle in the 
middle is the depot; the Bezier curve in the upper left 
corner marks a simple cluster and the Bezier curve next 
to the depot marks a more complex cluster. Optimal 
solutions for bigger problems have a similar clustering 
(cf. Kallehauge, Larsen and Madsen (2001) for the 
optimal solution of a 100 customer problem). 

 

 
Figure 1: Solution of a 50 Nodes VRPTW Benchmark 
Problem of the Solomon (1987) Benchmarks 

 
Recently a few researchers developed cluster 

algorithms for vehicle-routing like problems, e.g. 
Dondo and Cerdá (2007) propose a cluster based 
optimization approach for the multi-depot VRPTW.  

 
4. SOLUTION CONCEPT 
As mentioned earlier, we developed a cluster based 
optimization approach, i.e. our focus is to find clusters, 
from which optimal solutions can be derived. What we 
do is group customers into clusters and then calculate 
the route for every cluster. We start with an initial 
clustering and then iteratively change the customer 
clusters.  

The general flow of the algorithm is depicted in 
figure 2. At first an initial clustering is calculated. Then 
the routing problem is solved for every cluster and the 
quality of the solution is evaluated. The variables 
actual_solution and best_solution are initialized with 
this solution. Now the main optimization loop is 
entered. A probabilistic Tabu Search metaheuristic 
optimizes the clusters using different neighborhood 
operators until a termination criterion is met. 

Every solution cycle generates a certain predefined 
amount of neighbors probabilistically. The quality of 
these candidate solutions is evaluated and the best non-
tabu solution is selected as the new actual_solution for 
the next iteration. If actual_solution is better than 
best_solution, actual_solution is assigned to 
best_solution. Basically, this is a standard Tabu Search 
algorithm. 

 

 
Figure 2: Tabu Search Flow Diagram 

 
4.1. Solution Evaluation 
A neighbor respectively a solution in this context is a 
set of clusters, where a cluster is again a set of 
customers. A cluster consists of customers who can 
feasibly be serviced by one vehicle, i.e. every cluster 
represents one tour.  

We somehow must determine the quality of such a 
cluster. The following possibilities exist: 

 
1. Use a lower bound method 
2. Use an upper bound method 
3. Use an exact method 

 
Method 1 is fast, but e.g. bounds based on integer 
relaxation for the VRPTW are rather weak (cf. Cordeau 
et al. 2001) and we risk infeasible clusters, i.e. clusters 
for which no feasible route exists. Another fast 
approach would be to use an upper bound method. Even 
though one always gets a feasible solution, the 
disadvantage is that one can not say how good the 
solution is. 

We decided to use an exact method and solve the 
routing problem to the global optimum. We use the 
MILP formulation given in section 1 and ILOG CPLEX 
11 to solve it. 

 The disadvantage of this approach is that the 
execution time greatly depends on the problem instance. 
For example in Kallehauge, Larsen and Madsen (2001) 
the execution time for the 25 node problems of the 
Solomon (1987) benchmark problems varies between 
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0.1 second (instance R101) and 221087.1 seconds 
(instance RC207). 

Because the calculation of the optimal solution can 
take a considerable amount of time, we cache results of 
solved routing problems in a so called cluster table. 
Each time a cluster is generated, it is looked up there. If 
it was already encountered, a table entry exists and the 
according value is taken. If no entry in the table exists, 
the MILP solver is called, the routing problem is solved 
and the result (length of the route) is stored in the 
cluster table.  

This has the advantage that if we encounter a 
cluster again later in the search process, it is not 
necessary to optimize it again. Additionally we can 
discard special clusters, which we have not seen yet. 
Let’s consider two clusters (i.e. two sets of customers) 
y1 = {p1, p2, …, pm} and y2 = {p1, p2, …, pm, …, pn}, 
where y1 ⊆ y2. Then, if y1 is infeasible (i.e. no route 
exists which satisfies all constraints), y2 must be 
infeasible too. 

A solution to the routing problem can take two 
values: either the length of the route or infeasible.  

As the VRPTW here is seen as multi-objective 
optimization problem, it is necessary to keep in mind 
that our primary optimization goal is the minimization 
of the number of used vehicles (i.e. number of routes). 
The secondary optimization goal is the minimization of 
the length of the routes.  

Objective function values are sorted 
lexicographically, i.e. a solution with two routes is 
always better than a solution with three routes 
regardless of the tour length. 

 
4.2. Initial Clustering 
Before we can start the main search process we need an 
initial clustering. We implemented two methods. 

The first initialization method is based on the 
Solomon I1 heuristic. We partition the customers into 
clusters according to the routes generated by the I1 
heuristic. For example if we solve 25 customer problem 
C104 with the Solomon algorithm we may get, 
depending on the parameters, the following three routes 
(0 is the depot, numbers 1 to 25 are the nodes; routes 
are written in a permutation like style, i.e. (0, 2, 5, 0) 
means the vehicle starts at node 0 (depot), visits node 2 
then node 5 and finally returns to the depot): {(0, 13, 
15, 17, 18, 19, 16, 14, 12, 0), (0, 20, 24, 25, 22, 11, 9, 
23, 21, 10, 6, 2, 0), (0, 2, 7, 8, 4, 1, 3, 5, 0)} with a total 
length of 254.88. We now use these three customer sets 
as clusters and solve the according routing problem 
using a MILP solver. Every route is solved separately, 
i.e. in this example the MILP solver is called three 
times. The following three routes are returned: {(0, 13, 
17, 18, 19, 15, 16, 14, 12, 0), (0, 24, 25, 2, 6, 11, 9, 10, 
23, 22, 21, 20, 0), (0, 2, 7, 8, 4, 1, 3, 5, 0)} with a length 
of 233.65. Our initial solution has the quality (3, 
233.65). 

The second method we implemented is called one-
node-per-cluster. As the name suggests, every customer 
builds a separate cluster. It is a very naïve method. The 

idea in using such a simple initialization is that if we 
encounter a lot of small infeasible clusters in the 
beginning of the search, the algorithm has gathered 
more knowledge about the problem and can discard 
more infeasible clusters later. 

 
4.3. Neighborhood Operators 
Neighborhood operators are used to produce new 
solutions and a crucial element of the Tabu Search 
metaheuristic (Gendreau and Potvin 2005).  

Here the generation of a neighbor consists of two 
steps. At first the clusters are modified. The second step 
is the calculation of the optimal routes for the changed 
clusters. The length of the optimal route reflects the 
quality of the cluster. 

Two different neighborhood operators were 
implemented: exchange and move. Those two types are 
typical operators used in the context of vehicle routing 
(cf. Homberger and Gehring 2005). 

The move neighborhood operator takes the actual 
solution, selects two random clusters, e.g. c1 = {pa, pb, 
pc, …, r, …, pk} and c2 = {pn, po, pq, pr, …, pu} and 
moves a random, non-forbidden node r from c1 to c2.  

Now both new clusters are looked up in the cluster 
table. If it already contains an entry for both or either of 
the new clusters, the according quality value is taken. 
Missing values are calculated using the MILP solver. 

If c2 is infeasible the move is reversed, node r is 
temporary forbidden and another node of set c1 is 
chosen. This step is repeated until a feasible solution is 
found or all nodes of c1 are forbidden during this 
neighborhood operation. All encountered trial solutions 
are stored in the cluster table.  

The move operator is able to decrease the number 
of routes in contrast to the exchange operator. 

The exchange operator selects two random clusters 
c1 = {pa, pb, …, k, …, pi} and c2 = {ps, pt, …, r, …, pu}. 
From cluster c1 a random, non-forbidden node k is 
chosen, from cluster c2 a random, non-forbidden node r 
is chosen. Those two nodes are exchanged, and yield to 
the following clusters: c1 = {pa, pb, …, pi, r}, c2 = {ps, 
pt, …, pu, k}. Again, both new clusters are looked up in 
the cluster table and in case of a missing value, the 
MILP solver is called. In case any of the clusters is 
infeasible the move is reversed and nodes k and r are 
not allowed to be exchanged during this neighborhood 
operation. 
 
4.4. Tabu List 
As the Tabu Search metaheuristic is a neighborhood 
based steepest descent search method it must somehow 
be ensured that the search process can escape from local 
optima. This is the purpose of the tabu list (or memory).  

Generally, tabu lists are used to control the search 
process, i.e. short term memory may be used to prevent 
from cycling and intermediate and long term memory 
may be used to intensify or diversify the search process 
(Gendreau and Potvin 2005). 

Here, we use short term memory to prevent 
cycling. No long term or intermediate memory is used. 
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We do not only store solution attributes but 
complete solutions. Those solutions must not be 
selected again. 

Now the description of the developed solution 
concept is complete. In summary, it is a probabilistic 
Tabu Search with short term memory and two different 
neighborhood operators. 

 
5. COMPUTATIONAL RESULTS 
All computational experiments were done using the 
Solomon (1987) benchmark instances. They consist of 
different classes of problems: R, C and RC. Class R 
contains random node positions. The nodes in class C 
are clustered. Class RC contains a mixture of class R 
and class C. Every problem class contains two different 
sets of problem instances: 1 and 2. Class 1 contains 
problem instances with narrow time windows and class 
2 contains problem instances with wide time windows. 
There are 6 different problem classes. R1, R2, C1, C2, 
RC1, RC2. Every problem class contains between 8 and 
12 problem instances. Solomon (1987) created problem 
instances with 25, 50 and 100 customers. Distances are 
Euclidean and calculated using node coordinates.  

We present 4 different test-runs. Each was run 
twice using another random seed. Table 1 shows the 
configuration of the 4 test-runs. A test-run was stopped 
after one of the termination criterions was met: either 
the iteration counter reached the iteration limit or 
execution time exceeded the maximal execution time. If 
more than one neighborhood operator is given, one is 
chosen randomly for every neighborhood generation. 
 

Table 1: Configuration of the 4 Test Runs 
  Test #1 Test #2 Test #3 Test #4 

Iterations 1000 1000 1000 1000 
Max. 

Execution 
Time 

15 min. 15 min. 15 min. 15 min. 

Neighbor-
hood Size 20 20 20 20 

Tabulist 
Length 1000 1000 1000 1000 

Initialization one-node- 
per-cluster 

Solomon 
I1 

one-node- 
per-cluster 

Solomon 
I1 

Neighbor-
hood 

Operator 
move move move, 

exchange 
move, 

exchange

 
Table 2: Averaged (2 Runs) Solution Quality for all 25-
Node-Solomon Instances  
Label Test #1 Test #2 Test #3 Test #4 

  V. Length V. Length V. Length V. Length
C101 3 191,81 3 191,81 3 191,81 3 215,57
C102 3 190,74 3 242,15 3 190,74 3 242,15
C103 3 203,62 3 190,74 3 208,46 3 202,40
C104 3 221,53 3 203,63 4 256,50 3 212,75
C105 3 191,81 3 191,81 3 191,81 3 191,81

C106 3 191,81 3 191,81 3 191,81 3,5 223,55
C107 3 191,81 3 191,81 3 191,81 3 191,81
C108 3 191,81 3 191,81 3 191,81 3 191,81
C109 3 191,81 3 213,07 3 191,81 3 225,85
C201 2 215,54 2 215,54 2 215,54 2 215,54
C202 2 215,54 1 223,31 1,5 219,43 1 223,31
C203 2 215,54 1,5 241,14 2 215,54 1 224,46
C204 2,5 235,50 1 213,93 2,5 240,19 1 214,35
C205 1,5 256,50 1 297,45 1,5 256,50 1 297,45
C206 1,5 250,47 1 287,21 2 215,54 1 288,02
C207 2 215,34 1 274,78 2,5 238,98 1 274,78
C208 2 215,37 1 229,84 2 215,37 1 229,84
R101 8 618,33 8 618,33 8 626,77 8,5 670,60
R102 7 558,12 7 548,11 7 548,53 7 548,53
R103 4 473,39 4 495,02 5 473,19 4 490,56
R104 4 425,18 5 498,16 4 424,53 4,5 463,89
R105 5 559,84 5,5 547,35 5,5 544,13 5,5 558,90
R106 5 466,48 5 466,48 5 467,72 5 466,48
R107 4 447,75 4 451,42 4 446,66 4,5 456,24
R108 4 398,29 4 442,72 4 406,47 4 443,43
R109 4 467,28 4 460,52 7 538,58 4 460,52
R110 4 449,41 4 454,42 4 451,14 4 464,54
R111 4 436,06 4 434,18 4 435,49 4 449,35
R112 4 404,15 4 404,10 4 407,58 4 406,40
R201 2 525,25 2 525,25 2,5 502,80 2 528,93
R202 3,5 415,04 2 529,57 3,5 421,13 2 528,80
R203 3 416,57 2 447,01 3 404,59 2 474,28
R204 2 360,79 1 483,59 2,5 386,64 1 479,65
R205 2 412,81 2 405,98 2 419,24 2 419,20
R206 2 389,43 2 395,69 2 380,76 2 404,39
R207 2 372,45 1 408,60 2 374,32 1 408,60
R208 2 335,69 1 329,33 2 336,07 1 329,33
R209 2,5 375,24 2 383,24 2,5 376,65 2 396,49
R210 3 411,61 2 414,18 3 422,58 2 420,74
R211 3 362,63 2 426,20 3 371,21 2 419,40

RC101 4 463,60 4 463,60 4,5 469,56 4,5 470,84
RC102 3 352,74 3 352,74 3 352,74 3 352,74
RC103 3 333,92 3 333,92 3 333,92 3 333,92
RC104 3 307,14 3 307,14 4 367,10 3 307,14
RC105 4 412,38 4 412,38 4 412,38 4 412,38
RC106 3 346,51 3 346,51 3 346,51 3 346,51
RC107 3 298,95 3 298,95 3,5 329,00 3 298,95
RC108 3 294,99 3 294,99 4 394,86 3 294,99
RC201 2 432,30 2 450,43 2 433,26 2 468,56
RC202 3 338,82 - - 3 355,28 - - 
RC203 3 362,34 1 521,51 3,5 357,09 1 506,84
RC204 3 300,23 1 344,01 3 355,04 1 342,70
RC205 3 338,93 2 512,49 2,5 391,75 2 529,22
RC206 3 325,10 2 450,84 2 361,47 2 473,13
RC207 3 314,74 2 427,36 3 330,67 2 474,82
RC208 3 312,71 2 393,47 4 396,23 2 458,37
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Computational experiments were done on an Intel 
Pentium 4 Mobile with 768 MB RAM. The solution 
concept was implemented in C# (.NET Framework 3.5). 
We used ILOG CPLEX 11 to solve the MILP sub-
problem using the model presented in section 1. 

Optimal solutions were taken from Kallehauge, 
Larsen and Madsen (2001). They cut off distances after 
the second decimal place. We use double precision. 
Their objective was the minimization of the tour length. 
They did not publish results for the following instances: 
R204, RC204 and RC208. 

Table 2 shows the averaged results over two test-
runs for all 25 customer problems of Solomon (1987). 
For every test-run, the column labeled V. contains the 
number of used vehicles (nr. of routes); the column 
labeled Length contains the total length of the solution. 
Italic entries mark solutions, which are closer than 0.5% 
to the given optimal quality (because of the difference 
in distance). If our solution to a problem instance uses 
fewer vehicles than the optimal solution, then the value 
is underlined (and both values are written in italic).  

In columns Test #2 and Test #3 results for problem 
instance RC202 are missing, because the computer run 
out of memory when calculating the optimal routes for 
the initial solution.  

Results for Test #1 show that our approach finds a 
solution which is at most 0.5% worse than the reference 
solution in 40 cases out of 56. In column Test #2 even 
44 problems are within the 0.5% gap. In Test #3 we can 
solve 33 problems close to the optimum and in Test #4 
39 problems. the Solomon I1 heuristic clustering seems 
to be better than the one-node-per-cluster initialization. 
Results for Test #3 and #4 (exchange and move 
operator randomly chosen) are inferior compared to 
Test #1 and #2 (only move operator). 
 
6. CONCLUSIONS 
Or approach is able to find near optimal solutions 
within reasonable time for small problems. 

The main drawbacks of the developed solution 
concept are the lack of an appropriate diversification 
method and the weak MILP formulation for the 
VRPTW. The next step will be the development of an 
appropriate diversification strategy. 

The use of exact methods would be the best choice, 
but the runtime heavily depends on the given problem 
instance. So we consider adapting an appropriate TSP 
heuristic method for the TSPTW (cf. Applegate, Bixby, 
Chvátal and Cook 2006). 
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