
A CLUSTER-BASED OPTIMIZATION APPROACH FOR THE VEHICLE ROUTING
PROBLEM WITH TIME WINDOWS

Michael Bögl

 Institute for Production and Logistics Management
Johannes Kepler University

Altenberger Straße 69
4040 Linz, Austria

michael.boegl@jku.at

ABSTRACT
In this paper we describe a simple cluster approach for
solving the Vehicle Routing Problem with Time
Windows (VRPTW). The idea is to combine heuristic
and exact approaches to solve the problem. This is done
by decomposing the problem into two sub-problems.
The first step consists of building customer clusters, in
the second step, those clusters are solved with an exact
method. We present computational results for the
Solomon benchmark problems.

Keywords: vehicle routing, time windows, VRPTW,
metaheuristic, tabu search, multi-objective optimization

1. INTRODUCTION
Transportation problems arise in a lot of companies. In
a typical supply chain these are the sourcing of raw
materials, the in-company distribution, the distribution
to the retailers and reverse logistics. Furthermore it is
apparent in the supply of services like waste collection,
public transport, mail distribution and others.
Transportation not only causes a lot of cost but also
pollutes the environment. The pressure of the market
forces firms to cut cost down. Computerized planning
of the distribution process have shown to produce
considerable savings of about 5% to 20% (depending on
the application) (Toth and Vigo 2001).

Research for the Vehicle Routing Problem (VRP)
was started nearly 50 years ago by Dantzig and Ramser
(1959). They tried to solve a route planning problem for
gasoline distribution, where a set N of n station points
(or customers respectively nodes) p1, p2, ..., pn are given
and deliveries to them are made from node p0, called
terminal point or depot. A delivery vector is given, it
specifies the demand qi for every node i. A fleet K of k
trucks is available; each truck has a capacity Q, where
Q > max qi, i.e. the demand of every node is smaller
than the truck capacity. And there is an arc set A, where
cij ∈ A are the travel cost from node pi to pj. They
developed the first Linear Programming (LP) based
approach for the VRP. At that time Integer Linear
Programming (ILP) was in the beginning of its
development, as noted in Dantzig and Ramser (1959).

The next milestone was set by Clarke and Wright
(1964) with their savings heuristic. Their approach is
simple and fast, which explains its popularity even
nowadays (Laporte and Semet 2001). Many solution
concepts for more complex problems (with a lot of
different constraints) are based on that heuristic or use it
to compute an initial solution.

Those two methods present two main research
directions which were taken the last decades: exact
versus heuristic approaches. A long time those two
approaches were not combined. This has different
causes. Among other things, by using heuristic
approaches one spoils the chance to find the global
optimum. On the other hand: exact approaches may take
an inconsiderable long computation time (to find the
optimum). For practitioners there is another important
reason: most of the time it is not necessary to find the
best solution, a solution which is better than current
practice is often enough (Wren 1998).

From the first appearance of the VRP until now a
lot of different generalizations evolved. Among others
there are the VRP with multiple depots (MDVRP,
MVRP), the VRP with stochastic demands (SDVRP,
SVRP), Pickup and Delivery VRP (PDVRP), VRP with
Backhauls (VRPB), or the VRP with Time Windows
(VRPTW) (Dorronsoro 2007; Toth and Vigo 2001).

This work focuses on the VRPTW. It is NP-hard
(cf. Cordeau et al. 2001) and consists of the following
constraints: every node has a time window, i.e. a node pi
may only be serviced between its earliest arrival time
(ai) and latest arrival time (bi). Every stop at a node
takes a certain service time (si). If a vehicle arrives
before ai it must wait until then to begin service. After
servicing the node the vehicle may leave and continue
to service the next node or return to the depot. Every
vehicle must return to the depot before a certain time,
i.e. every route has a maximal time. All other
constraints are the same as in the VRP (Cordeau et al.
2001). Before we can give a formal description of the
VRPTW we need to define the set V = N ∪ {p0} and the
following variables: ijkx define the flow of the

33

vehicles, i.e. ijkx , (,) ,i j A k K∈ ∈ is equal to 1 if arc

(,)i j is serviced by vehicle k, 0 otherwise. Time
variables ikw define the time of service of vehicle k at
node i.

Now the VRPTW can be formally described:

(,)
min ij ijk

k K i j A
c x

∈ ∈
∑ ∑ (1)

subject to

1ijk

k K j V
x i N

∈ ∈

= ∀ ∈∑∑ (2)

0 1
∈

= ∀ ∈∑ jk
j N

x k K (3)

0 ,ihk hjk
i V j V

i j

x x h N k K
∈ ∈

≠

− = ∀ ∈ ∀ ∈∑ ∑ (4)

0 1
∈

= ∀ ∈∑ i k
i N

x k K (5)

i ijk
i N j V

q x Q k K
∈ ∈

≤ ∀ ∈∑ ∑ (6)

(1)

 , , ,

+ + − − ≤

∀ ∈ ≠ ∀ ∈
ik i ij ijk jkw s c M x w

i j V i j k K
 (7)

 ,i ik ia w b i V k K≤ ≤ ∀ ∈ ∀ ∈ (8)

{ }0,1 (,) ,ijkx i j A k K∈ ∀ ∈ ∀ ∈ (9)

0 ,ikw i N k K≥ ∀ ∈ ∀ ∈ (10)

The objective function (1) minimizes the length of

the routes. Constraint (2) ensures that every node is
visited exactly once. Constraints (3), (4) and (5) force
every vehicle to leave the depot, move from one node to
the next and finish the tour at the depot. Constraint (6)
ensures that the capacity of every vehicle is not
exceeded. Constraints (7) and (8) guarantee feasible
schedules with respect to time windows. Constraint (9)
enforces binary decision variables for the arcs. Finally,
constraint (10) forces time variables to be positive.
Please note: in this model the travel time equals the
travel cost.

In this formal description the objective function
minimizes the total route length. This may not always
be the main goal. Another often used objective function
is to minimize the vehicle fleet size and the total length
of the routes. Then the VRPTW is a multi-objective
optimization problem. But there are other goals one
might want to achieve, e.g. the minimization of the
waiting time (e.g. transportation of passengers) or the
minimization of the total routing time (e.g.
transportation of hazardous materials). In this work our
primary optimization goal is the minimization of
vehicles/routes and the secondary optimization goal is
the minimization of the total length of the routes.

We will continue by giving a short literature
review in section 2; section 3 motivates the research
direction which this work is aimed at. Section 4
describes our solution method; section 5 shows results
of computational experiments and at last section 6 gives
an outlook on further ideas, refinements and research
directions.

2. LITERATURE REVIEW
The VRPTW was subject of intensive research. Hence
numerous different solution concepts were developed.
The spectrum reaches from simple one stage heuristics
(Solomon 1987), two stage heuristics (cluster-first,
route-second; route-first, cluster-second) (Dorronsoro
2007; Cordeau et al. 2001), various local search
methods (Bräysy, Hasle and Dullaert 2004),
metaheuristics (Thangiah 1995; Potvin et al. 1996;
Homberger and Gehring 2005) to exact approaches
based on mathematical programming (Kallehauge,
Larsen and Madsen 2001).

Solomon (1987) introduced three heuristics (I1, I2
and I3). They differ mainly in the weighting function.
The I1 heuristic is nowadays the most popular. It is a
sequential route construction heuristic and inserts
customers into the current route according to a
weighting function. It determines the best insertion
position for all unrouted customers in the actual route
by calculating the weighted sum of the detour and the
shift of arrival time of the following customers. The
customer for which the difference between the distance
to the depot and the weighted sum of the best insertion
position is maximized is inserted. This is repeated until
all customers are serviced. If no customer can be
inserted a new route is started.

A clustering metaheuristic was proposed by
Thangiah (1995). He developed a system called
GIDEON. The customers are sorted according to their
polar coordinates (the depot is origin) and clustered into
sectors. An insertion heuristic creates routes. The
clusters are then optimized using a genetic algorithm.

One of the most successful metaheuristic
approaches for large problem instances was developed
by Homberger and Gehring (2005). It is a two phase
metaheuristic. In the first phase an Evolution Strategy
minimizes the number of routes, in the second phase a
Tabu Search metaheuristic minimizes the total length of
the routes.

3. MOTIVATION FOR A CLUSTER-BASED

APPROACH
Even though instances up to 1000 nodes can be solved
to optimality, benchmark problems with 100 customers
are not yet solved to optimality (cf. Kallehauge, Larsen
and Madsen 2001).

Only problems up to a few dozen of nodes can
easily be solved to optimum nowadays (cf. Toth and
Vigo 2001). For bigger instances (50 or more nodes)
one possibility would be to decompose the problem into
smaller sub-problems, which then can be solved faster
by exact methods.

34

We think that sophisticated clustering methods for
the VRPTW would contribute to the solution process of
large scale problems. Because the problem size
decreases, hence the effort to calculate the exact
solution for a single cluster decreases too. Additionally,
as nowadays the trend goes towards parallel computing
(multi-core personal computers, GRID computing)
clustering algorithms may contribute to the
parallelization of solution concepts.

Here, an optimal clustering is a set of clusters,
where every cluster contains the customers of the
optimal routes. Due to the presence of time windows
complex clusters arise. Figure 1 shows a solution for a
50 node benchmark problem (instance R101 of the
Solomon (1987) benchmark problems; a short
description is in section 5). The black rectangle in the
middle is the depot; the Bezier curve in the upper left
corner marks a simple cluster and the Bezier curve next
to the depot marks a more complex cluster. Optimal
solutions for bigger problems have a similar clustering
(cf. Kallehauge, Larsen and Madsen (2001) for the
optimal solution of a 100 customer problem).

Figure 1: Solution of a 50 Nodes VRPTW Benchmark
Problem of the Solomon (1987) Benchmarks

Recently a few researchers developed cluster

algorithms for vehicle-routing like problems, e.g.
Dondo and Cerdá (2007) propose a cluster based
optimization approach for the multi-depot VRPTW.

4. SOLUTION CONCEPT
As mentioned earlier, we developed a cluster based
optimization approach, i.e. our focus is to find clusters,
from which optimal solutions can be derived. What we
do is group customers into clusters and then calculate
the route for every cluster. We start with an initial
clustering and then iteratively change the customer
clusters.

The general flow of the algorithm is depicted in
figure 2. At first an initial clustering is calculated. Then
the routing problem is solved for every cluster and the
quality of the solution is evaluated. The variables
actual_solution and best_solution are initialized with
this solution. Now the main optimization loop is
entered. A probabilistic Tabu Search metaheuristic
optimizes the clusters using different neighborhood
operators until a termination criterion is met.

Every solution cycle generates a certain predefined
amount of neighbors probabilistically. The quality of
these candidate solutions is evaluated and the best non-
tabu solution is selected as the new actual_solution for
the next iteration. If actual_solution is better than
best_solution, actual_solution is assigned to
best_solution. Basically, this is a standard Tabu Search
algorithm.

Figure 2: Tabu Search Flow Diagram

4.1. Solution Evaluation
A neighbor respectively a solution in this context is a
set of clusters, where a cluster is again a set of
customers. A cluster consists of customers who can
feasibly be serviced by one vehicle, i.e. every cluster
represents one tour.

We somehow must determine the quality of such a
cluster. The following possibilities exist:

1. Use a lower bound method
2. Use an upper bound method
3. Use an exact method

Method 1 is fast, but e.g. bounds based on integer
relaxation for the VRPTW are rather weak (cf. Cordeau
et al. 2001) and we risk infeasible clusters, i.e. clusters
for which no feasible route exists. Another fast
approach would be to use an upper bound method. Even
though one always gets a feasible solution, the
disadvantage is that one can not say how good the
solution is.

We decided to use an exact method and solve the
routing problem to the global optimum. We use the
MILP formulation given in section 1 and ILOG CPLEX
11 to solve it.

 The disadvantage of this approach is that the
execution time greatly depends on the problem instance.
For example in Kallehauge, Larsen and Madsen (2001)
the execution time for the 25 node problems of the
Solomon (1987) benchmark problems varies between

35

0.1 second (instance R101) and 221087.1 seconds
(instance RC207).

Because the calculation of the optimal solution can
take a considerable amount of time, we cache results of
solved routing problems in a so called cluster table.
Each time a cluster is generated, it is looked up there. If
it was already encountered, a table entry exists and the
according value is taken. If no entry in the table exists,
the MILP solver is called, the routing problem is solved
and the result (length of the route) is stored in the
cluster table.

This has the advantage that if we encounter a
cluster again later in the search process, it is not
necessary to optimize it again. Additionally we can
discard special clusters, which we have not seen yet.
Let’s consider two clusters (i.e. two sets of customers)
y1 = {p1, p2, …, pm} and y2 = {p1, p2, …, pm, …, pn},
where y1 ⊆ y2. Then, if y1 is infeasible (i.e. no route
exists which satisfies all constraints), y2 must be
infeasible too.

A solution to the routing problem can take two
values: either the length of the route or infeasible.

As the VRPTW here is seen as multi-objective
optimization problem, it is necessary to keep in mind
that our primary optimization goal is the minimization
of the number of used vehicles (i.e. number of routes).
The secondary optimization goal is the minimization of
the length of the routes.

Objective function values are sorted
lexicographically, i.e. a solution with two routes is
always better than a solution with three routes
regardless of the tour length.

4.2. Initial Clustering
Before we can start the main search process we need an
initial clustering. We implemented two methods.

The first initialization method is based on the
Solomon I1 heuristic. We partition the customers into
clusters according to the routes generated by the I1
heuristic. For example if we solve 25 customer problem
C104 with the Solomon algorithm we may get,
depending on the parameters, the following three routes
(0 is the depot, numbers 1 to 25 are the nodes; routes
are written in a permutation like style, i.e. (0, 2, 5, 0)
means the vehicle starts at node 0 (depot), visits node 2
then node 5 and finally returns to the depot): {(0, 13,
15, 17, 18, 19, 16, 14, 12, 0), (0, 20, 24, 25, 22, 11, 9,
23, 21, 10, 6, 2, 0), (0, 2, 7, 8, 4, 1, 3, 5, 0)} with a total
length of 254.88. We now use these three customer sets
as clusters and solve the according routing problem
using a MILP solver. Every route is solved separately,
i.e. in this example the MILP solver is called three
times. The following three routes are returned: {(0, 13,
17, 18, 19, 15, 16, 14, 12, 0), (0, 24, 25, 2, 6, 11, 9, 10,
23, 22, 21, 20, 0), (0, 2, 7, 8, 4, 1, 3, 5, 0)} with a length
of 233.65. Our initial solution has the quality (3,
233.65).

The second method we implemented is called one-
node-per-cluster. As the name suggests, every customer
builds a separate cluster. It is a very naïve method. The

idea in using such a simple initialization is that if we
encounter a lot of small infeasible clusters in the
beginning of the search, the algorithm has gathered
more knowledge about the problem and can discard
more infeasible clusters later.

4.3. Neighborhood Operators
Neighborhood operators are used to produce new
solutions and a crucial element of the Tabu Search
metaheuristic (Gendreau and Potvin 2005).

Here the generation of a neighbor consists of two
steps. At first the clusters are modified. The second step
is the calculation of the optimal routes for the changed
clusters. The length of the optimal route reflects the
quality of the cluster.

Two different neighborhood operators were
implemented: exchange and move. Those two types are
typical operators used in the context of vehicle routing
(cf. Homberger and Gehring 2005).

The move neighborhood operator takes the actual
solution, selects two random clusters, e.g. c1 = {pa, pb,
pc, …, r, …, pk} and c2 = {pn, po, pq, pr, …, pu} and
moves a random, non-forbidden node r from c1 to c2.

Now both new clusters are looked up in the cluster
table. If it already contains an entry for both or either of
the new clusters, the according quality value is taken.
Missing values are calculated using the MILP solver.

If c2 is infeasible the move is reversed, node r is
temporary forbidden and another node of set c1 is
chosen. This step is repeated until a feasible solution is
found or all nodes of c1 are forbidden during this
neighborhood operation. All encountered trial solutions
are stored in the cluster table.

The move operator is able to decrease the number
of routes in contrast to the exchange operator.

The exchange operator selects two random clusters
c1 = {pa, pb, …, k, …, pi} and c2 = {ps, pt, …, r, …, pu}.
From cluster c1 a random, non-forbidden node k is
chosen, from cluster c2 a random, non-forbidden node r
is chosen. Those two nodes are exchanged, and yield to
the following clusters: c1 = {pa, pb, …, pi, r}, c2 = {ps,
pt, …, pu, k}. Again, both new clusters are looked up in
the cluster table and in case of a missing value, the
MILP solver is called. In case any of the clusters is
infeasible the move is reversed and nodes k and r are
not allowed to be exchanged during this neighborhood
operation.

4.4. Tabu List
As the Tabu Search metaheuristic is a neighborhood
based steepest descent search method it must somehow
be ensured that the search process can escape from local
optima. This is the purpose of the tabu list (or memory).

Generally, tabu lists are used to control the search
process, i.e. short term memory may be used to prevent
from cycling and intermediate and long term memory
may be used to intensify or diversify the search process
(Gendreau and Potvin 2005).

Here, we use short term memory to prevent
cycling. No long term or intermediate memory is used.

36

We do not only store solution attributes but
complete solutions. Those solutions must not be
selected again.

Now the description of the developed solution
concept is complete. In summary, it is a probabilistic
Tabu Search with short term memory and two different
neighborhood operators.

5. COMPUTATIONAL RESULTS
All computational experiments were done using the
Solomon (1987) benchmark instances. They consist of
different classes of problems: R, C and RC. Class R
contains random node positions. The nodes in class C
are clustered. Class RC contains a mixture of class R
and class C. Every problem class contains two different
sets of problem instances: 1 and 2. Class 1 contains
problem instances with narrow time windows and class
2 contains problem instances with wide time windows.
There are 6 different problem classes. R1, R2, C1, C2,
RC1, RC2. Every problem class contains between 8 and
12 problem instances. Solomon (1987) created problem
instances with 25, 50 and 100 customers. Distances are
Euclidean and calculated using node coordinates.

We present 4 different test-runs. Each was run
twice using another random seed. Table 1 shows the
configuration of the 4 test-runs. A test-run was stopped
after one of the termination criterions was met: either
the iteration counter reached the iteration limit or
execution time exceeded the maximal execution time. If
more than one neighborhood operator is given, one is
chosen randomly for every neighborhood generation.

Table 1: Configuration of the 4 Test Runs
 Test #1 Test #2 Test #3 Test #4

Iterations 1000 1000 1000 1000
Max.

Execution
Time

15 min. 15 min. 15 min. 15 min.

Neighbor-
hood Size 20 20 20 20

Tabulist
Length 1000 1000 1000 1000

Initialization one-node-
per-cluster

Solomon
I1

one-node-
per-cluster

Solomon
I1

Neighbor-
hood

Operator
move move move,

exchange
move,

exchange

Table 2: Averaged (2 Runs) Solution Quality for all 25-
Node-Solomon Instances
Label Test #1 Test #2 Test #3 Test #4

 V. Length V. Length V. Length V. Length
C101 3 191,81 3 191,81 3 191,81 3 215,57
C102 3 190,74 3 242,15 3 190,74 3 242,15
C103 3 203,62 3 190,74 3 208,46 3 202,40
C104 3 221,53 3 203,63 4 256,50 3 212,75
C105 3 191,81 3 191,81 3 191,81 3 191,81

C106 3 191,81 3 191,81 3 191,81 3,5 223,55
C107 3 191,81 3 191,81 3 191,81 3 191,81
C108 3 191,81 3 191,81 3 191,81 3 191,81
C109 3 191,81 3 213,07 3 191,81 3 225,85
C201 2 215,54 2 215,54 2 215,54 2 215,54
C202 2 215,54 1 223,31 1,5 219,43 1 223,31
C203 2 215,54 1,5 241,14 2 215,54 1 224,46
C204 2,5 235,50 1 213,93 2,5 240,19 1 214,35
C205 1,5 256,50 1 297,45 1,5 256,50 1 297,45
C206 1,5 250,47 1 287,21 2 215,54 1 288,02
C207 2 215,34 1 274,78 2,5 238,98 1 274,78
C208 2 215,37 1 229,84 2 215,37 1 229,84
R101 8 618,33 8 618,33 8 626,77 8,5 670,60
R102 7 558,12 7 548,11 7 548,53 7 548,53
R103 4 473,39 4 495,02 5 473,19 4 490,56
R104 4 425,18 5 498,16 4 424,53 4,5 463,89
R105 5 559,84 5,5 547,35 5,5 544,13 5,5 558,90
R106 5 466,48 5 466,48 5 467,72 5 466,48
R107 4 447,75 4 451,42 4 446,66 4,5 456,24
R108 4 398,29 4 442,72 4 406,47 4 443,43
R109 4 467,28 4 460,52 7 538,58 4 460,52
R110 4 449,41 4 454,42 4 451,14 4 464,54
R111 4 436,06 4 434,18 4 435,49 4 449,35
R112 4 404,15 4 404,10 4 407,58 4 406,40
R201 2 525,25 2 525,25 2,5 502,80 2 528,93
R202 3,5 415,04 2 529,57 3,5 421,13 2 528,80
R203 3 416,57 2 447,01 3 404,59 2 474,28
R204 2 360,79 1 483,59 2,5 386,64 1 479,65
R205 2 412,81 2 405,98 2 419,24 2 419,20
R206 2 389,43 2 395,69 2 380,76 2 404,39
R207 2 372,45 1 408,60 2 374,32 1 408,60
R208 2 335,69 1 329,33 2 336,07 1 329,33
R209 2,5 375,24 2 383,24 2,5 376,65 2 396,49
R210 3 411,61 2 414,18 3 422,58 2 420,74
R211 3 362,63 2 426,20 3 371,21 2 419,40

RC101 4 463,60 4 463,60 4,5 469,56 4,5 470,84
RC102 3 352,74 3 352,74 3 352,74 3 352,74
RC103 3 333,92 3 333,92 3 333,92 3 333,92
RC104 3 307,14 3 307,14 4 367,10 3 307,14
RC105 4 412,38 4 412,38 4 412,38 4 412,38
RC106 3 346,51 3 346,51 3 346,51 3 346,51
RC107 3 298,95 3 298,95 3,5 329,00 3 298,95
RC108 3 294,99 3 294,99 4 394,86 3 294,99
RC201 2 432,30 2 450,43 2 433,26 2 468,56
RC202 3 338,82 - - 3 355,28 - -
RC203 3 362,34 1 521,51 3,5 357,09 1 506,84
RC204 3 300,23 1 344,01 3 355,04 1 342,70
RC205 3 338,93 2 512,49 2,5 391,75 2 529,22
RC206 3 325,10 2 450,84 2 361,47 2 473,13
RC207 3 314,74 2 427,36 3 330,67 2 474,82
RC208 3 312,71 2 393,47 4 396,23 2 458,37

37

Computational experiments were done on an Intel
Pentium 4 Mobile with 768 MB RAM. The solution
concept was implemented in C# (.NET Framework 3.5).
We used ILOG CPLEX 11 to solve the MILP sub-
problem using the model presented in section 1.

Optimal solutions were taken from Kallehauge,
Larsen and Madsen (2001). They cut off distances after
the second decimal place. We use double precision.
Their objective was the minimization of the tour length.
They did not publish results for the following instances:
R204, RC204 and RC208.

Table 2 shows the averaged results over two test-
runs for all 25 customer problems of Solomon (1987).
For every test-run, the column labeled V. contains the
number of used vehicles (nr. of routes); the column
labeled Length contains the total length of the solution.
Italic entries mark solutions, which are closer than 0.5%
to the given optimal quality (because of the difference
in distance). If our solution to a problem instance uses
fewer vehicles than the optimal solution, then the value
is underlined (and both values are written in italic).

In columns Test #2 and Test #3 results for problem
instance RC202 are missing, because the computer run
out of memory when calculating the optimal routes for
the initial solution.

Results for Test #1 show that our approach finds a
solution which is at most 0.5% worse than the reference
solution in 40 cases out of 56. In column Test #2 even
44 problems are within the 0.5% gap. In Test #3 we can
solve 33 problems close to the optimum and in Test #4
39 problems. the Solomon I1 heuristic clustering seems
to be better than the one-node-per-cluster initialization.
Results for Test #3 and #4 (exchange and move
operator randomly chosen) are inferior compared to
Test #1 and #2 (only move operator).

6. CONCLUSIONS
Or approach is able to find near optimal solutions
within reasonable time for small problems.

The main drawbacks of the developed solution
concept are the lack of an appropriate diversification
method and the weak MILP formulation for the
VRPTW. The next step will be the development of an
appropriate diversification strategy.

The use of exact methods would be the best choice,
but the runtime heavily depends on the given problem
instance. So we consider adapting an appropriate TSP
heuristic method for the TSPTW (cf. Applegate, Bixby,
Chvátal and Cook 2006).

REFERENCES
Applegate, D. E., Bixby, R. E., Chvátal, V., Cook, W.

J., 2006. The traveling salesman problem – a
computational study. Princeton:Princeton Series in
Applied Mathematics.

Bräysy, O., Hasle, G., Dullaert, W., 2004. A multi-start
local search algorithm for the vehicle routing
problem with time windows. European Journal of
Operational Research 159:586-605.

Clarke, G., Wright, J., 1964. Scheduling of vehicles
from a central depot to a number of delivery
points. Operations Research 12:568-581.

Cordeau, J.-F., Desaulniers, G., Desrosiers, J., Solomon,
M. M., Soumis, F., 2001. VRP with time windows.
In: Toth, P., Vigo, D., eds. The vehicle routing
problem. Philadelphia:SIAM Monographs on
Discrete Mathematics and Applications, 157-186.

Dantzig, G. B., Ramser, J. H., 1959. The truck
dispatching problem. Management Science 6:80-
91.

Dondo, R., Cerdá, J., 2007. A cluster-based
optimization approach for the multi-depot
heterogeneous fleet vehicle routing problem with
time windows. European Journal of Operational
Research 176:1478-1507.

Dorronsoro, B., 2007. VRP Web. Available from:
http://neo.lcc.uma.es/radi-aeb/WebVRP/
[Accessed June 2008].

Gendreau, M., Potvin, J.-Y., 2005. Tabu search. In:
Burke, E. K., Kendall, G., eds. Search
methodologies – introductory tutorials in
optimization and decision support techniques.
New York:Springer Science+Business Media,
165-186.

Homberger, J., Gehring, H., 2005. A two-phase
metaheuristic for the vehicle routing problem with
time windows. European Journal of Operational
Research 162:220-238.

Kallehauge, B., Larsen, J., Madsen, O., 2001.
Lagrangean duality applied on vehicle routing
with time windows – experimental results.
Technical Report, IMM, Technical University of
Denmark.

Laporte, G., Semet, F., 2001. Classical heuristics for the
capacitated VRP. In: Toth, P., Vigo, D., eds. The
vehicle routing problem. Philadelphia:SIAM
Monographs on Discrete Mathematics and
Applications, 109-126.

Potvin, J. Y., Kervahut, T., Garcia, B. L., Rousseau, J.
M., 1996: The vehicle routing problem with time
windows – part I: tabu search. INFORMS Journal
on Computing 8:158-164.

Solomon, M. M., 1987. Algorithms for the vehicle
routing and scheduling problems with time
window constraints. Operations Research 35:254-
273.

Thangiah, S. R., 1995: Vehicle routing with time
windows using genetic algorithms. In: Chambers,
L., eds. Application handbook of genetic
algorithms. Florida:CRC Press, 253-277.

Toth, P., Vigo, D., 2001. An overview of vehicle
routing problems. In: Toth, V., Vigo, D., eds. The
vehicle routing problem. Philadelphia:SIAM
Monographs on Discrete Mathematics and
Applications, 1-23.

Wren, A., 1998. Heuristics ancient and modern:
transport scheduling through the ages. Journal of
Heuristics 4:87-100.

38

