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ABSTRACT 
In this paper we investigate a major problem in 
hinterland terminal optimization. Terminal operation 
consists of a series of interdependent activities and 
decision problems. The overall performance in the 
terminal operation is influenced by operation’s 
efficiency and differs for different terminal design, 
workload and policy. We use a methodology that 
combines simulation and neural networks and that can 
be used to define, with respect to terminal design and 
workload, the best operating policy. 
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1. INTRODUCTION 
Hinterland terminals enable the transhipment of load 
units between various modes of transport (ship, truck 
and train) and play a significant role in intermodal 
freight transport. Since intermodalism in general has 
become an important issue (Bontekoning, Macharis, 
and Trip 2004), hinterland terminals are looking to 
increase their effectiveness and efficiency. 

Terminal operation consists of a series of 
interdependent activities which describe the container 
flow through the terminal. An overview of container 
terminal operation, involving ship, train and truck 
transport, is given by Vis and de Koster (2003).  

Terminal activities take place in three major areas: 
the interchange area where transport modes enter the 
terminal, the transhipment area where the loading and 
unloading is done and the yard area where load units are 
stored. The overall performance in terminal operation is 
influenced by the operation’s efficiency of all these 
areas. While optimizing terminal operation, one 
therefore, needs to take into consideration all existing 
interdependencies. For example, the scheduling 
problem for loading and unloading activities of a train is 
highly related to the storage allocation problem in the 
yard and to the track allocation problem of the rail 
interchange.  
 Further, terminal optimisation has to take into 
account decisions of different time horizon (Meersmans 
and Dekker 2001). While strategic decisions focus on 
terminal design, tactical and operational decisions deal 

with operating policies, as the assignment and 
scheduling of terminal resources. Defining layout and 
equipment of a terminal has therefore a direct impact on 
the efficiency of the chosen policies. Moreover, the 
decision on which policy to choose is highly influenced 
by the predefined terminal design. 
 Finally, terminal performance is also affected by 
the actual workload. Features as arrival pattern, average 
storage time, load unit characteristics or modal split 
determine, in combination with terminal design, the 
utilization degree of the resources. Different 
combinations of terminal design and workload (denoted 
as terminal configuration) can in fact have different 
impacts on terminal performance. 

Due to the complexity of terminal operation and to 
the various existing interdependencies a systematic 
approach is needed. In this paper we propose a method 
that can be used to determine, with respect to the 
predefined configuration, which policy would result in a 
favourable terminal performance.  
 Most available research focuses on one specific 
terminal area or decision problem, allowing thus only 
for partial optimization (Steenken, Voß, and Stahlbock 
2004). Some research, mostly simulation based, is done 
on the overall performance of container terminals. In 
fact computer-based simulation is particularly apt to 
describe the inner workings of a terminal (Rizolli, 
Fornara, and Gambardella 2002) and can therefore be 
used to assess the impact of a specific configuration and 
policy on terminal performance. Because simulation is 
mainly used to analyze the outcome of predefined 
scenarios, fundamental insights into factors affecting 
terminal performance are still lacking. 
 The method that we propose combines simulation 
with optimization and outlines the functioning of 
container terminal systems. Due to the great number of 
parameters and constraints describing the terminal 
operation, we do not want to explicitly define and 
explain the existing interdependencies. In fact, we 
choose to approximate the function linking terminal 
configuration and policy to terminal performance by 
implementing a neural network. The neural network 
uses simulation results from scenario analyses to 
estimate a non-linear function representing the terminal 
system. 
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2. PROBLEM STATEMENT 
Terminal managers face a complex decision making 
environment where a large set of strategic, tactical and 
operational decisions have to be solved.  

One of the most crucial decisions is related to 
allocation of storage capacities to the incoming 
containers. In fact, storage space is in most European 
hinterland container terminals a scarce good, and has 
therefore to be used efficiently. From the point of view 
of mere terminal processes, the storage area is used to 
bridge the time gap between arrival and departure time 
of a container. When a container is delivered for 
example by a train and the picking truck has not yet 
arrived, the container has to be lifted into the yard. This 
additional lift is necessary as the train has a limited time 
for the unloading process. The yard manager has 
therefore to make sure that for all arriving containers, an 
adequate storage space is reserved. Knowing that 
terminal operators often take considerable profits from 
the storage fees charged, it becomes clear that a 
balancing decision has to be solved.   

Further, the goal of the yard manager is not only to 
provide for storage space, but also to do this efficiently. 
This means that the storage movement has to be done as 
fast as possible, to reduce the transport mode waiting 
time. Therefore, the storage allocation decision has to 
take into account the best equipment allocation and the 
best storage allocation.  This means that the transport 
and lifting time of the container has to be optimized by 
allocating the nearest handling equipment and choosing 
the nearest storage spot which simultaneously reduces 
future unproductive moves. Whereas unproductive 
moves are defined as reshuffles, which are required to 
access another container that is stored beneath it. This 
implies that reshuffles occur only when removing 
containers from the stack. 

Reducing the number of unproductive moves and 
minimizing the travel distance of the handling 
equipment consequently improves the container 
movement time, which reduces the residence time of the 
transport mode. A higher utilization rate of the yard 
however results in longer handling times, as the number 
of available storage spots is reduced. The main goal of 
the yard manager is therefore, to choose a storage 
strategy which matches the current terminal 
circumstances best. 

During on-field visits and interviews with 
experienced yard manager, we observed several storage 
policies. 

 
1. Avoid container stacking as long as the yard 

utilization allows for. If stacking is 
unavoidable choose from policy 2 to 4. 

2. Choose nearest available storage slot without 
considering any stacking constraint 

3. Choose nearest available storage slot while 
avoiding to stack on a container with an earlier 
expected pick-up time. 

4. Prefer container stacking, while stacking only 
import containers with same arrival time and 
train number. Containers delivered by truck 
stock according to policy 3. 

5. Prefer stacking and group all containers 
according to their destination and source. 

6. Choose from policy 3 to 5 and segregate 
storage area according to container dwell time 
characteristics (storage or transshipment 
container). 

7. Choose from policy 3 to 5 and separate import 
and export containers (import containers are 
delivered by train and export containers are 
delivered by truck and leave the terminal by 
train). 

 
 We further observed that yard manager mostly 
make decisions intuitively and can hardly describe their 
decision process or their motives. This is mainly due to 
the existing complexity and interdependencies in 
terminal operations. In fact, which policy to choose 
depends on the terminal configuration and applied 
operation strategies and workload (see table 1). 
 

Table 1: Existing interdependencies 
Factors  

capacity yard, tracks, truck 
gate, marshalling 
yard, equipment 

terminal 
con-

figuration 
layout yard, tracks 

terminal 
workload 

throughput arrival rate, 
fluctuations, peaks, 

seasonality 
Interferences train or truck 

delays 
 

container 
characteristics 

length, 
stackable/not 

stackable, storage 
or transshipment 

containers, weight 
categories, road 

semi-trailer/swap 
bodies 

equipment allocation, 
scheduling, routing 

yard allocation, 
marshalling, 
segregation 

truck gate processing, truck 
parking 

tracks grouping, pulsing, 
priorization 

operation 
strategies 

operating 
hours 

standard, extra 
hours 

 
 When choosing a storage policy one has there to 
take account of all factors describing the terminal. For 
example the yard capacity (defined by storage block 
characteristics as number of tiers, rows and sectors) is 
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influenced by the arrival pattern of the containers and 
the container characteristics. In fact when the arrival 
rate and the ratio of non-stackable containers increase, 
the storage utilization increases and the container 
handling time also increases. 
 In order to define the best policy for a specific 
terminal, a decision support tool is needed. We tried to 
solve this problem by combining simulation and neural 
network methodology. Our goal is to use the 
capabilities of neural networks to generalize from 
examples, to develop a decision tool that can learn 
without any knowledge of the system and without any 
procedure formulation. 
 
3. PROPOSED SOLUTION 
Various applications of neural networks for 
optimization problems exist. This includes for instance 
transportation problems as Travelling Salesman 
Problems (Xu and Tsai 1990) or Shortest Path 
Algorithm (Zhang and Thomopoulos 1989; Soylu et al. 
2000); scheduling problems (Vaithyanathan and Ignizio 
1992; Johnston and Adorf 1992; Sabuncuoglu and 
Gurgun 1996.), combinatorial optimization problems 
(Lee and Sheu 1990; Sun and Nemati 2003) or 
dispatching problems (Vukadinovic et al. 1997; Ball 
1996). We want to use neural networks to select an 
allocation procedure from a set of available techniques, 
by integrating it into a generic discrete event simulation. 
This approach can be classified as pattern prediction 
problem (Juhasz et al. 2003; Lazar and Pastravanu 
2002) 

The combination of simulation and neural networks 
is for several reasons beneficial. First the simulation of 
the terminal operations delivers a starting point for 
understanding the underlying processes. By modelling 
the different operations areas, one implicitly takes into 
account a great deal of the existing interdependencies. 
Further, the simulation can be used to deliver the 
necessary training data for the neural network. By 
changing step by step the simulation parameter, one can 
produce a great amount of example data. Finally 
integrating the output of the neural network into the 
simulation can help evaluating the performance of the 
neural network and can give more insight into its 
impacts on different terminal areas. Moreover, the 
integration of the neural network into the simulation can 
be used to dynamically define the best policy for the 
ongoing system status.  

As system parameters change (for example a 
change in the arrival rate or in the transport mode 
priorization), the performance of the chosen storage 
policy may change, which makes it necessary to 
determine repeatedly the best suitable policy.  
Determining the application range of a specific storage 
policy is therefore an additional goal of a research. 
 

3.1. Terminal simulation 
The information needed to model the terminal system 
was gathered from an in-depth literature review and 
from on-field research of major Austrian hinterland 

terminals. Our goal was to develop a generic simulation 
model that can be used to reproduce any terminal 
configuration (Gronalt, Benna, and Posset 2006). For 
this purpose we implemented a configuration tool that 
can be used as a standardized questionnaire to obtain 
detailed information necessary to describe a terminal 
which is collected with the configuration tool and which 
can be grouped into three categories: equipment, layout 
and workload. As the modelling needs to be of great 
detail, the input data defined by the configurator is 
extensive. An elaborated description of all input 
parameters is given in Gronalt, Posset, and Benna 
(2007). 
 The defined parameters of the configuration are 
systematically transmitted to the simulation, where 
detailed lists of import and export containers are 
produced and edited. The goal of this data generation 
step is therefore to provide a quick procedure for 
generating detailed experiment data in the desired 
composition and quantity. This generation approach 
enables the computation of container, train and truck 
data in accordance with the parameter settings and thus 
in regard to the distributions and patterns as entered in 
the configuration. Further it takes into account the 
existing interdependencies within container terminal 
operations and especially among the properties of 
container and transport mode. For example, while 
allocating a specific container to a pick-up truck, 
container attributes and especially storage time have to 
be matched with the arrival time of the truck. 

 The standard terminal processes were then 
complemented by different terminal policies and all 
relevant activities were modelled in detail. The model 
was implemented in a discrete event simulation 
environment and includes different objects representing 
train, trucks, containers, equipment and storage blocks. 
All these objects interact by mean of predefined 
dynamic rules. These dynamic rules are defined as 
feasibility constraint, availability constraint and priority 
based selection rules. The feasibility rule outlines that 
the allocation of equipment or storage space has to be 
consistent with the defined layout and access 
possibilities for the equipment. Some combination of 
yard blocks and tracks or equipment may be forbidden 
and have to be therefore excluded in the planning phase. 
The availability constraint ensures that when the 
equipment is requested it has to be idle, which means 
that it is not busy, reserved or that it is not failed. 
Finally the priority rules ensure the constant flow of 
containers in the terminal as export containers a granted 
a higher priority than import containers. Further the 
service level of trucks, measured by their dwell time in 
the terminal, tends to be more critical and therefore 
trucks are served with higher priority. 
 For the different storage policies (as described 
above) we implemented different procedures. Due to the 
manageable size- in terms of space and throughput- of 
most hinterland terminals, optimization techniques are 
rarely used in daily operations. Instead, work is mostly 
done intuitively, based on decisions defined upon 
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individual experience. To reflect the human factor of 
the decision process, decision rules had to be 
formulated. This was an important step in order to 
formalize the differences between existing storage 
policies. 
 The developed simulation can be used to analyse 
the behaviour and to evaluate the performance of 
different terminal configurations. By varying model 
parameters, the simulation can also be used to collect a 
large data set which can be used to train the neural 
network. 

 
3.2. Approximation of target function 
The target function describes the link between terminal 
parameters and terminal performance. To define which 
parameters are relevant, a set of parameter varying 
replications were simulated and according to the results 
of the scenario-analyses a sub set of parameters was 
chosen. Whereas the original set, defined by the 
configuration data counts for more than 200 parameters 
(see Gronalt, Posset, and Benna 2007), the final sub set 
was reduced to a total of 20 parameters. These 
parameters can be categorized into 3 groups according 
to the listing in table 1. The terminal configuration 
parameters describe mainly the existing capacities 
(shifting capacity per hour and equipment type and 
storage capacity in TEU) and the layout of the storage 
block within the terminal (average transport distance for 
the handling equipment). The terminal workload had to 
be considered more deeply. The defined parameters are 
here the average arrival rate per hour, the fluctuation 
level as a percent of the arrival rate, the container length 
mix, the average dwell time for storage and 
transshipment containers and the ratio of non-stackable 
containers. Finally the operation strategy parameters 
were defined by the available terminal operation time 
per day, the type of rail traffic (block train, shuttle or 
wagon load), average available time slot for loading and 
unloading of trains and truck processing type (on 
predefined pick-up position or variable pick-up 
position). 
 To quantify the impact of a parameter variation on 
the terminal performance, a set of performance 
indicators was defined. The chosen performance 
indicators can be grouped into 2 categories: throughput 
and service quality. Examples for throughput indicators 
are total number of moved load units and average 
number of served transport modes per time unit. 
Examples of service quality indicators are average 
remaining time in the system for each transport mode 
and ratio of unproductive moves. 
 Parameters and performance indicators define the 
input vector v of the neural network. 
 Estimating the target function is finally done by 
developing a radial-basis-function (rbf) neural network 
(Funahashi 1989), which is a special type of a two-
layered Neural Network and which is particularly 
flexible in estimating non-linear functions. A rbf-neural 
networks is defined by its input neurons, one hidden 
layer and output neurons. Each processing unit or 

hidden unit of the hidden layer implement a radial 
activated function.  
 By simulating a wide range of terminal 
configurations and collecting the herewith generated 
performance indicators, the weights of the radial-basis-
function can be found. The resulting data set contains 
the information relating configuration parameters to 
terminal performance and can therefore be used as a 
training set for the neural network, to estimate the 
function of terminal performance in relation to the input 
parameters. 

 
3.3. Terminal optimization 
Once the target function is estimated, it is integrated 
into a second simulation, which closely interacts with 
the neural network. This hybrid simulation is 
comparable to the first generic simulation and only 
differs in terms of terminal policies. In the first 
simulation, terminal policies are defined as simulation 
input at the beginning of each replication and cannot 
vary during the simulation run. In the second simulation 
(integrating the neural network), an initial policy is 
determined according to the target function at the 
beginning of the replication which can be changed 
afterwards if necessary. This is done with respect to 
changes occurring in the system, mainly due to 
variations in the workload. In fact, parameters are 
continuously monitored and sent repeatedly to the 
neural network which triggers a new policy when a 
favourable terminal performance can be expected. 
 The optimization problem is therefore to minimize 
the number of unproductive moves and to minimize the 
handling time per container. This is done by adjusting 
the storage policy in accordance with changes in 
terminal configuration and workload. 
 As a result, the integrated simulation dynamically 
optimizes terminal operation and alerts terminal and 
yard manager when a change in terminal status is 
occurring. 
 
4. CONCLUSIONS 
In this paper we show that the combination of 
simulation and neural networks techniques can be used 
to develop an optimization tool for hinterland terminals. 
Due to the complexity of terminal operations and the 
great number of existing parameters and 
interdependencies, an extensive analysis of all links 
relating terminal configuration and terminal 
performance is not possible. The explicit formulation of 
a non-linear function can therefore be resolved by using 
a neural network approximation. Especially for 
terminals with no decision support systems, this can be 
used to underline strategic decisions with regard to 
investments in information management systems 
supported by OR-techniques. In fact, terminal managers 
are often interested in investigated the marginal 
efficiency of terminal operations, which can be shown 
by assigning the best operating policies for a specific 
terminal setting. 
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 As we describe in this paper, we concentrated on 
one area of the terminal, which is the storage area. In 
order to model all terminal processes, we still need to 
integrate further optimization areas. A starting point 
would be to consider the optimization problem which 
occurs when allocating and scheduling the handling 
equipment. For this purpose we need to develop a 
second neural network to estimate the relation between 
equipment allocation and scheduling and terminal 
performance. Finally the interaction of the two neural 
networks has to be considered.  
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