
DISTRIBUTED DISCRETE SIMULATION ON THE WEB 
 

Aman Atri(a), Felix Breitenecker(b), Nicole Nagele(b), Shabnam Tauböck(c) 
 
 

(a)(b)(c)(d)Vienna University of Technology, Austria 
 

(a)aman.atri@tuwien.ac.at, (b)felix.breitenecker@tuwien.ac.at, (c)nicole.nagele@tuwien.ac.at  
(d)shabnam.tauboeck@tuwien.ac.at 

 
 
 
 
ABSTRACT 
With the vast development of internet technologies web 
based simulators have come to an extent where flexible 
loosely coupled components communicate in a 
distributed way. We are introducing a software 
architecture where the simulation environment is not 
limited to browser or applet specific restrictions but 
using the web as a transport layer. Furthermore this 
architecture permits us to separate the location of the 
data collection, the computational part and the 
visualisation modules. For a more transparent 
communication between distributed simulators a 
generic higher level semantics is able to pass 
information and data on top of a lower-level networking 
protocol. The idea is to design a system where modules 
can be deployed and interchanged without redesigning 
the whole simulator. 
 
Keywords: web based simulation, service oriented 
simulation architecture, asynchronous communication, 
dynamic distributed code generation  

 
1. INTRODUCTION 
The rising facilities of internet based applications have 
brought a lot of new paradigms in terms of simulation 
software. The current trend of simulation frameworks 
and tools is to get rid of providing only locally 
restricted simulation environments and to seek for 
appropriate communication technology for interacting 
in heterogeneous systems. 

Simulation tools can be used within given 
protocols like HTTP. The current development of web 
based technologies is leading the World Wide Web to a 
new era where internet is not only serving the purpose 
of displaying information in a browser but to interact 
and exchange information and data. The idea is not to 
re-invent new communication algorithms but to use 
existing transfer protocols and to build higher-level 
architectures which can provide a much more complex 
and powerful semantics. This paper deals with web 
based modelling strategies, communication between 
client and server applications and network solutions for 
building higher-level simulation environments for larger 
scalability (Atri  2007, Breitenecker 2006). 

The rapid development of the World Wide Web 
has made it possible that data can now be transferred 

without constraints concerning target platforms or 
location of systems. 

Distributed simulation on the web requires data 
exchange from remote components. Thus there will be a 
detailed view on certain software architectures that are 
suitable for these scenarios. Complications, problems 
that do occur in modelling and designing simulations 
scenarios are also introduced. 

 
 

 
Figure 1: Message passing in transparent networks 

 
2. HETEROGENEOUS COMMUNICATION 
Distributed computation demands that our models are 
spread across the network and they share an internal 
communication channel to update themselves. Figure 1 
shows a loosely coupled framework of a message 
passing layer which provides an abstraction regarding 
the dependency towards the actual programming and 
simulation language. Thus the actual target platform 
gets independent if we use a globally known and open 
communication standard like XML (Lechler 99).  Now 
that most of the components do not necessarily share a 
common physical environment, unified arrangements 
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must be made so that these components can broadcast 
their behaviour and presence to other subsystems. 
Depending on the actual modelling and experiment, 
web based simulation systems do not only work on 
broadcasting patterns but can also benefit from 
subscribing to certain services which are required by the 
simulation algorithm.  This allows the whole system to 
provide the ability for remote computing within the 
given context. 
 
2.1. Web based visualization  
Due to the behaviour of classical stateless protocols like 
HTTP data transfer is restricted in direction, 
chronological order and as a negative side effect it 
produces a traffic overhead creating potential falsified 
discrete triggering data. This might result in latency 
effects in visualization on the client side. There are 
higher-level approaches of web programming 
frameworks to implement visualisation trough: 
 

• Dynamical code generation with asynchronous 
data delivery from the server  

• A statically pre-compiled graphical application 
which can directly access the service and 
might be able to overtake some portions of the 
computing unit 

 
The first approach is implemented in Web 2.0 fashion 
using XML mapping between clients and server. Ajax 
(Asynchronous JavaScript and XML) emulates the 
characteristics of a stateless protocol. In case of 
required data update, the application is able to receive 
the new visualisation information in background 
without interrupting the actual simulation process. 

The corresponding source code can be generated 
via the web application on the server side. On the other 
hand a predefined simulation and visualisation engine is 
preferred if the data representation is not manipulated 
from the distributed environment but can be computed 
on a local system. In the last years this practice has been 
put using Java Applets embedded in a browser but now 
it has become more comfortable to develop programs 
which use native graphical widgets of the operation 
system and still the application is platform independent.  
Java Webstart (JWS) simulation applications offer a fast 
way to synchronize and interact with the simulation 
service and download the models from the net 
dynamically (Page and Kreutzer 2005).  

The interactive web based simulation enables the 
user to enter parameters or modify them using the 
browser. Usually if the application is not running only 
on the client side the browser sends this parameter to 
the web server using the HTTP protocol. The request is 
matched with the unique session of the user and the 
session values are updated with the latest parameters. 
The simulation web application is sends the result to the 
browser and the page is reloaded. Because of this 
latency during the HTTP requests the visualisation 
cannot run fluently.  Ajax technology is a  work around 
the avoid networking overhead. During the simulation 

process the data is not changed entirely. The static 
components which are displayed for documentation 
purposes remain always the same and only the meta-
info graphical part is computed dynamically. For 
example if the simulation visualisation is represented as 
a graphical chart where the drawn function is changing 
its values in certain time intervals and the browser 
refreshes the page at every new query.  All the 
information which never change like the websites 
layout style sheet, the cookies etc. will be resent over 
the network causing a falsified query time stamp 
because the browser will take its own time to reformat 
and redisplay the whole page. 

If the components of the graphical chart are using 
Ajax JavaScript then the web application will only 
receive an XML formatted query where the variables 
which are necessary for repainting the graph are sent 
and recomputed without sending the whole HTTP 
request new. This communication is transported 
asynchronously and the user has not the responsibility 
to update and refresh his browser window. The 
document exists during the entire user session and is 
only modified within the permitted context. In 
combination with hyperlinks parts of the visualization 
can be hidden without reformatting and reading the 
style sheet commands. The value of the hyperlinks can 
also be changed dynamically and so they get a semantic 
quality. Dispatching Ajax queries does not require 
special browser plugins or extra ordinary configuration. 
Any modern web browser with enabled JavaScript is 
capable to deal with asynchronous XML 
communication. The web application which is 
computing the simulation results is of course aware of 
its Ajax capacity. In visualisation where the size of 
pending data is not known (the simulation time is 
known but the total amount of computed data might be 
unpredictable) Ajax helps the simulator to avoid 
unnecessary traffic overhead.   

 
2.2. Architectures for discrete Simulation 
Building simulation networks where unpredictable 
number of components work together or may drop out 
implies to design an architecture which implements the 
following criteria: 
 

• The client side should be simple and contain 
only a few classes to decrease overhead traffic 

• Discrete events triggered remotely have to be 
recognized and verified in case of data is lost 
or falsified during data transfer 

• Fault tolerance mechanisms have to grant the 
exchangeability of components in case of loss 
of connectivity. The simulation engine has to 
be notified when some remote modules are not 
reachable 

 

Event oriented systems interact not trough a stream of 
information and data but with synchronized events and 
require an architecture which is mostly suitable if we 
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use the web as a global computation platform. The main 
focus is not only to optimize single algorithms but the 
whole system. Event oriented systems don’t interact 
trough a stream of information and data but with 
synchronized events and require an architecture which 
is mostly suitable if we use the web as a global 
computation platform for a frictionless integrity of all 
storage and computing units (Bass and Clements and , 
Kazman 1998). 

Distributed simulation refers to a system where the 
components do not only reside on a single system. The 
communication is done over an internet protocol 
between the applications. A fault tolerant distributed 
application is a system where a single component might 
be out of order but not implicating a shutdown of the 
whole system. While the retrieval of the faulty 
component seems to be more or less easy, the actual 
difficulties rise when we have to look for an appropriate 
substitution. 
 

2.3.  Service-Oriented Simulation 
When we talk of web based access to simulation 
resources we find a lot of end-to-end point 
implementations where the data is passed over an 
HTML site of a browser to a CGI script on a server and 
the computation is done either on the server and sent 
back to the browser of the client system or we get an 
inline plugin such as an applet or a flash animation. 
(Page and Lechler and Classen 2000) The limitation of 
a duplex client-server architecture is that most of the 
data might be hidden and we don't have the permission 
to access them directly. This is were services-oriented 
architecture comes into practice during a bidirectional 
message passing when both nodes have to behave not 
only as a server but also as a client. One implementation 
of a service-oriented architecture (SOA) is called web 
services which use an existing networking protocol like 
HTTP(s). The semantic layer is represented as a XML 
specification where important information like the 
names of the classes and methods which are likely to be 
executed remotely and the parameters and the return 
values are transferred. In discrete event oriented 
simulation a sequential concatenation is strategy to 
implement a distributed waiting queue area (Dustdar 
and Gall and Hauswirth 2003).  

Thus such a simulator works on service-oriented 
pipes. That means, that every web service offers its 
functionality to another one. The output of a transaction 
can then be used as an input for another web service and 
so on.  In case of failure it is very easy to diagnose 
which chain link is out of order and can be replaced by 
simply switching to another web service node and 
redirecting the stream. 

 

 
Figure 2: Transaction of a model over SOAP 

 
One big advantage of this concept is the possibility 

that entities can be handled without depending on a 
specific programming language. The WSDL 
specification which provides information about the 
classes and the interfaces is adopted in most of object 
oriented languages and frameworks (Gyimesi 2005, 
Booth et. al. 2004). Especially in discrete simulation we 
can distinguish the state of a model by its embedded 
variables and their values. Web services can now 
provide a manipulation of these variables and 
programmatic computation without even knowing in 
which actual language they have been originally 
configured. 
 
2.4. Sequential and Parallel Piping  
Some processes during a discrete simulation 
computation may require merge and branching of the 
current model. In that case a web service oriented queue 
can split the model into several subsets of variables and   
pass these subsets to different sub-services.  

A sequential pipe can branch out to a parallel pipe. 
That does not imply that the actual calculation is 
performed as a parallel process but more like a splitted 
workflow action where the order of the output is 
irrelevant. If such a service requires some variables 
from another set, but due to security restrictions the 
direct access is not granted, then the demanding web 
service can request a fetch task from the web service 
which is managing the referring data set. An end-point 
SOAP station which merges the model together and 
releases it to the next module is globally accessible. 
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Figure 3: Task divided Simulation Web Services 
 

  
For any module outside of this constellation the 

whole system seemed to be a black box. The waiting 
queue which entered the system had been split and 
passed on to several different host systems. The policy 
by which the data is distributed is depending on the 
current task of the discrete simulation. Such a policy 
could be driven by access permission of secondary data 
source which is essential for the computation or the 
positive side effect of efficient load balancing. 
 
2.5. Multiple persistence of discrete models  
In discrete event oriented simulation some tasks are 
likely to avoid temporal latencies because of quick read 
and write operations. In many cases the actual state of 
the model has to be available to all stakeholders in the 
network. This condition leads to a symbiosis where the 
following criteria have to be met: 
 

• Every client gets an update of the state of all 
entities at any time requested. 

• Any manipulation of the state of a model has 
to be transactional. That means every client has 
to be notified that an update has been 
committed. If a client does not respond 
positively than either the transaction has to be 
withdrawn or the corresponding client has to 
be listed as non-active. 

• Every entity which is accessible to all clients 
has at least one copy of itself in the system. 

 
 
 

2.6. Models in a tupel space 
Discrete event oriented simulation works on the 
communication and message passing between the 
entities and their sinks and sources. In large scale 
networks this message passing could get in a bottleneck 
situation if the whole repository is centralized or the 
network traffic is unbalanced and some clients might 
experience latency effects. Furthermore if a centralized 
repository loses its network connection the whole 
simulation execution will get stuck. An appropriate 
mapped out persistence strategy is a so called tupel 
space as shown in Figure 4. 

 

 
Figure 4: Multiple persistence in a unified space 

 
 
Somehow in certain work steps the number of read and 
write operations cannot be predicted. The idea is to 
unify the memory of all stakeholders to a so called 
global unified tupel space (TS). Within this space the 
models are accessible to all memory-providing hosts 
and are replicated. This means that each model is 
handled as a unique object in comprehensive higher 
level memory architecture but actually the tupel space 
service provides the opportunity that in case of failure 
of certain parts of the network, the object and data will 
not be lost and other tupel service nodes will take over 
the data. Besides that a change of the state of a discrete 
model (e.g. a modification of the model parameters) 
will be passed on to every replicated copy in a 
synchronized fashion.  

The programming paradigm of this higher lever 
architecture was introduced by Dr. David Gelernter at 
the Yale University as coordination language named 
Linda. Afterwards a Java based approach was 
implemented by Sun called Java Spaces. A Java Space 
service network does not offer a querying language as 
relational or object oriented database. In discrete 
simulation the selection of each model is conducted by 
rules which are based on discrete stochastic events or 
external temporal depending influences. The main focus 
of a tupel space is the correct identification of the 
objects for successful retrieval and transactional 
synchronisation. The lookup methods for models in 
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space deliver two types of results: find the exact match 
or just forget it. A unified memory is quite 
comfortable for discrete event oriented models using 
cellular automata (CA) as their state change navigator 
from the programming point of view because 
modifications of the current state affecting the whole 
CA are automatically replicated and updated.  

The disadvantage of using Java Spaces is that data 
transfer within the space itself and with the client is 
done using Java objects. But building a multi-tier 
architecture as shown in Figure 4 enables language 
independent access by inserting a middleware layer 
which reallocates interfaces like web services or 
hibernation mapping to external clients. Thus the tupel 
space can be accessed by any database client, web 
service client or even directly with an application 
written in Java like a web based applet or Java Webstart 
application.  

   
2.7. Publishing and subscription vs. parametric 

selection   
While tupel spaces favour the idea of distributed object 
storage without interfering with the semantic layer an 
alternative approach is to allow an external managing 
software module to allow publishing and subscribing 
(P/S) to certain objects which represent the state of the 
model.  

Thus we can couple the tupel space storage with 
external business logic. The concept of P/S is 
comparable to a subscription system like a newsletter 
service. The broking system broadcasts its models 
according to its category. For instance if the discrete 
simulation is going to compute a distributed waiting 
queue, a P/S broking system could mange different 
queues within a total different simulation context.  A 
client could subscribe to a certain queue claiming for 
notification of only specific types of entities loaded. 
This can be compared with the waiting queue at an 
airport. After the passenger enters the airport he will be 
redirected to the terminal to submit his luggage. This is 
would resemble our distributed queue. A subscription   
request is expressed by an airline only for their own 
passengers. Although the middleware (the waiting hall 
in front of the check-in counters) is managing all 
passengers of all airlines the counter of a categorized 
airline can then trigger a notification when a passenger 
travelling with the corresponding company delivers his 
luggage.  

In object-oriented simulation over a network this 
pattern is very useful because the P/S broker can handle 
any arbitrary number of clients. Subscribers gain a 
profit because they don’t have to take care of filtering 
the search results. They trust their own broker manager 
who is responsible for the correct selection of the 
models with the following properties: 

 
• A global queue is storing the events 
• Publishers register themselves at the global 

queue 

• Publishers create new events if the state of the 
model changes 

• Subscribers register themselves and describe 
those events they want to be informed about 

• A broker manager who is hired by the 
subscriber observes the queue and the stored 
events  

• In case the state of a model has been changed  
due to an  event caused by the publisher the 
broker sends a message to all subscribed 
clients using either the push or pull method 

•  Pull model: the subscriber receives a 
notification that data has been changed. The 
subscription client is now responsible to fetch 
an update of the model 

• Push model: the client does not only get the 
notification but also the whole data bundle.  

 
In event oriented simulation with lots of models states 
and large objects the pull method reduces the network 
traffic overhead because the client can filter the content 
and update only parts of the model which are required 
for the next simulation process. 

 
2.8. Persistence and Transformation of objects 
Time consuming simulation with lot of input and output 
data require sophisticated persistence of the state of the 
models. The architectures discussed previously have 
introduced the exchange of information on different 
host systems but not the storage of those data models. In 
terms of large scale discrete simulations in an object 
oriented programming pattern the state of a discrete 
model is described by the values of its parameters 
methods and local and global variables. As a persistent 
storage platform an object oriented database would be 
the most appropriate solution. Many systems still do not 
support object oriented database persistence and store 
their information in relational databases because: 

 
• Legacy software components would require 

the whole application to be rewritten 
• Performance of relational databases are more 

efficient in terms of data mining and complex 
queries 

 

Nevertheless dynamic models where the cardinality of 
their parameters can increase or decrease during 
simulation runtime, the object oriented database 
(OODB) can still recognize and verify these changes, as 
for the parameter of the model is stored as a complete 
serialized object. In a relational scheme this is not 
possible directly because of the static behaviour of the 
tables and their column definitions.  

Hibernation technology plays a great middleware 
role when old database driven software meets new 
scalable pure object oriented design pattern. The layer 
of transforming an object into serialized data (which 
could be stored on a file system) is interrupted with a 
transformation of the objects encapsulated data into an 

396



XML declaration of the variables and their visibility 
properties. Thus the object is transformed into a 
plaintext readable form where the semantic labels can 
be reinterpreted. This means that any database driven 
simulation library can store and read directly from the 
relational database while an object oriented client can 
transform (hibernate) the model into an XML form and 
convert it to SQL statements or into objects. Figure 5 
shows the workflow of the hibernation process: 

 
1. The simulator has been provided with a model 

description. 
2. The simulator (or the single component if the 

simulation is distributed on a network) wants 
to gain access to data to feed the model. 

3. The simulator forwards the model description 
to the hibernation middleware which has 
access to a relational database. 

4. The hibernation server converts the request 
into SQL statements and executes them. 

5. The result is converted into an object for the 
simulation client and sent back for further 
operations. 

 
Thus the information that the data was actually stored in 
a relational scheme can be hidden and the simulator 
regards the object locally created instance. 

 
 

 
Figure 5: Dynamic mapping of model entities  

 
3. CONCLUSION  
We have shown that a composition of different 
architectural designs can build a highly scalable 
network for distributed simulation. Software 
architectures for discrete simulation are not merely 
focusing on parallel computation but also asynchronous 
exchange of the models and state modification. Higher 
level architectures can hide the actual machine 
representation of the model and operate only on the 
semantic value of the objects. Network transparent 
protocols can hide the complexity of the data transfer. 
For the simulator the actual location of the object is 

transparent and the models are treated as they would 
reside on the local system and the local runtime. 
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