
A PETRI NET APPROACH TO ARGESIM COMPARISON C2 ‘FLEXIBLE ASSEMBLY
SYSTEM’ USING THE MATLAB PETRISIMM TOOLBOX

Thomas Löscher(a), Felix Breitenecker(b)

(a)PROFACTOR GmbH, Austria
(b) Vienna Univ. of Technology, Austria

(a)thomas.loescher@profactor.at, (b) felix.breitenecker@tuwien.ac.at

ABSTRACT
This paper deals with the modelling, simulation and
optimisation of a flexible assembly system. Timed and
Coloured Petri nets are used to represent the systems
behaviour. The so called MATLAB PetriSimM toolbox
forms the basis for modelling and extends the
benchmark performed by the ARGESIM comparisons.

Keywords: process simulation, production simulation,
resources planning

1. INTRODUCTION
Petri nets offer the capability to model discrete event
systems on a very low level (Petri 1962). Representing
resource sharing problems, conflicts or describing
complex control strategies are the results of the use of
their basic properties. A lot of applications exist in the
field of modelling and simulating flexible
manufacturing systems by means of Petri nets (Zuberek
1999). For evaluation purposes and management ratios
it is necessary to simulate over the time domain. For
Petri nets many extensions exist to implement time to
their basic structure and definition (Zuberek 1991;
Bowden 2000). The complexity of flexible
manufacturing systems can be easily growing very high.
Therefore other extensions are required to ensure the
capability of meaningful modelling. Petri nets are also
growing very fast if the complexity is increasing.
Further extensions like the introduction of token colours
are needed (Bause and Kritzinger 2002). In this simple
approach the colours are used to simplify the graphical
representation of the Petri net.
 This paper shows the modelling, simulation and
optimisation of a flexible assembly system. Basically,
this problem definition is made for an entity flow
approach where each processing unit is modelled as
entity of the system. Petri nets do not really offer this
way of modelling because tokens are destroyed if they
are not needed any more and they are created if they are
needed. Therefore it is not possible to track tokens as
entities during the simulation and no further properties
or attributes can be given to them. The use of Petri nets
is a benchmark to test and show the feasibility of their
capabilities.

2. PROBLEM DEFINITION

2.1. ARGESIM Comparisons
Simulation News Europe (SNE) features a series on
comparisons of simulation software (Breitenecker
2008). Based on simple, easily comprehensible models
special features of modelling and experimentation
within simulation languages, also with respect to an
application area, are compared.

Features are, for instance: modelling technique,
event handling, numerical integration, steady-state
calculation, distribution fitting, parameter sweep, output
analysis, animation, complex logic strategies, sub-
models, macros, statistical features etc.

Up to now 19 comparisons have been defined in
Simulation News Europe, the series will be continued.
Furthermore, a special comparison of parallel
simulation techniques has been defined.

2.2. Comparison C2 – Flexible Assembly System
The following example of a flexible assembly system
has been chosen because it checks two important
features of discrete event simulation tools:

• The possibility to define and combine sub-

models.
• The method to describe complex control

strategies.

The model consists of a number of almost identical sub-
models of the following structure (figure 1):

Figure 1: Submodel of assembly station

Two parallel conveyor belts, B1 and B2, are linked
together at both ends. An assembly station Ax is placed
at B2. Pallets are coming in on belt B1. If they are to be
processed in Ax they are shifted in Sx to B2 and

419

possibly enter a queue in front of Ax. If there is no more
empty buffer space on B2 or the pallet is not to be
processed in Ax it continues its way along B1. Parts that
have been processed in Ax are shifted back to B1 in Sy,
having priority over those coming from the left on B1.

The total system now consists of 8 of these
subsystems, varying in length, operation and operation
time (see figure 2). Between two subsequent
subsystems there is a space of 0.4 m, whereas pallets
from the third subsystem A2 can be shifted directly to
A3, and from A6 directly to A1. The shifting parts,
however, cannot function as buffers, i.e. a pallet can
only enter an Sx if it can leave it immediately.

Figure 2: Total System

There are three identical stations A2 in the system,

because the operation in A2 takes much longer than the
other operations.

Unprocessed parts are put on pallets in A1. They
can either be processed in A2 first, and then in A3, A4,
A5, or in A3, A4, A5 first, and then in A2. The
sequence of operations among A3, A4, and A5 is
arbitrary. Station A6 is a substitute for any of the
stations A3, A4, A5, i.e. whenever one of these stations
is down, or the buffer in front of it is free, the
corresponding operation can be executed in A6.
Finished parts are unloaded in A1, unfinished parts
enter another circle.

3. PETRISIMM TOOLBOX
The so called MATLAB PetriSimM toolbox is based on
a basic toolbox (Mušič, Zupančič, and Matko 2003)
which deals with analysis, supervisory control
synthesis, and non-timed simulation. This basic toolbox
is programmed in MATLAB version 5.3 and is
therefore adapted to MATLAB version 7.2 (R2006a) to
form the MATLAB PetriSimM toolbox. The toolbox is
embedded in the MATLAB environment and its usage
requires version 7.0 or higher. Furthermore the toolbox
is extended with the capability of Timed Petri Nets and
timed simulation using the holding durations principle
(Löscher, Breitenecker, and Mušič 2005; Löscher,
Breitenecker, Mušič, and Gradišar 2005; Löscher,
Gradišar, Breitenecker, and Mušič 2006). In another
step Coloured Petri Nets are developed for the use in the
MATLAB PetriSimM toolbox. The enabling duration
principle is added as a second approach of
implementing time into Petri Nets. A new way of
defining firing sequences is found to be able to model
scheduling problems being independent of the
occurrence of any conflicts (Löscher and Breitenecker
2006; Mušič, Löscher, and Gradišar 2006). Finally the
toolbox is extended with the optimisation of scheduling

problems containing heuristic algorithms like Simulated
Annealing, Threshold Accepting and Genetic
Algorithms (Löscher, Mušič, and Breitenecker 2007). In
case of stochastic processes a sequential paired t-test
and variance reduction techniques are used and
implemented to solve the stochastic optimisation for
sequencing and scheduling problems. To sum up, the
sophisticated MATLAB PetriSimM toolbox offers the
capabilities of analysis, modelling and simulation of
Petri Nets. Furthermore it is possible to optimise
scheduling problems based on Timed, Coloured, and
Stochastic Petri Nets. The open source MATLAB
PetriSimM toolbox can be used for education in a
graduate level and for modeling and simulating real life
processes of discrete event systems in equal measure.

3.1. GUI
Figure 3 shows a screenshot of the graphical user
interface (GUI) of the PetriSimM toolbox. The GUI is
divided into a menu bar, a button bar and an axes area.
In the menu bar different modes can be chosen. The
user can switch between analysis, non-timed simulation,
timed simulation based on the holding durations
principle, and timed simulation based on the enabling
durations principle. Furthermore models can be saved,
loaded, exported and printed. For each type of
simulation several parameters can be set. Another
important part of the menu bar is the options menu
where the priority wizard and Gantt chart wizard can be
started. Next to the options menu the optimisation menu
is placed. There several parameters and modes for the
optimisation can be changed and selected. The button
bar contains several buttons for building, changing,
zooming, simulating and analysing the Petri Net
models. In the axes area the Petri Net models can be
created, simulated and the so called token game can be
shown. Figure 3 also contains the Petri Net model of a
production cell which is later used for the optimisation.

Figure 3: Graphical User Interface

3.2. Simulation
The simulation is a main part of the PetriSimM toolbox.
It is separated into non-timed simulation, timed
simulation using holding durations and timed
simulation using enabling durations. For all three
simulation modes an animation of the token game can
be visualised. But this feature is only used for

420

educational purposes because through the animation the
simulation speed is highly increased. It is possible to
change to the animation speed in the parameter section
and for the optimisation the animation is deactivated.
Another interesting parameter for non-timed simulation
is the firing probability. This parameter controls the
firing of enabled transitions. This means that it is
randomly decided if an enabled transition can �re or
not depending on the defined firing probability. For
timed simulation time delays can be assigned to the
transitions which can be deterministic or stochastic.
This means that any probability distribution function
can be defined to each transition. For this purpose, any
MATLAB m-file can be written resulting to a single
positive value, or existing MATLAB probability
distribution functions, which can be used to model
stochastic time delays. Only the positive part of the
used function is taken. If the result of the used
stochastic function is negative the time delay is set to
zero and a warning is displayed.

3.3. Priority Wizard
Petri nets offer the possibility to handle conditions on
the highest level. This is a big advantage compared to
the event-oriented tools for modelling and simulation of
discrete systems. If conflicts or resource sharing
problems occur, a strategy for solving simultaneous
events should be available in these tools. Here, Petri
nets realize these problems through the basic properties
of their structure.

In the PetriSimM toolbox, a Priority wizard allows
selecting groups of transitions to define a priority or a
sequence for firing. These definitions are the basis for
the resolution of conflicts. While in previous versions of
the toolbox the firing sequences are dependent on the
occurrence of a conflict, the sequence strategy in the
current version is independent on conflicts. If a firing
sequence is defined for a group of transitions no conflict
of the involved transitions is required any more. Only
the transition which is defined by the current value of
the sequence vector will fire if it is enabled. All other
transitions of the group are disabled until this specific
transition has fired. This new strategy can lead to a new
kind of deadlock if only the disabled transitions are
enabled without consideration of the defined firing
rules. This new approach offers the possibility to model
queuing, sequencing or scheduling problems being
independent of the appearance of any conflicts.

3.4. Data Handling
The allocation of the places over time is needed to show
and to analyse results of the simulation. This means that
the number of tokens has to be stored for each place and
for each colour in each iteration step. The number of
iterations depends on the specific problem. Therefore
this value is not fixed and in general it can be very
large. On this account very big matrices are created
during the simulation. Dynamic memory allocation
could be used to solve this problem. But the access to
big matrices causes speed problems corresponding to

the size of the used matrices. If the matrices and the
stored information are increased too much memory
problems can also occur. In the PetriSimM toolbox
these problems are solved by the use of external binary
files. The built-in MATLAB command fwrite is used to
store the data during the simulation. At the end of the
simulation the fread command is used to store the
matrices in MATLAB as application data of the GUI. If
the memory of the program is exceeded the binary files
are transformed to text files in order that they can be
used for post-processing using other tools or
programming languages. The big advantage of this
implementation is the fact that the data storing takes the
same time in each iteration of the simulation algorithm.
The used built-in functions are very fast and therefore
only a marginal increase of computation time can be
determined for the simulation function.

4. IMPLEMENTATION
A flexible assembly system described in the ARGESIM
Comparison 2 (ARGE Simulation News 2008) is an
atypical application for Petri Nets. The aim of this
simulation and implementation was to prove that even
such a process can be simulated by a discrete system
based on Petri Nets, although the programming and
processing efforts are considerably high. The C2
comparison "Flexible Assembly System" consists of
two times two conveyors, eight assembly stations and
two shifting parts.

4.1. Use of sub-models
The flexible assembly system is modelled with Petri
nets using a discretization approach. The movements of
the conveyor belts and the processing steps of the
pallets are designed using three places units. A resource
place ("free") signalizes whether entrance into the unit
is possible or not (figure 4). During the given
processing time the tokens pass from the entrance place
to the exit place. This is modelled using the holding
duration principle.

Figure 4: Conveyor unit

Figure 5 shows the corresponding processing unit. For a
more concise data recording, the processing unit
additionally disposes of a place ("processed") indicating
when the pallet is assembled.

An assembly station (figure 6) consists of
successive conveyor units and one processing unit, both
mentioned above. The PetriSimM toolbox offers
additionally the possibility to replicate existing
structures and sub-nets. This feature simplifies the
building and the creation of each assembly station and
the whole flexible assembly system.

421

Figure 5: Processing unit

After building the basic structure of the net the
connection logic (shifting and switching stations, etc.)
of the sub-nets have to be established. Furthermore, a
customizing of the different types of assembly stations
has to be done.

Figure 6: Assembly station

In order to enable simulations with a number of pallets
exceeding the band capacity (40), an additional tool had
to be introduced: this control unit permits loading of
new pallets from the assembly stations to the main
conveyor only in case of free capacity and thus avoids
system deadlocks.

4.2. Prioritisation
The priorities at the switches in front of each assembly
station have been assigned as follows:

1. Leaving the assembly station
2. Entering the assembly station
3. Forwarding along the conveyor

At the end of the conveyor, the shifting part obeys
similar rules:

1. Shift directly from station to station
2. Shift from station to conveyor
3. Shift from conveyor to station
4. Shift from conveyor to conveyor

All these prioritisations can be represented as conflicts
of the Petri Net. Therefore, priorities are assigned to
selected transitions to solve these control strategies by
the use of the basic properties of Petri Nets.

4.3. Use of colours
Figure 7 shows a screenshot of the Colour Wizard. The
different colours represent the different types of tokens.
In the parameter section the number of desired
distinguishable tokens can be defined. If more than one
token are chosen the so called Colour Wizard can be
shown. The Colour Wizard can be used to change the
look and the names of the different token colours. The
colours are coded as RGB values and can be easily
modified. It is also possible to reset all settings to the
default values and names. The colours of the used
different tokens are interesting for the animation of the
simulation. The so called token game is mainly used for
educational purposes.

Figure 7: Colour Wizard

In most discrete simulators and discrete simulation

languages the pallets could be modelled as entities.
These entities could store information in several
different attributes. Petri Nets offer entity simulation in
a very rudimental way. Tokens could be used to
represent entities of a system but there are not many
possibilities to store information. A big disadvantage is
the use of the tokens during the firing of transitions.
Basically tokens are deleted if they are not needed any
more and they are created if they are needed again. A
track of information would be very complex and
contradict to the definition of place/transition Petri nets.

In this case the colours of the tokens are used to
model entities of the system. The pallets are modelled
as combination of multiple coloured tokens, the colours
making statements about the state of procession of the
pallet. One pallet is represented by two coloured tokens.
The different colours define the current processing
status of the pallet (figure 7).

The Transition Wizard (figure 8) is used to modify
and define the transitions in case of Coloured Petri
Nets. The graphical description of Petri Nets can be
simplified if many identical sub nets are used. Therefore
the transitions of the sub nets are merged together and
one transition of the Petri Net can represent and contain
many other transitions. The Transition Wizard consists
of several buttons corresponding to the following
functionalities: transitions can be deleted, new
transitions can be added, the names of the transitions
can be modified and the weights of the corresponding
arcs can be defined. Figure 8 shows a Transition Wizard

422

containing the transitions which controls one movement
on the conveyor belt. For each transition different
weights can be defined for the input and output arcs.
These weights control and determine the way of each
pallet through the system depending on its current status
(colour and numbers of tokens).

Figure 8: Transition Wizard

5. RESULTS
The complexity of the model (227 places, 157
transitions, 8 colours) results in large scaled input and
output matrices (1816 x 929). Figure 9 shows a
screenshot of the complete model.

Figure 9: Model

This complexity increase both processing time and
quantity of data. Each single simulation took between
one and three days on a home computer. The allocation
of all places are stored in external log files because the
internal memory of MATLAB could not handle this big
amount of data and information Furthermore, up to 29
GB of data were produced during one simulation
session, in total 110 GB. The processing was therefore
delegated to the phoenix-cluster of the University of
Technology Vienna.

The evaluation of the ARGESIM comparisons is
separated into several tasks. The following sections
describe the tasks defined for comparison 2. Based on
these results and tasks different simulators and
simulation languages can be compared.

5.1. Control Strategy/Statistical Evaluation.
Due to systematic restrictions of the method and the
model it is not possible to follow one single pallet
throughout the process. The Petri net approach offers
entities formed by a combination of coloured tokens but
it is not possible to evaluate any statistical data during
the simulation. Therefore the information of the
allocation of certain places is stored over time in

external log files and post-procession of this node data
becomes necessary. Figure 10 shows a screenshot of the
start and end point of the system. At the beginning and
at the end tokens are created in the “in” and “out”
places for each pallet, respectively. After the simulation
it is not possible any more to get the throughput time for
one single pallet but for statistical purposes the average
throughput time can be easily calculated. This statistical
evaluation was done by external post-processing of the
log-files based on small external C programs. Following
the recommendation, the data used was from the 120th
to the 600th minute of simulation.

Figure 10: Start and end point

5.2. Simulation Results - Throughput.
The simulation time was eight hours. Table 1 show an
extract of the throughput times and the graph of figure
11 aims to provide an overview of the system's
behaviour.

Table 1: System behaviour: through put time (extract)

Number of
pallets

Total
throughput

Average
throughput time

[s]
5 480 292.50

10 960 292.50
13 1333 273.29
14 1440 272.50
15 1440 292.50
20 1444 391.92
40 1441 792.04
60 1433 1198.66

Larger calculations than with 40 pallets are purely
theoretic, since they exceed the system's capacity. This
was made possible by the deadlock control unit.

5.3. Simulation Results and Optimisation.
As shown in the following graph (figure 12), the
utilization of stations A2–A6 reaches its possible
maximum (100% utilisation of „bottleneck“ stations
A2-1–A2-3) starting at 14 pallets. In this configuration,
the highest possible throughput (1440 pallets; at some
points slightly higher numbers may have encountered
due to the delayed measurement) can be obtained at the
lowest throughput time (272.50 seconds).

423

Figure 11: System behaviour – total throughput and
throughput time

Figure 12: System behaviour: assembly stations'
utilisation

6. CONCLUSIONS
The flexible assembly system can be modelled using the
advantages and properties of Petri nets and the
MATLAB PetriSimM toolbox. Although, the entity
approach can not fully represented it is possible to
fulfill all requirements of comparison 2 of the
ARGESIM series.

REFERENCES
Petri C.A., 1962. Kommunikation mit Automaten.

Dissertation, Universität Bonn.
Bowden F.D.J., 2000. A brief survey and synthesis of

the roles of time in petri nets. Mathematical and
Computer Modelling 31:55-68.

Zuberek W.M., 1991. Timed Petri Nets. Definitions,
Properties and Applications. Microelectronics and
Reliability 31(4):627-644.

Bause, F., Kritzinger P., 2002. Stochastic Petri Nets -
An Introduction to the Theory (2nd edition).
Germany: Vieweg Verlag.

Zuberek W.M., 1999. Timed Petri Nets in Modelling
and Analysis of Simple Schedules for
Manufacturing Cells. Computers and Mathematics
with Applications 37:191-206.

Breitenecker F., 2008. ARGESIM Benchmarks.
Available from: http://seth.asc.tuwien.ac.at/
argesim/index.php?id=23 [accessed 12 July 2008]

Mušič G., Zupančič B., Matko, D., 2003. Petri Net
Based Modelling and Supervisory Control Design
in Matlab. Proceedings of EUROCON Conference,
pp. 362-366. September 22-24, Ljubljana
(Slovenia).

Löscher T., Breitenecker F., Mušič G., 2005. Petri Net
Modelling and Simulation in Matlab - A Petri Net
Toolbox. Simulation News Europe 43:20-21.

Löscher T., Breitenecker F., Mušič G., Gradišar D.,
2005. A Matlab-based tool for timed Petri nets.
Proceedings of ERK Conference, pp. 273-276.
September 26-28, Portorož (Slovenia).

Löscher T., Gradišar D., Breitenecker F., Mušič G.,
2006. Timed Petri Net Simulation in Matlab: A
Production Cell Case Study. Proceedings of
MATHMOD Conference, Proceedings on CD.
February 7-10, Vienna (Austria).

Löscher T., Breitenecker F., 2006. Petri Net Modelling
and Simulation of Production Processes with
PetriSimM, a MATLAB-based Toolbox.
Proceedings of 12. ASIM - Fachtagung Simulation
in Produktion und Logistik, pp. 313-319.
September 26-27, Kassel (Germany).

Mušič G., Löscher T, Gradišar D., 2006. An Open Petri
Net Modelling and Analysis Environment in
Matlab. Proceedings of IMM Conference, pp. 123-
128. October 4-6, Barcelona (Spain).

Löscher T., Mušič G., Breitenecker F., 2007.
Optimisation of Scheduling Problems based on
Timed Petri Nets. Proceedings of EUROSIM
Conference, Proceedings on CD. September 9-13,
Ljubljana (Slovenia).

AUTHORS BIOGRAPHY
Thomas Löscher studied Technical Mathematics at the
University of Technology of Vienna. During his
diploma study he specialised in modelling, simulation
and optimisation of discrete event systems. In his PhD
study he continued his research in the field of
simulation-based optimisation. He studied one semester
abroad based on cooperation with the faculty of
electrical engineering of the university Ljubljana,
Slovenia. There he found the basis for his PhD thesis
where he optimised scheduling problems based on
Timed Petri nets. During his PhD study he also worked
for the ARC Seibersdorf research company in the field
of discrete event simulation. Currently he is employed
as research associate at the Profactor GmbH in the field
of simulation-based design and optimisation.

424

