
DEGOMS, A SYSTEMATIC WAY FOR TASK MODELLING AND SIMULATION

Ali Mroue(a), Jean Caussanel(b)

(a)(b)Laboratory of sciences of informations and of systems
LSIS UMR 6168 University of Paul Cezanne, Aix-Marseille III

 Av. escadrille de Normandie Niemen 13397 Marseille Cedex 20, France

(a)ali.mroue@lsis.org,, (b) jean.caussanel@lsis.org

ABSTRACT
If the representation of tasks can now rely on many
modeling formalisms, few of them offer simulation
solution for controlling the consistency of the modeled
task. Most often this control can be done by a human
agent working on the built model.
As part of a project of modeling and simulation of the
human operator, we propose a process and a platform
offering an opportunity for those who have to design
applications with the known constraints of current
developments. This paper describes our approach which
uses GOMSL formalism, widely used in the world of
HCI, as a model source. GOMSL is very suited for the
description of computer task but it doesn't have a real
simulator. The aim of this work was therefore to
establish a semi-automatic re-expression of GOMSL
models to DEVS model that can be immediately
simulated (a set named DeGOMS).

Keywords: Task Model Simulation, HCI, DEVS,
GDEVS.

1. INTRODUCTION
The Task models in computer science are useful for
gathering and organizing the need for the user. They are
normally used in the design phase of software to
evaluate in advance, test and improve the design of the
latter.
 Few are the models that describe the real aspect of
the user, they are normally based on descriptions of
prescribed tasks (Tricot and Nanard 1997), which
considers that the user masters the use of application.
Even fewer are environments that offer a simulation
solution for these task models in order to assess their
consistency or their usability.
 In addition the improvement of realism of this task
models that we will not discuss it in this paper, also the
ability to simulate the produced models are considered
as an important way for verifying these models.
Our contribution to this field will therefore be as a first
step, to design and develop such a platform for testing
task models.

We have chose GOMS (Card, Newell and Moran
1983) as a task modeling formalism, which is used for

modeling tasks from the view-point of user/system,
specially in computer task modeling.
 GOMS models can generally be used for the evaluation
of interfaces (predicting execution and learning time).
GOMS models are widely used to evaluate and test at a
lower cost, interfaces during the design phase.
However, GOMS models are designed as models of
representation and not as simulation models.
It is therefore necessary to adapt GOMS for simulation
or be able to express it in a simulated formalism.

For this reasons we chose the DEVS formalism
(Zeigler 1984), which offers a good level of
expressiveness, a very good level of scalability, while
ensuring formal consistency of the built models.

The equivalent of GOMS model in DEVS (which
we called DeGOMS) is a generic level so that any
GOMS model can be expressed in DEVS and then
simulated. In this theoretical transformation approach,
certain choices have been taken which can affect
GOMS model (extending it).

2. GOMS MODEL
The acronym GOMS stands for Goals, Operators,
Methods, and Selection Rules GOMS (Card, Newell
and Moran 1983; John and Kieras 1996). GOMS is a
behavior description model, that lets model the behavior
at different levels of abstraction, from task level to
physical actions.

GOMS uses as a starting point the Model Human
Processor principle of rationality that attempts to model
and predict user behavior. Its essential contribution is a
formal structure that allows organizing the design
process.
The design method that induces GOMS is done on two
axes:

• In the analysis of task (since determines the
behavior).

• In the predictive evaluation of user behavior in
the task.

2.1. GOMS Element
GOMS is an approach of modeling human computer
interaction.

438

GOMS models consist of descriptions of the
methods required to accomplish a specific goal.

Methods are a sequence of operators and sub-goals
to achieve a goal. If there exists more than one method
to accomplish a goal then selection rules are used to
choose which method to use.

• Goals are tasks the system's user wants to

accomplish. For example, "Create Folder,
Delete Word". A goal can have a hierarchical
structure; this means that the achievement of a
goal may require accomplishing one or more
sub-goals.

• Operators are actions allowed by the software
or actions that user are executing. An operator
is an atomic level action that can't be
composed, and it's characterized by its
execution time. The execution of the operators
causes change in the mental state of the users
or in the environment state. There are two
types of operators mental and physical, For
example, the operators “press enter”, “point to
the word”, etc. are physical operators. The
model also includes mental operators, such as
“thinking”, etc.

• Methods refer to the process that allows one to
accomplish a goal. Methods are possible
sequences of operators and sub-goals used to
accomplish a goal. For example the goal of
logging into web-mail can be represented as:

1. Connect_to_the_webmail_provider
2. Type username
3. Type password
4. Press Login

• Selection Rules are used when there exists
more than one method that can accomplish the
same goal. They are rules used by user to
choose which of methods to use.
A rule has the form:
If <condition>
Then use the method M;

GOMS has been used in many applications:
 * Telephone operator (CPM-GOMS)
 * CAD systems (NGOMSL)
 * Text editing using the mouse (KLM)

2.2. GOMS Variation
There are four different models of GOMS: CMN-
GOMS, KLM, NGOMSL and CPM-GOMS.
 CMN-GOMS stands for Card, Moran and Newell
GOMS, is the original version of the GOMS technique
in human computer interaction. This technique requires
a strict goal-method-operation-selection rules structure.
 KLM is a simplified variant of CMN-GOMS, it
does not use goals, methods, or selection rules only
simple “keystroke-level operators”.

 NGOMSL stands for Natural GOMS Language,
developed by David Kieras (Kieras 2006). An
NGOMSL model is in program form, and provides
predictions of operator sequences, execution time, and
time required to learn the methods. Like CMN-GOMS,
NGOMSL models explicitly represent the goal
structure, and thus can represent high-level goals like
collaboratively writing a research paper" (John and
Kieras 1996).
 CPM-GOMS stands for Cognitive, Perceptual, and
Motor and the project planning technique Critical Path
Method. CPM-GOMS was developed in 1988 by
Bonnie John (John and Kieras 1996). CPM-GOMS does
not make the assumption that operators are performed
serially, and hence it can model the multitasking
behavior that can be exhibited by experienced users.
The technique is also based directly on the model
human processor a simplified model of human
response.
 In this paper we will introduce the equivalent of the
NGOMSL in DEVS. Consequently we will details the
NGOMSL of GOMS.

3. NGOMSL

Figure 1: NGOMSL design conception and task type

capability

GOMS is a group of models developed by Card (Card,
Newell and Moran 1983) and his colleagues at Xerox to
predict the time needed to accomplish cognitive
activities using a computer system. The model is
designed to provide approximations for the duration of
the task. The set of GOMS models assume that the user
is quite familiar with the task and that the primary
human limitations are cognitive (thought), not
physiological (aerobic capacity, muscle strength, etc…).
 The key of GOMS analysis is the decomposition of
the task. As we mentioned above there are four of
commonly GOMS implementations concepts CMN-
GOMS, KLM, NGOMSL, and CPM-GOMS for more
information see (John and Kieras 1996). We chose to
work with NGOMSL, since it can be used in most types

439

of tasks and information design (Kieras 2006) (Figure
1).
 NGOMSL is a structured natural language used to
represent user methods and selection rules.
NGOMSL models have an explicit representation of the
user and his methods, which are supposed to be strictly
sequential form and hierarchical. NGOMSL is based on
the cognitive modeling of human-machine interaction.
In this paper we present a transformation of NGOMSL
to DEVS model which is based on the definition of
GOMSL (Kieras 2006) which is an executable
representation of NGOMSL.
 GOMSL can be treated and executed using a
simulation tool named ''GLEAN''. This tool allows
predicting task time and the performance of the user
(learning time).
GOMSL syntax is comparable to that of a procedural
programming language. As other GOMS models,
GOMSL defines the task as of a method composed from
steps. Each step is generally composed of one or more
operators.
 All data in GOMSL are generally represented as
objects with properties and values (See LTM_item in
Figure 2).

Figure 2: Part of GOMSL methods and object definition

There are several kinds of data used in GOMSL.

There is data that represent the knowledge of the users,
data that represent the system and data that represent the
task list.
 The Part that contains data representing the
knowledge of user are used and defined in:

 Working Memory: Represents the working memory
of the user; it has two partitions: Object Store and Tag
Store...

• Object Store is a store that contain objects that
are currently "in focus" in the user working
memory. The Object Store can contains at
the same time one Visual Object, one Long
Term Memory Item (Object), one Task item

(Object) and many Auditory Object with a
condition. An auditory object is characterized
by a decay time, after it the auditory object will
decay.

• Tag store represents the conventional human
working memory which can contains values
associated with tags (ie: Keyword=Html, the
tag is keyword which has HTML as value)

GomsL define many operators that deals with memory
(storing value and getting values etc…).
 Long Term Memory: Represents the Long Term
memory of the user, which contains objects with
property values. The content of the LTM is static being
specified before the simulation of the model.
The data concerning the information about the system is
stored in a memory similar to structure of LTM, and it
contains system visual and auditory objects that will be
needed by the user to execute task (look at a specific
object etc…).
 Task memory: This is used to represent the
information available to the user about the task.

3.1. Operators

Operators are actions that the user performs. Much
kind of operators are defined in GOMSL:

3.1.1. External Operators
They are observable actions used by the user for
exchanging information with the system or with other
humans. Normally external operators depend of the
system and the task. Below is a list of external operators
classified by their type, the time and the definition of
some of these operators are based on the physical and
some of the mental operators used in the Keystroke-
Level Model (Kieras 2006).
 Manual Operator:

• KeyStrock Keyname (Stroke a key on the
keyboard. Estimated execution time 280ms).

• Click mouse_button (clicking the mouse
button. Estimated execution time 200 ms).

• Hold_down mouse button (press and continue
pressing the mouse button. 100ms)

• Etc…

 Visual Operator:

• Look_for_object_whose property is value, …
and_store_under <tag> (its a Mental operator
that searches on the system for a visual object
that whose specified properties have the
specified values, and stores its symbolic name
in the tag store section of the WM, and put the
object in focus in the visual part of store
object. After the execution of this operator all
the properties of the object become available.
Execution time is estimated to 1200 ms.

440

• Look_at object_name (Means looking at an
object that has already been identified with a
Look_for… operator etc… 200ms)

• Etc…
Etc…

3.1.2. Mental Operators
Mental operators are user internal action, they are not
observable or hypothetical, and they are inferred by the
analyst or the theorist.
 Some of these operators are built in; they are
primitive operators corresponding to the mechanism of
cognitive processor. These operators include actions
like taking decisions; store a value in tag store, search
for information in the Long Term Memory, get
information about the Task, etc… Other operators are
defined by the analyst in order to represent complex
mental activity such as "Verify", "Think Of" …
Memory storage and retrieval:

• Store Value under <tag> (Store a value in the

tag store under the label tag).
• Delete <tag> (Delete the value stored under

the label tag)
• Etc...

flow of control:

• Accomplish_Goal: Goal_name (Accomplish
a goal, the goal will be considered as a sub-
goal)

• Decide: Conditional; Conditional; …; else-
form (This operator let us taking decision. It
contains one or more If-Then conditionals and
at most one Else form)

• Etc…

Etc…

4. DEVS FORMALISM AND GDEVS
DEVS (Zeigler 1984) is a formalism used to represent
Discrete Event System Specifications; it can represent
complex system in an effective way. DEVS model is a
powerful simulation model. It is a modular formalism
for deterministic and causal systems. It allows for
component-based design of complex systems. Several
specific platforms for DEVS models simulation can be
found.
 A DEVS model may contain two kinds of DEVS
components: Atomic DEVS and Coupled DEVS. An
Atomic DEVS does not contain any component in it. It
only has a mathematical specification of its behavior. A
Coupled DEVS is a modular composition of one or
more Atomic and Coupled DEVS.
 An atomic DEVS model has the following
structure:
D = <XD, YD, SD, δextD, δintD , λD, taD>
Where:
XD: is the set of the input ports and values

YD: is the set of the output ports and values
SD: the sequential state set
δextD: Q × X � S, is the external transition function
where Q = (s, e) � s ∈ S, 0 ≤ e ≤ ta(s) is the total state
set.
δintD: S � S, is the internal transition function
λD: S � Y, is the output function
taD: S � R+0, ∞ (non-negative real), is the time
advance function.
 A coupled model, also called network of models,
has the following structure:
N = <X, Y, D, {Md /d∈D}, EIC, EOC, IC>
X and Y definitions are identical to XD and YD of an
atomic model. The inputs and outputs are made up of
ports. Each port can take values and has its own field of
values.
X = { (ρ,µ) / ρ ∈ IPorts, µ ∈ Xρ }
Y = { (ρ,µ) / ρ ∈ OPorts, µ ∈ Yρ }
D is the set of the model names involved in the coupled
model.
 Md is a DEVS model. The variables representing
the inputs and the outputs of the model will be indexed
by the model identifier. Hence the following notation:
Md = <Xd, Yd, Sd, δextd, δintd, λd, tad>
The inputs and the outputs of the coupled model are
connected to the inputs and outputs of the included
models.
EIC = {((N, a), (d, b))/a ∈ IPorts, b ∈ IPortsd}
 The set of the coupled model input ports ipN
associated with the input ports ipd of the models D are
the components of the coupled model.
 There is the same situation for the output ports.
EOC = {((N, a), (d, b))/a ∈ OPorts, b ∈ OPortsd}
Inside the coupled model, the outputs of a model can be
coupled with the inputs of the other models. An output
of a Model cannot be coupled with one of its inputs.
IC = {((i, a), (j, b))/i,j ∈ D, i, j,a ∈ OPortsi, b ∈ IPorts
j }
 GDEVS is an acronym for”Generalized Discrete
Event System Specification” (Giambiasi, Escude and
Ghosh 2001) which is a model which generalizes the
concept of discrete event modeling. GDEVS defines
abstraction of signal with piece wise polynomial
trajectory. Thus, GDEVS defines event as a list of
values. DEVS can be considered as a particular case of
GDEVS, other saying DEVS is an order 0 GDEVS
model.

5. GOMSL TO DEVS
GOMSL is a model of representation that is intended to
be interpreted and verified by specialists in the field.
It lies at a high level of abstraction to facilitate its
interpretation by humans but don’t let us testing
automatically the produced models.
 We believe there is an interest to propose a
simulation of represented tasks in order to obtain results
or to ensure consistency, in particular when they have
reached a certain level of complication.
 The choice of target formalism in which the
GOMSL representation will be translated is not critical

441

as long as it ensures consistency syntactical and
semantic of constructed models and let them be
simulated directly.
For the reason of type of models, our choice fell on
Discrete EVent System formalism DEVS simulation
(Zeigler 1984; Giambiasi, Escude and Ghosh 2001).
 In addition to the characteristics listed above,
DEVS is generally having a very good level of
scalability and expressiveness (Zeigler 1984).

 In addition, we have now in our laboratory a DEVS
simulation platform (lsisDME) through which we could
test our results immediately.

5.1. Transformation
A GomsL model is equivalent to a coupled DEVS
model.
 During the transformation we separate the GOMS
Methods from other models. So we create a model that
represents the user, a model that represents the task,
another that represents the system and final one that
represents GOMS methods.

Figure 3: Decomposition of GOMS model in DEVS

 This decomposition of model let us obtaining a
modular architecture which will be useful so any change
in any model will not affect other models moreover any
model can be used alone (Figure 3).
 The start point is the model representing Methods
and Selection Rules. Each method is composed from a
sequence of steps. Each step is composed from one or
more operators. These operators can communicate with
the other different models, in order to get value from
memory or save value etc…
 In this paper we will describe in detail working
memory module used in GOMSL and its equivalent in
DEVS (Figure 4). We will discuss then the description
of a part of the module that represents “methods and
selection rules”.

Figure 4: Working Memory GDEVS representation

5.1.1. Working Memory Model
Expressed according to the GDEVS formalism, the
"Working Memory" can be defined as follows:

WM: <X, Y, M, EIC, EOC, IC, select> {
X = {Start[0], store[2], get[2], delete[0]};
Y = {Out[1]};
M = {WM_Distribute, WM_LTM, WM_V, WM_A,
WM_T, WM_Tag};
EIC = {{Start, WM_LTM.Start}, {Start, WM_V.Start},
{Start, WM_A.Start}, {Start, WM_T.Start}, {Start,
WM_Tag.Start},
{store,WM_Distribute.store},{get,WM_Distribute.get}
};
EOC = {{WM_LTM.outv, out}, {WM_V.outv, out},
{WM_A.outv, out}, {WM_T.outv, out},{WM_Tag.out,
out}};
IC = {{WM Distribute.storeL, WM LTM.store},
 {WM Distribute.getL, WM LTM.get},
 {WM Distribute.storeV, WM V.store}, {WM
Distribute.getV,WM V.get}, Etc. . . };
 The Working Memory module is equivalent to a
GDEVS coupled model, which is composed from six
models: WM_Distribute, WM_LTM, WM_V, WM_A,
WM_T, WM_Tag. It has 4 inputs ports (Start, Store,
Get, Delete) and only one output port (Out).

WM_Distribute has as role to distribute every
request to the proper model. For example, if
WM_Distribute receives a request for retrieving a value
from the visual memory part, so the WM_Distribute
redirects the request to the proper model which is
WM_V. This latter will receive the request and searches
the value and sends it to the output.
 Models "WM_LTM", "WM_V", "WM_T" are
GDEVS atomic models that have a similar structure.
Each of them represents a specific part of the Working

442

Memory, since, according to GOMSL, the working
memory may contain various objects at the same time in
different zone (visual area, LTM area, Task area). And
each zone may contain a single object at the same time
(when an object is present in the memory, all his
properties become accessible in the methods).
 An object in GOMSL is characterized by a name,
and by properties with certain values. In DEVS an
object is represented by a phase in which are defined
state variables having values (These state variables
represent the properties of the object).

As seen in the preceding parts, GOMSL defines
that the working memory may contain at the same time
a visual object, an object from the LTM and a Task
object. By respecting this definition, we have created
the models (WM_V, WM_LTM, WM_T).
Each of these models is equivalent to an atomic
GDEVS model with the following structure:
WM_V = <Xd, Yd, Sd, δextd, δintd, λd, tad>

X = {Start[0], store[1], get[1]};
Y = {out[2],outv[0],message[0]} ;
 There are five major states which are (init, receive,
select, get, clear) and "n" other states.
"n" is equal to the number of objects be stored in
memory (Figure 5).

Figure 5: Example of WM_V model

 The init phase: Is the initial phase of the component
model. It contains the initialization all state variables
used in the model.
 The Receive phase: This phase can receive two
types of requests (storage and getting requests), and
according to them it will go to the next phase. For
example, if it receives a request to store a value the next
phase will be the “Select” phase; else if it receives a get
request next phase will be the “get” phase.
 The Select Phase: This phase is used to select the
memory object to be stored. In other words, after
receiving a store request with a tag name and an object
name. The select phase will select the object and make
it active, what makes all its properties available to
future get requests.
For example, if we receives a store (Tag1; O1), then we
will go from the Select phase to the phase representing

O1, after this the system will send to the output port
“out” the values (tag;O1;v), which will be received by
the WM_Tag in order save O1 in Tag …. Then the
system returns to the receive phase and wait new
request.
 The Get Phase: This phase will search for a
property value and sends it to the “outv” output port.
 The clear phase: The role of this phase is to reset
the values of all state variables. It will be used when we
want to store a new object so the old object must be
removed (all its properties must be cleared).
 As we mentioned above the n other states represent
the object in memory. When the system goes to one of
these phases, all the state variables of this phase will be
affected with values that represents properties values.
After this the object will be active and all its properties
will be available for get requests.
 The models WM_LTM and WM_T have the same
structure of the WM_V model, but n in these cases will
be the number of LTM objects or TASK objects.
 The WM_A model is different from the other
models for the reason that working memory can
contains many auditory objects in the same time, but in
this case decay time will be taken in consideration. So
object after a decay time will automatically be removed.
 The WM_A is equivalent to a GDEVS coupled
model, composed from n model, where n is the number
of auditory objects.
 Every auditory object is equivalent to an atomic
GDEVS model with the following structure:
WM_V = <Xd, Yd, Sd, δextd, δintd, λd, tad>

X = {Start[0], store[1], get[1]};
Y = {out[2],outv[0],message[0]} ;
 This model is composed of 6 phases (Figure 6)
which are (init, get, receive, select, get1, get and a phase
representing the object).

Figure 6: Example of WM_A model

 The phases are similar to the ones used in WM_V
model, with minor difference in the transition
conditions and lifetime function. In other words the
phase representing the object “O1” has a lifetime equal
to the decay time of the object, after this time all the
properties will not be accessible.
 The model "WM_Tag" is an atomic GDEVS model
representing the “Tag Store” part of the Working
Memory.

443

 Each object in the memory must be linked to a tag
in the "Tag Store". So we can access objects by using
tags. For this reason we can find in the working
memory module that all object models are connected to
the WM_Tag. As we mentioned above the WM_Tag
(Figure 7) is equivalent to an atomic GDEVS model
composed of five phases (init, tag, tag_store, tag_delete,
tag_get).

Figure 7: Example of WM_Tag model

 The init phase is the initial phase; it contains the
definition of all the tags used in the task as a state
variables. In other words this phase is used to initialise
the values of the state variables.
The tag phase is a waiting phase which will wait for an
input event. This phase can deal with three type of
events (delete, store, get).
 The tag_store phase is used to store a value in a
given tag. In other words, after receiving in the store
input port a value such: store: current_task;aaa;n; this
will be equivalent to current_task=aaa, and
current_task_type=n; so in the phase tag_store we will
assign value to the state variable.
 The tag_get phase is used to retrieve the value from
a variable (tag).
The tag_delete phase is used to remove the values from
a variable (tag).
The input ports are X= {Start [0], store [2], get [0]};
The output ports are Y = {out [1], message [0]};
 The definition of the input and the output port is
similar to the one used in the above model.
 More generally the working memory module
receives at the start of simulation in the port Start an
activation signal (on), which puts all the components of
the memory in a waiting phase. Then it can either
receive requests for storage ("store" input port) or
retrieving data (“get” input port) or requests to delete a
tag in the WM_tag ("delete" input port).
 For example: if the WM receives Store: (query;
html; t), the "WM_distribute" analyses all the entries
and chooses model to activate depending on the type of
application (in this case is part WM_T indicated by the
“t” in the input) and then the model will send (query;
html) to the port StoreT.

Then, the WM_T model receives on its input port store
the values (query; html). So the WM_T will search for
the object named HTML and makes it 'active' (all
properties of this object will be available...). After that,
WM_T sends the values (query; html; t) to the output
port "out". Finally, WM_Tag receives on the input port
values (query; html; t) and stores in the tag (state
variable) name "query" the value "html", and stores also
in the state variable “query_type” the value “t” which
means "task object”.

5.1.2. GOMS Module
This module represents in general goal, operators,
methods and selection rules.
 The "Goal" is equivalent to a GDEVS coupled
model, composed from a “Selection Rules” model and
methods models. The name of the model is equivalent
to the goal name.
 The model have 5 input ports (Start, memin, taskin,
systemin, inaccomplish) and 8 output ports (memstore,
memget, memdelete, taskcmd, systemget, LTMget,
outaccomplish, accomplished).
 Input Ports:
Start: used to indicate the start of execution of the
model.
Memin: is the port used to receive values from the
working memory.
Systemin : This port is used to receive values from the
System.
Taskin: used to receive values from the Task description
model.
Inaccomplish: is used to receive the end of execution of
another goal called from this goal.
 Output Ports:
Memstore: used to send request to the WM for storing
values or object.
Memget: used to send request to the WM for retrieving
values (object properties values, tag values, etc...)
Memdelete: send a delete request to the WM (The
WM_tag exactly) for deleting a tag.
Taskcmd: used to send command to the Task
description model (modifying the task list, getting
values …)
Outaccomplish: used to send request for executing a
goal.
Etc.
 The simulation starts with the Selections Rules
model. This latter is defined in GOMSL in the form of
simple conditions (if then). The Selection Rules
model is equivalent to an atomic GDEVS model. It has
two input ports (memin and Start) and two output ports
(memget, out). The port "out" in this case is used to
transmit the name of the method selected (Figure 8).

444

Figure 8: Example of Selection Rules Model

 This model is composed of three main phases (init,
start and end), plus 2*n phases, with n equal to the
number of values we need to retrieve from the “WM”.
The multiplication by 2 is due to the reason that we
have to one phase for requesting values from the WM
and another for receiving the value.

First of all this model sends requests to the WM in
order to get all needed values, then these values will be
compared and according to the result of comparisons
the name of proper method to execute will be sent to the
output port (out).
 The phase that is linked directly to the phase "End"
will send the name of the method to execute (according
to the condition on transitions. . .)
 A Method in GOMSL is equivalent to a coupled
GDEVS model composed from n atomic GDEVS
model. The “n” Atomic GDEVS model represents the
steps of the NGOMSL model.
 A Step in GOMSL can be composed from one or
more operators.
 An Operator in DEVS is equivalent to one or more
phases according to the type of operator. For example:
An external operator such as: Click mouse_button is
normally equivalent to one phase, the life time of the
phase is equal to the execution time of the operator. If
this operator needs an access to the memory, then we
add 2 other phases in order to send the request to get the
value and save it.
 Another example for the mental operator such as
think is equivalent to one phase etc...

6. DEGOMS ADVANTAGE
The translation of GOMSL into DEVS has extended the
features of GOMSL model.

1. To simplify, Gomsl considers that the auditory
memory can contain all auditory objects
simultaneously. In DeGOMS the contrary, we
represent this part of the memory as it is
defined, which is to take into consideration the
decay time

2. In GomsL, one can not easily add operators.
Each added operator needs recompilation and
reconfiguration of the existing simulation tools

(which is "Glean"). While in DeGOMS, we
introduced a generic concept the definition of
the operator (example: 1-Request for a value
from the memory needs two phases 2-The
running time of the operator is equivalent
to the life time of the phase, and so on).

3. The modular architecture of DeGOMS allows
us to use each module alone, in other
applications etc… In the case of modification
of a module this will affect only the modified
module and not all the modules. In GomsL and
Glean this is not possible; since these models
are not defined formally (we mostly change the
code etc).

4. DeGOMS can be easily expanded by adding
models that already exist or creating new
models that can be simulated directly. In
GomsL/Glean any change is quite complex,
and requires coding and recompilation of
Glean.

5. Etc.

7. RESULTS
The first results of simulations of DEGOMS models,
show the proper functioning of each module taken
separately (memory module, method, and so on…)
 The simulation of a simple model for the
management of files in Macintosh System validates the
model and gives good results. It gave us the possibility
to obtain the same result of an existing Glean simulator
(ex: Accomplishing task time: will be the date of the
end of the simulation (Last Event). The advantage of
DeGOMS models is that they provide a very large
modelling flexibility (easily change models, adding
new operators, and adding new methods) also they
provide us and the possibility of simulation directly.
This flexibility is not found in an approach as GLEAN
(Kieras 2006) which it is a runtime environment model
for GOMSL more than a true simulation model.

8. CONCLUSION
The simulation of the operator in its task is challenging,
especially when the modeled system includes a human
interaction. In the design of computer applications this
type of approach allows us to minimize the cost and
time of the design while improving the overall
ergonomics applications. We designed DeGOMS and
developed a DEVS formalism representing GOMSL
models and an environment which allows the simulation
of produced models.

In this work we succeeded in finding a new
simulation tool for the NGOMSL model, which is
effective and gives good results. This transformation
into DEVS has many advantages, first we have obtained
an effective simulation tool for the NGOMSL model,
and secondly we can easily interpret these models and
extend them in order to add many other modules. And
for now we can also do the simulation in interactive
mode, and implement the core of the DEVS simulator
in a user training applications. The current prospects

445

relate to model the task of information retrieval on the
web and simulating it.

9. REFERENCES
Tricot, A. and Nanard, J. 1997. Un point sur la

modélisation des tâches de recherche
d’informations dans le domaine des hypermédias,
in Hypertextes et Hypermedia J.P. Balpe, et
al.,Editors. Hermes, 35-56.

Card, S. K.; Newell, A. and Moran, T. P. 1983. The
Psychology of Human-Computer Interaction.
Lawrence Erlbaum Associates, Inc. Mahwah, NJ,
USA.

Kieras, D.E. 2006. A Guide to GOMS Model Usability
Evaluation using GOMSL and GLEAN4.
University of Michigan

John B. E. and Kieras D. E. 1996. The GOMS family of
user interface analysis techniques: comparison
and contrast. ACM Transactions on Computer-
Human Interaction, 3(4):320–351.

Zeigler B. P. 1984. Theory of Modelling and
Simulation. Krieger Publishing Co., Inc.
Melbourne, FL, USA.

Giambiasi, N. Escude, B. Ghosh, S. 2001. G-DEVS A
Generalized Discrete Event Specification for
Accurate Modeling of Dynamic Systems in:
Autonomous Decentralized Systems. Proceedings.
5th International Symposium on.

446

