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EXTENDED ABSTRACT 
The synchronous version of the Balanced Bidding 
strategy for keyword auctions is examined through 
simulation. In the case of a uniform distribution for 
advertisers’ valuation of clicks, advertisers prefer the 
highest positioned slots. The slot assignment process 
matches advertisers’ expectations with a probability 
decaying with the number of slots according to a power 
law and depending negligibly on the number of 
advertisers. 
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1. INTRODUCTION 
Search engines, such as Google or Yahoo!, present 
users with a set of hyperlinks in response to their 
queries. In addition to the links deemed relevant to the 
query by the search engine (often named organic links), 
a number of sponsored links are presented as well, see 
Battelle (2005), associated to the query through the 
keywords specified in it. Advertisers are willing to pay 
for their ads to appear on the seach engine’s response. 
Such sponsored links are then generally assigned 
through auctions, and the resulting revenues represent a 
significant source of income for search engines, see 
Edelman et alii (2007). On the other hand advertisers 
are interested inmaking their advertising strategy as 
efficient as possible. Such auctions have been studied 
for some time now in the context of game theory, where 
the players in the game are the auctioneer (the search 
engine) and the advertisers (see e.g. Varian (2007)). The 
related studies have been devoted mainly to examining 
if, and under which conditions, the game exhibits a 
Nash equilibrium. 
Such conditions are typically linked to the assignment 
and pricing rule on one side and to the advertisers’ 
bidding strategies on the other side. As to the former 
issue the Generalized Second Price (GSP) rule has 
reached a wide consensus, which however leaves the 
field open as to the bidding strategy for the advertiser. 
Recently the Balanced Bidding (BB) strategy has been 
proposed by Cary et alii (2008), where advertisers 
update their bid at each auction round by exploiting the 
intelligence gathered in the previous rounds. In this 
process each advertiser identifies at each round his 

optimal slot as that maximing his utility. In Cary et alii 
(2008) the convergence to a Nash equilibrium has been 
studied, but the optimal slot determination process has 
not been explored in detail, though its relationship with 
the subsequent slot assignment is central to the 
advertiser’s satisfaction. In this paper we analyse the 
characteristics of preferences for slots observed for 
advertisers as resulting from the repetition of such 
keyword auctions, when advertisers follow the BB 
strategy. In particular we examine the way advertisers 
distribute their preferences among the slots on auction, 
and how the auction’s results match their expectations 
as to the assigned slot. 
 
 
2. KEYWORDS AUCTIONS 
Search engines act in response to users' queries for 
websites containing the information of interest. In such 
queries the information of interest is synthetically 
expressed as a string of keywords, possibly connected 
through Boolean operators. For the example, in 
response to the query "sea AND winds NOT ice" the 
search engine will return pointers to all the documents 
containing the first two terms but not the third one. The 
hyperlinks returned by the search engine are typically 
named organic links. The search engine can add to this 
list (and show e.g. on the right-hand side of the screen) 
a number of sponsored links. The available positions for 
sponsored links are named slots. Such links are 
provided by advertisers, who are willing to pay to have 
their ad appear on the screen in relation to a query 
containing a specific keyword. Hence for any query 
there are a number of potential fillers of the screen 
space devoted to sponsored links. It is assumed that the 
advertisers choose to run for keywords that are actually 
related to their product. The payment rules may be 
freely defined in the contract relationship between the 
search engine manager and the advertiser, but the most 
established agreement follows the pay-per-click model, 
where the advertiser pays a pre-determined amount of 
money each time the user actually clicks on the ad. 
Since the number of slots is generally smaller than the 
number of interested advertisers (i.e. advertisers who 
have opted to run for a keyword appearing in the 
query), slots represent a scarce resource and a natural 
way to assign them to the advertisers is through 

487



auctions, namely keywords auctions. Hence advertisers 
declare how much they are willing to pay for a click, 
and an auction is run for the slots among the advertisers 
whose keywords match the query. We have therefore a 
number of slots 

! 

S " Z
+ and a larger number of 

advertisers 

! 

A " Z
+ , with 

! 

A < S . Actually, a new 
auction is run every time a query is submitted, among 
the advertisers submitting bids for keywords matching 
the query. For any given keyword we have then a 
sequence of repeated auctions. As will be seen in 
Section 4, the repetition of auctions allows advertisers 
to update their bids by taking into account their past 
observations of other bidders' behaviour and of the 
output of previous auction runs. 

In order to make the assignment process as 
effective as possible the auctioneer has to carefully 
design the auctioning rules, which boils down to 
choosing: a) the assignment rule (i.e. the way 
advertisers are assigned the slots); b) the price setting 
rule (i.e. the price an advertiser has to pay when the user 
clicks on its ad). 

As to the first issue this is unanimously solved by 
using a straightforward ordering of slots and 
advertisers. Slots are indexed progressively by their 
vertical position on the screen (the slot appearing on top 
of the screen is assigned index 1 by convention; the slot 
appearing on the bottom of the ad-devoted space has 
index S) and evaluated by their click-through rate. The 
click-through rate 

! 

"
i
 of slot i is the probability that the 

user clicks on that slot. Its estimate can be obtained by 
dividing the number of users who clicked on an ad on a 
web page by the number of times the ad was delivered 
(impressions), see Sherman and Deighton (2001). It is 
generally accepted that the click-though rate is a 
declining function of the slot's position, i.e. 

! 

"
i
>"

i+1, 
when   

! 

i = 1,K,S "1; a statistical study reported in 
Brooks (2004) supports this assumption. Hence, top-
positioned slots are more valuable than bottom-
positioned slots. As to the precise shape of the click-
through rate decaying function, we consider a Zipf 
distribution for the probability that the user clicks on a 
given slot. Namely the probability that the user clicks 
on the slot j is 

 

! 

" j #
1

j
$

,   (1) 

 
where 

! 

" # R
+  is the Zipf parameter.  

For convenience (with no consequence on the 
following results) we adopt the normalizing condition 

! 

" j

j=1

S

# = 1 , so that we are actually considering the 

probability of clicking on a specific slot conditioned to 
the user clicking on a slot (or, alternatively, the user 
clicks on a slot with probability 1). Though in this paper 
we implicitly consider the click-through rate being a 
function of the slot's position only, other authors have 
considered the more general case of click-through rates 

being function of advertisers as well , see Feldman and 
Muthukrishnan (2008) and Aggarwal et alii (2006). 
Advertisers are likewise ordered in a decreasing 
function by the value of their bid. 

If we now denote by 

! 

b
i
 the bid submitted by the i-

th advertiser, and then by 

! 

b( j )  the j-th highest bid, the 
assignment rule states that the k-th slot is assigned to 
the advertiser submitting the bid 

! 

b(k). For convenience 
we introduce the function 

! 

"(k)  returning the index of 
the advertiser who's assigned the k-th slot. 

Setting the price is a less straightforward matter. A 
well-known mechanism is the truthful Vickrey-Clarke-
Groves rule, which would lead each participating 
advertiser to bid its true valuation, see Clarke (1971) 
and Groves (1973). However, search engines do not 
adopt the VCG mechanism in practice, but rather the 
Generalized Second Price (GSP) rule, which is 
described in detail in Section 3.  
 

 
3. GENERALIZED SECOND PRICE 

MECHANISM 
In this Section we review the basic characteristics of 
GSP as a price setting mechanism. In GSP the natural 
assignment rule is maintained whereby the advertiser 
submitting the k-th highest bid 

! 

b(k) is assigned the k-th 
slot. However the price he pays is equal to the next 
lower bid, i.e. 

! 

p(k) = b(k+1). Advertisers who are not 
assigned a slot pay nothing. The most important 
decision advertisers have to take is then to choose their 
bids. As a reference they have their own private 
valuation of clicks: in the simplest scenario the i-th 
advertiser values a click worth 

! 

v
i
 (i.e. the click value 

doesn't depend on the slot position itself and doesn't 
vary as the auction is repeated). In general any bid of 
the generic i-th advertiser will satisfy the inequality 

! 

b
i
" v

i
. The expected utility of the advertiser receiving 

the  the k-th slot is 

! 

"
k
v
# k( ) $ b k( )( ) . The most important 

property of the VCG mechanism is that it induces the 
advertiser to declare its private valuation, so that 

! 

b
i

= v
i
 

(truthfulness property). On the contrary, GSP is not 
truthful, hence advertisers' bids are limited by the above 
inequality only. If we consider the static game 
associated to GSP-driven auction, a Nash equilibrium 
has been shown to exist, see Varian (2007). However, in 
the dynamic version resulting from the repetition of the 
auction, bidders can update their bid at each new issue 
of the auction by taking advantage of the knowledge 
they have gained from the past auction occurrences (the 
bids submitted by all the other bidders).  

 
 

4. BALANCED BIDDING STRATEGY 
If the advertiser dosn't submit a truthful bid, he has full 
freedom to choose for his bid any value satisfying the 
inequality recalled in Section 3. Cary et alii have 
proposed the Balanced Bidding (BB) strategy, see Cary 
et alii (2008), under which the advertiser chooses his 
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next bid b so as to be indifferent between successfully 
winning the targeted slot k at the price 

! 

pk  at which it 
was awarded at the previous auction run, or winning the 
slightly more desirable slot k-1 at price b. In this context 
a set of A advertisers, who compete for S slots and have 
their private valuations 

  

! 

v1,v2,K,v
S{ }  for a click, are 

assigned the S slots according to the GSP rule. The 
resulting BB strategy leads the winning i-th advertiser 
to:  
 
1. targeting the slot 

! 

k
i

* that maximizes its utility 
(optimal slot), i.e. 

! 

ki
* = argmax

k

"k vi # pk( ){ } ; 

2. setting its next bid b according to the expression 

! 

bi = vi "
# ki

# ki"1

vi " pki
*[ ] . 

 
Losing advertisers' bids instead equal their 

valuations. 
For the asynchronous version of BB (advertisers 

update their bids one at a time) Cary et alii have proved 
that the dynamic system where all bidders play this 
strategy converge to a unique fixed point, which is also 
the Nash equilibrium of the static game, see Cary et alii 
(2008). However, the convergence time depends on the 
number of bidders and may take some hundreds of 
auction runs. 

In this paper we focus on the transient behaviour of 
the auction in the synchronous case, i.e. under the 
hypothesis that each bidder plays the Balanced Bidding 
strategy at each round.  

 
 

5. MEASURES OF AUCTION’S SUCCESS 
In order to evaluate the characteristics of the auction a 
number of metrics can be considered. In Naldi and 
D’Acquisto (2008) some have been proposed to reflect 
the interest of the bidders as well as that of the 
auctioneer. Since in the Balanced Bidding strategy 
bidders submit their bids after a process identifying the 
optimal slot, it is natural to consider their bids as 
referred to a specific slot (though the slot is not 
mentioned explicitly in the submission process). If we 
consider auctions as a matching process between the 
objects on auctions (the slots) and the bids, a measure of 
success is naturally given by the probability that a slot 
is assigned to the bidder for which that slot is optimal. 
We name such probability the slot matching probability. 
If we indicate by 

! 

Y
i
 the optimal slot of the bidder who 

is assigned the slot i, the formal representation of such 
probability is then 

! 

" i( ) = P Y
i

= i[ ]  for a generic i, or, if 
we lose the details of the specific slot, the average 
 

! 

" =
1

S
# i( )

i=1

S

$ .   (2) 

 
If all the users were to designate the same slot as 

their optimal one, the slot matching probability would 

be equal to the inverse of the number of slots. Though 
the advertisers' preferences are not so unanimous, they 
are far from being uniformly distributed, so that the 
same slot may be regarded as optimal by multiple 
advertisers while some other is not even for a single 
advertiser. Another issue of interest is then the 
distribution of such preferences, i.e. the values of 

! 

" i, j( ) = P Yi = j[ ]  when   

! 

j = 1,2,K,S  and  

  

! 

i = 1,2,K,A . Here, similarly, we can consider just the 
average over the set 

! 

"  of winning advertisers 
 

! 

" j( ) =
1

S
# i, j( )

i$%

& .   (3) 

 
In this paper we focus on these two measures: the 

slot matching probability and the distribution of 
preferences. We resort to MonteCarlo simulation, by 
running 

! 

N
sim

 times a simulation cycle  consisting of T 
repetitions of the auction for S slots. In Cary et alii 
(2008), where the Balanced Bidding strategy has been 
proposed, the asynchronous version of that strategy is 
considered, where a single advertiser (randomly chosen) 
is given the chance to update his bid at a time. This 
leads to a quite slow convergence towards the VCG 
results: roughly 200 rounds are needed for the players' 
payoffs to converge. Here we instead take the much 
more realistic assumption that all advertisers actually 
update their bid at each round. Such asumption is 
expected to reduce considerably the convergence time. 
Our study will therefore concentrate on the transient 
behaviour of the auction, i.e. that pertaining to the first 
batch of repetitions. 

For evaluation purposes we have to set some 
working hypotheses, in particular concerning the 
advertisers' valuations and the click-through rate (for 
which we assume the Zipf distribution). A relevant role 
in the auction's outcome depends on the distribution of 
bidders' valuations (which remains unchanged during 
the subsequent repetitions of the auction). In Naldi and 
D’Acquisto (2008) a number of distributions were 
considered: uniform, triangular, Gaussian, exponential, 
and Pareto. They can be roughly divided into two sets, 
respectively comprising those showing a large 
dispersion of bids and those where bids cluster around a 
common value. In the present early study we consider 
just the uniform distribution as a representative of the 
first category. The valuations are then represented by 
the i.i.d. random variables 

  

! 

V1,K,V
A

 following a 
standard uniform distribution, so that the coefficient of 
variation (standard deviation-to-expected value ratio) is 

! 

1 3 .  
 
 

6. DISTRIBUTION OF PREFERENCES 
As stated in the previous section we first consider the 
distribution of preferences, i.e. the probability that a 
given slot position is deemed as optimal by the 
advertisers. Since the definition of optimality is based 
on the evaluation of the utility, which is positive only if 
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the advertiser's private valuation is larger than the 
current price for that slot, not all advertisers declare an 
optimal slot. Hence the distribution is evaluated for the 
restricted group of addvertisers who do exhibit an 
optimal slot. The evaluation is conducted by simulation. 
We consider 

! 

N
sim

 MonteCarlo simulation runs, each 
consisting of T repetitions of the auction for S slots. 
Within each run any auction is conducted according to 
the GSP mechanism, where each advertiser adopts the 
Balanced Bidding strategy described in Section 4. At 
the end of the full set of MonteCarlo simulation runs we 
can estimate the distribution of preferences 

! 

" j( )  as a 
function of the slot's position   

! 

j = 1,K,S . The 
estimator's expression is 
 

  

! 

) 
" j( ) =

1

Nsim #T #S
I
x
k

t,i( )
= j

$ 
% & 

' 
( ) k=1

S

*
t=1

T

*
i=1

Nsim

* , (4) 

 
where 

! 

I •[ ]  is the indicator function (equal to 1 if its 

logical argument is satisfied and zero otherwise) and 

! 

x
k

t,i( )  is the optimal slot (as resulting after the auction 
repetition t) of the bidder who is assigned the slot k at 
the repetition t in the i-th simulation run. Here we report 
some results obtained under the following conditions: 

 
• Number of simulations runs 

! 

N
sim

= 10000  
• Number of slots 

! 

S = 5,10  
• Number of advertisers 

! 

A = S +1 
• Number of repetitions 

! 

T = 100 
• Uniform distribution of advertisers' private 
valuations  
• Zipf distribution for the probability of users 
clicking on a given slot, with the Zipf parameter 

! 

" = 0.5,1,2  
 
We briefly review these assumptions. The number 

of simulation runs is large enough to allow for an 
excellent accuracy for the values at hand. The relative 
standard error of this crude MonteCarlo estimator 

  

! 

) 
" j( )  

is in fact 
 

! 

" =
1#$ j( )

Nsim %T %S %$ j( )
.  (5) 

 
As to the number of slots, the size of the screen 

space available for sponsored links coupled with the 
visibility requirements can hardly allow for more than 
10 such links. When we come to the assumption on the 
number of advertisers, actually we could imagine a 
number much larger than the number of slots. However, 
by choosing A as the minimum integer larger than the 
number of slots, we reduce to a minimum the 
computational load, while obtaining a final result quite 
accurate also for larger values of A (as briefly shown 
later). In Figure 1 and Figure 2 we draw the distribution 
of preferences when the number of slots is 5 and 10 
respectively. As expected the figures for the 10 slots 

case are generally lower than the 5 slots case, since 
preferences distribute among a larger number of 
potentially optimal slots. In both cases we can however 
note that the highest slot is the most preferred one, but 
at the same time the preference doesn't decay 
monotonically with the slot position. In fact, in some 
cases we see a slight upsurge of the preference 
probability for the lowest slot. Counter-intuitive is also 
the impact of the Zipf parameter: Highly skewed click-
through rate distributions (i.e. having larger values of 
the Zipf parameter) produce more balanced distributions 
of preferences. 

 

 
Figure 1: Probability of Advertisers' Preferences with 5 
Slots 
 

 
Figure 2: Probability of Advertisers' Preferences with 
10 Slots 

 
Finally, we come to the assumptions on the 

number of advertisers. The results so far shown, 
obtained for 

! 

A = S +1, keep valid as long as the 
preference distribution depends negligibly on the 
number of advertisers. In Figure 3 we show the same 
distribution, obtained for 

! 

A = 6  and 

! 

A = 50 , where 
multiplying the number of advertisers tenfold produces 
a very limited variation on the estimated preference 
probability, comparable to the accuracy of the 
simulation method. Hence the results obtained above 
can be deemed accurate enough for larger values of the 
number of advertisers as well. 
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7. SLOT MATCHING PROBABILITY 
We now turn to the slot matching probability, 

which measures how well the slot assignment satisfies 
the advertisers' expectations, and can therefore be 
considered as a measure of success of the auction.  

After running 

! 

N
sim

 MonteCarlo simulation runs, 
each consisting of T repetitions of the auction for k 
slots, the slot matching probability is estimated as 

 

  

! 

) 
" =

1

N
sim

#T # S
I
x
k

t,i( )
= k

$ 
% & 

' 
( ) k=1

S

*
t=1

T

*
i=1

Nsim

* , (6) 

 
where 

! 

I •[ ]  is the indicator function (equal to 1 if its 
logical argument is satisfied and zero otherwise) and 

! 

x
k

t,i( )  is the optimal slot (as resulting after the auction 
repetition t) of the bidder who is assigned the slot k at 
the repetition t in the i-th simulation run.  

 

 
Figure 3: Impact of the Number of Advertisers on 
Preference Distribution 
 

We report here the results obtained under the 
following conditions: 

 
• Number of simulations runs 

! 

N
sim

= 10000  
• Number of slots 

! 

S = 2,10  
• Number of advertisers 

! 

A = S +1 
• Number of repetitions 

! 

T = 100 
• Uniform distribution of advertisers' private 
valuations  
• Zipf distribution for the probability of users 
clicking on a given slot, with the Zipf parameter 

! 

" = 0.5,1,2  
 
In Figure 4 the slot matching probability appears as 

a fast decaying function of the number of slots. 
Matching appears to be rarer for lower values of the 
Zipf parameter (i.e. as the click rate becomes more 
uniform over the set of slots). 

 

 
Figure 4: Slot Matching Probability 

  
 A tentative fitting can be considered by using the 
power law model 
 

! 

" =
#

S
$

,   (7) 

 
where 

! 

"  and 

! 

"  are two constants. For the three values 
of the Zipf parameter considered in this paper we obtain 
by regression the values reported in Table 1 along with 
the resulting 

! 

R
2 goodness of fit index. We note that, 

though the fit is generally good, the power law 
exponent is not a monotonic function of the Zipf 
parameter. 

 
Table 1: Fitted Power Law Parameters 

! 

"  

! 

"  

! 

"  

! 

R
2 

0.5 1.1147 0.7237 0.9935 
1 1.4683 0.7574 0.9969 
2 1.4417 0.6378 0.9915 

 
In order to analyse the transient dynamics we have 

also evaluated the slot matching probability through a 
sliding window of width equal to 20 auction rounds 
over a total length of 

! 

T = 500 repetitions. The quantity 
of interest is now a function of the ending time 

! 

T
end

 of 
the sliding window 

 

  

! 

) 
" Tend( ) =

1

Nsim # 20 # k
I
y
j

t,i( )
= j

$ 
% & 

' 
( ) j=1

k

*
t=Tend +20

Tend

*
i=1

Nsim

* , (8) 

 
where 

  

! 

T
end

= 21,K,500 . 
A rough analysis of the length of the transient can 

be obtained by visual inspection of the resulting slot 
matching probability. In Figure 5 (obtained for 

! 

S = 5 
slots and for the Zipf parameter 

! 

" = 1) the curve 
stabilizes well before the first 40 rounds, much earlier 
than the convergence time reported in Cary et alii 
(2004) for the asynchronous version of the auction. 
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Figure 5: Transient in Slot Matching Probability 
 
 

8. CONCLUSIONS 
In this paper we have examined some characteristics of 
the Balanced Bidding strategy applied to repeated 
auctions for keywords. We have considered the 
synchronous version of that strategy (all the bidders 
update their bids at each auction round). As to the 
performance indices we have focussed on the 
probability that a slot is assigned to the advertiser for 
which it is optimal, which can be considered as a 
measure of success of the advertiser's bidding strategy. 
The slot matching probability depends negligibly on the 
number of bidders, while decays fast with the number 
of slots on sale. For that relationship we provide a 
tentative power law fitting, where however the power 
law exponent doesn't vary monotonically with the Zipf 
parameter. We have also examined the way bidders' 
preferences distribute among the available slots. The 
highest slots are the most preferred ones, but the lowest 
slots  may exhibit a preference upsurge. Such 
phenomenon, which makes the preference distribution 
non monotonic, is more prominent the lower the Zipf 
parameter.    
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