
ENABLING ADVANCED SIMULATION SCENARIOS WITH NEW SOFTWARE ENGINEERING
TECHNIQUES

Judicaël Ribault(a), Olivier Dalle(b)

(a)(b)MASCOTTE project-team, INRIA Sophia Antipolis &
I3S, Université de Nice-Sophia Antipolis, CNRS

B.P. 93, F-06902 Sophia Antipolis Cedex, FRANCE.

(a)Judicael.Ribault@sophia.inria.fr, (b)Olivier.Dalle@sophia.inria.fr

ABSTRACT
In this paper, we introduce new techniques in the field
of simulation to help in the process of building advanced
simulation scenarios using preexisting simulation com-
ponents. The first technique consists in using the Aspect
Oriented Programming paradigm to capture some of the
private data of an existing model component.The sec-
ond one is an Architecture Description Language (ADL)
designed for the Fractal component model, that offers
definition overloading and extension mechanisms similar
to those found in traditional Object Oriented languages.
The benefits of using both techniques are illustrated by
simple use cases of network security studies.

1 INTRODUCTION
In the 70’s, Zeigler introduced the DEVS formalism
(Zeigler 1976): a formalism to represent the hierarchical
structure and behavior of discrete-event systems accord-
ing to the Systems Theory. Later, Zeigler et al. further
introduced in their Framework for Modelling & Simu-
lation the concept of Experimental Framework (Zeigler,
Kim, and Praehofer 2000). This Experimental Frame-
work separates the computer simulation concerns in two
parts: on one hand the model of the System Under Testing
(SUT) and on the other hand, the Experimental Frame
(EF). Hereafter, we will refer to the part of the Experi-
mental Frame that generates exogenous events (inputs)
for the model part, as the scenario part. This approach
of separating concerns has benefits, such as allowing a
better reusability of components.

From a methodological point of view, reuse allows
to: (i) build reference model used in several studies,
particularly to compare different solutions and (ii) ben-
efit from user feed-back and/or improvements. Notice
there are also situations in which reuse can simply not
be avoided. Indeed, we may distinguish two levels of
component availability. At source level, reusing an ex-
isting code offers enough flexibility to allow any desired
modification (but at the cost of losing the results of a pre-
vious verification and validation.) On the contrary, when

components are only available in compiled object code,
reuse necessarily happens without any modification.

Furthermore, the approach of separating concerns
may imply some limitations. For example, Systems
Theory normally prohibits direct interactions between
the scenario part and the inner parts of models, because
interactions have first to go through the boundaries of the
outer components of the model in order to reach the inner
ones. Furthermore, for some studies, it may be useful to
extend the previous definition of a scenario to include,
in addition to the ability to send exogenous events to the
model, the ability of applying structural changes to an
existing model (before the simulation starts running).

In this paper, we describe new techniques coming
from the field of software engineering that can be used
in the field of simulation to get around these limitations
while enforcing the separation of concerns principles of
the Experimental Framework. Hence, it is worth noting
that separating models and scenario allows a better reuse
of components in both parts: reuse of a given model
with various scenarios, or reuse of a given scenario with
various models. In particular, it is often advocated that
a model that can be reused multiple times or used in
combination with other models can save a many time,
money, and human effort (Davis and Anderson 2003).

Section 2 present the software background involved
in this paper. Section 3 present the use case in which we
present the use of ADL (section 3.2) and AOP (section
3.3).

2 BACKGROUND
This section first introduce the Open Simulation Archi-
tecture (OSA) (Dalle 2007), a discrete-event simulator
that provides a process-oriented programming model.
Then we put the emphasis on the two techniques used
for its implementation that are of particular interest for
building advanced scenarios.

515

mailto:Judicael.Ribault@sophia.inria.fr
mailto:Olivier.Dalle@sophia.inria.fr


2.1 Open Simulation Architecture
The goal of OSA is to help users in their simulation
activities like building models, developing simulations
campaigns, running experiences plans, or analyzing data
results. Also, OSA aims at becoming framework for the
modelling and simulation community by favoring the
integration of new or existing contributions at all levels
architecture. Figure 1 represents the OSA architecture.
In the left part, the front end-users GUI based on Eclipse
framework. In the center part, the functional concerns
and in the right part the simulation tasks. Functional
concerns resolve one or more typical simulation tasks.
Each functional concerns are part of the OSA software
components and must be considered optional and replace-
able independently from one another. In OSA, handling
are almost always hidden in the controller component
thus significantly reduce the modelling process, but also
simplifies the replacement of any part of the simula-
tion engine. OSA allows to model component-based
systems using Fractal component (Bruneton, Coupaye,
and Stefani 2004). AOKell, an open implementation
in Java of the Fractal component model, provides an
aspect-oriented approach to integrate control concerns
in component. In practice, the real system is represented
by a FractalADL application. This application can then
be instrumented using Fractal component capability.

Figure 1: OSA functional architecture.

2.2 Fractal component
Fractal basis development lies in writing components
and connections that enable components communica-
tion. Fractal specification is based on: (1) hierarchical
components that provide a uniform view of applications at
different levels of abstraction, (2) shared components that
allow modelling and sharing of resources, while preserv-
ing hierarchical components, (3) introspection to observe
the performance of a system, and (4) (re)configuration
capabilities that enable deployment and dynamic sys-
tem configuration. Furthermore, Fractal is an extensible
model because it allows the developer to customize the
control capabilities of each application’s component. A
Fractal component is an unit of deployment that have one
or more interfaces. An interface is an entry point to the
component. An interface implements an interface type,

which specifies the operations supported by the interface.
There are two types of interfaces: server interfaces that
correspond to the services provided by the component
and client interfaces that correspond to services required
by the component. A Fractal component is normally
composed of two parts: a membrane which possesses
functional interfaces and interfaces allowing introspec-
tion and (dynamic) configuration of a component, and a
content that is made up of a finite set of sub-components.

Figure 2 shows an example of Fractal component.
Components are represented by rectangles. The bold line
corresponds to the membrane component. The inner part
corresponds to the content of the component. Interfaces
are represented by round for clients interfaces, and by
empty half-round for servers interfaces. Note that inter-
nal interfaces allow a hierarchic component to control the
exposure of its external interfaces to its sub-components.
External interfaces appearing at the top of the components
are component control interfaces. dashed line represent
connections among components. Fractal provide a Ar-
chitecture Description Language (ADL) (Clements 1996;
Medvidovic and Taylor 2000) to describe applications
architecture.

sub−component

content

binding

external

interface component
shared

membrane

Figure 2: Fractal component example.

2.2.1 Fractal ADL
FractalADL is a XML language to describe the architec-
ture of a Fractal application: components topology (or
hierarchy), relationship between client and server, name
and initial value of components attributes. A FractalADL
definition can be divided into several subs definitions and
several files. Moreover, the language supports a mecha-
nism to ease the extension and redefinition through inher-
itance. The motivation for such scalability is twofold. On
the other hand, the component model itself is extensible,
it is possible to attach an arbitrary number of components
controllers. There are multiple uses for a given ADL
definition: deployment, verification, analysis, and so on.
FractalADL allows to separate concerns because model
definition can be split in multiple files. ADL language is
interpreted by a specialized component of Fractal called
a Factory: to read completely (recursively) a description
of a Fractal application, just send a request to the Fractal
Factory to read and instantiate the root component of the
application. To instantiate the various components, the
factory creates a Fractal Abstract Syntax Tree (AST),
where each node corresponds to a XML entity of the
ADL.

516



2.3 Aspect-Oriented Programming
Aspect-Oriented Programming (AOP) (Elrad, Filman,
and Bader 2001) is a new paradigm for modularizing
applications with many concerns. AOP goals are (i) sep-
aration of concerns: the goal is to design systems so that
functions can work independently of other functions, and
so it is easier to understand, design and manage complex
interdependent systems; (2) crosscutting interactions: it
is not easy to modularized common-interest concerns
used by several modules, like logging service; (3) de-
pendencies inversion: instead module use well-known
services, the well-know service shall use modules.

3 ADVANCED SCENARIOS CASE STUDIES

EE

A B

Scenario

Model

Scenario X Model

C

EE BA C

X

Figure 3: Reuse and adapt a model of reference.

We present hereafter two case studies to illustrate the
new techniques we propose to build advanced scenarios
reusing existing component models that are only avail-
able in compiled form, at execution level (for example
because it came after a long validation and verification
process, or because we want to keep the source code
secret). Figure 3 show the composition of the com-
plex scenario and the reference model. The reference
model contains two components A and B. The complex
scenario adds a new component C between A and B,
and a new component EE which generates exogenous
events. The composition is the result of the model and
the scenario. In order to build such a composition we
propose to use (i) an Architecture Description Language
(ADL) with overloading capability like FractalADL and
(ii) Aspect-Oriented Programming (AOP) like AspectJ.
to extend the reusability of a model through a simple
case study To illustrate this kind of composition we build

a practical example: a small security case study based
on a reference model in which a user establishes an FTP
session with a server using the unsecured version of
the protocol. The case study will consist in simulating
a Man-In-The-Middle attack (MITM) and a Spy-ware
version of the client.

3.1 Case study

ClientImpl ServerImpl

Client Server

cftp

sftp

Figure 4: Components layout of File Transfers Protocol
case study.

As described previously, we propose to use AOP
and ADL in an original way to override difficulties in
reusing models. We choose in this paper to show the
cost and benefits through a simple case study. First, let
us assume that we have a model we want to reuse to test
different security flaws. There is a model representing
the Basic operation of a server File Transfer Protocol
(FTP). This simple model has not been developed in
order to be used in this study, we are not supposed to
have the source code, and even we need to test the
safety of this protocol. Figure 4 shows the architecture
of the model, and Listing 1 details its implementation
in FractalADL. Line 4 specifies the name of this model,
line 6-11 correspond to the client definition and line
12-19 to the server definition. Line 7-9 and 14-16
describe client and server interfaces used by the binding
on line 20-21.

Listing 1 Fractal ADL definition used to implement
layout of figure 4.

01<?xml version="1.0" encoding="ISO-8859-1" ?>
02<!DOCTYPE definition skipped ... >
03
04<definition name="ftp">
05
06 <component name="Client">
07 <interface name="cftp"
08 role="client"
09 signature="FTPService"/>
10 <content class="ClientImpl"/>
11 </component>
12
12 <component name="Server">
14 <interface name="sftp"
15 role="server"
16 signature="FTPService"/>
17 <content class="ServerImpl"/>
18 </component>
19
20 <binding client="Client.cftp"
21 server="Server.sftp"/>
22</definition>

517



The protocol represented by this model is a two-
party protocol. We will denote the two parties by the
name Client and Server (Client want to be authenticated
on Server). The model works like this : the client
send the users login and password to the server to be
authenticated. To do this, client ask his interface (cftp,
declared line 07) to obtain connection with the server. In
this study, we focus on the login process to test security
flaw.

From this model, we propose a new reusing ap-
proach. First, we will show how to add a man in the
middle attacker in this model using the overload ca-
pability of FractalADL. Second, we will show how to
simulate spy-ware on client using the overload capability
of FractalADL and AOP.

3.2 Man-in-the-middle attacker with Fractal ADL

ClientImpl ServerImpl

Client Server

cftp

sftp

AttackerImpl

asftp
acftp

Attacker

Figure 5: Components layout of Fractal’s MITM attack.

From the original model describe in section 3.1, we
want to test the ftp login process security. We decide to
test the security against a man-in-the-middle attacker. In
the man-in-the-middle setting (MITM), there is a third
party called Adversary. All the communication between
Client and Server are intercepted by Adversary. Thus
both Client and Server talk to Adversary and cannot
communicate directly with each other. Adversary need
to transmit information between Client and Server, but
- it’s the security break - he can read, change, or drop
transmit depending on his settings.

What makes this case interesting is to modify the
original FTP topology (figure 4) to obtain the new topol-
ogy describe in figure 5. In practice, we need to add a
new component inside a model. Like in reality, Adver-
sary need to mimic Server interface and Client Interface.
In fact, Adversary need to imitates Server for the Client,
and imitates Client for the Server. Figure 5 show the
new architecture we want to obtain compared to figure 4
section 3.1. Since model is locked, we cannot change his
topology directly in source code. Listing 2 shows how
to use the FractalADL overload capability to overload
the topology. Line 04 show we extend the original ftp
model in a new model called mitm-ftp. Line 06-14 rep-
resent the declaration of the new Adversary component.
And line 16-19 demonstrate how overload the original

Listing 2 Fractal ADL definition used to implement
layout of figure 5.
01<?xml version="1.0" encoding="ISO-8859-1" ?>
02<!DOCTYPE definition skipped ... >
03
04<definition name="mitm-ftp" extends="ftp">
05
06 <component name="Adversary">
07 <interface name="acftp"
08 role="client"
09 signature="FTPService"/>
10 <interface name="asftp"
11 role="server"
12 signature="FTPService"/>
13 <content class="AdversaryImpl"/>
14 </component>
15
16 <binding client="Client.cftp"
17 server="Adversary.asftp"/>
18 <binding client="Adversary.acftp"
19 server="Server.sftp"/>
20</definition>

binding between Client and Server by a new binding
between Client and Adversary, and between Adversary
and Server. With this topology, communication between
the Client and the Server pass through the Adversary.

This example shows how to modify a model to in-
clude new component or change topology. The overload
capability of Fractal ADL permit to reuse and change
some specification of the model like topology. In fact, in
our example, communication between the Client and the
Server go through the Adversary but the FTP model have
not been modified. We build a new model extending the
original FTP model, and overload the binding between
the Client and the Server. In the next section, we use
FractalADL to add a new component and change the
topology, but we also demonstrate how to use AOP. The
next section described the FTP model with a spy-ware
inside the client.

3.3 Spy-ware with aspect-oriented programming
In this section, we demonstrate how using Fractal ADL
and aspect-oriented programming we can add a spy-ware
(Stafford and Urbaczewski 2004) into the Client from
the original FTP model. Spy-ware is the name given to
the class of software that is surreptitiously installed on a
computer and monitors users activities and reports back
to a third party on that behavior [Anon, 2004; Daniels,
2004; Doyle, 2003; Taylor, 2002]. We want to model
a spy-ware inside the Client of the FTP model. The
goal of this attack is to take the user login and password
when typed in. Spy-ware send all information to a third
party using the network. The model architecture we
want to obtain is shown in figure 6. We see the Client is
connected to a third entity (Spy) and contain a Spy-Ware
inside his implementation.

Listing 3 shows a solution using Fractal ADL and
AOP to introduce spy-ware in original FTP model.
Using the extension capability of Fractal ADL, we
add a new spy interface to the Client component, we
add a Spy component and we bind the Client and

518



ServerImpl

Client Server
sftp

cftp

sspy

cspy

SpyImpl

ClientImpl

SpyWare

Spy

Figure 6: FTP model with Spy-Ware in Client.

the Spy together. Line 04 show how to create a new
model extending the original FTP model. Line 06-17
represent the Spy component, line 07-09 represent the
interface for connecting with the Spy component. Line
13-17 represent the Client component declared in the
original FTP model, line 14-16 show the new interface
added to the Client component. Line 19-20 represent
the binding to connect the Client with the Spy component.

Listing 3 Fractal ADL used to implement layout of figure
6.
01<?xml version="1.0" encoding="ISO-8859-1" ?>
02<!DOCTYPE definition skipped ... >
03
04<definition name="spyware-ftp" extends="ftp">
05
06 <component name="Spy">
07 <interface name="sspy"
08 role="server"
09 signature="SpyService"/>
10 <content class="SpyImpl"/>
11 </component>
12
13 <component name="Client">
14 <interface name="cspy"
15 role="client"
16 signature="SpyService"/>
17 </component>
18
19 <binding client="Client.cspy"
20 server="Spy.sspy"/>
21</definition>

AOP allows us to introduce new code into objects
without the objects is needing to have any knowledge of
that introduction. The FTP model has been validated and
we don’t have the source code so we can’t change it to
introduce some concerns about spy-ware. The Listing 4
show how using AOP we can add some concerns inside
a model.

Line 01 explain we want to intercept a method call,
and do something before the method was called. Line 02
show the method we want to intercept, it’s all methods
from the FTPService java interface called by a ClientImpl
class. Line 03 add a condition, only component bound
with a Spy component are concerned. Line 05 ask the
Client interface connected to the Spy component to have

this one. Line 06 call through the connection with the
Spy the send method to send data. This aspect (written
in AspectJ) represent the Spyware, the Spy compo-
nent represent the third party waiting for data to analyze.

Listing 4 Fractal ADL used to implement layout of figure
6.
01 before(ClientImpl b) :
02 call(* FTPService.*(..)) && this(b)
03 && if(isBinding(b)) {
04 try {
05 SpyService spyS = b.lookupFc("cspy");
06 spyS.send(thisJoinPoint.getArgs()[0]+"");
07 } catch (NoSuchInterfaceException nsie) {
08 ...
09 }
10 }

This example shows how to modify a model to
include new component, change topology and instrument
a component. The capability of AOP to inject some code
inside the model allow to read variables of the model.
Here we demonstrate how a third component can access
the login and password field during the login process of
the client on server.

4 CONCLUSION
We have shown how ADL and AOP techniques can
be used to extend the reusability of a model. Both
techniques offer new ways to create a complex scenario
without modifying the original model. Hence, the model
remains valid which saves additional costs and efforts.
The ADL allows to build a composition of the model
with the scenario by overloading some model definitions
like bindings. AOP helps to add some code into the
model, for example to allow a third party component
to access an existing model’s private data. However,
this latter technique must be used with extreme care
in order to guarantee that the code newly inserted in a
component will not change its behavior. However, tools
can be built to make automatic verifications on the code
inserted and ensure this non-interference property. Our
planned future works are to build a new DEVS-compliant
engine for OSA in order to experiment these techniques
on existing DEVS models. However, we want also to
further investigate the benefits and drawbacks of using
ADL and AOP techniques with the DEVS Modelling
& Simulation framework. A last direction we want to
explore is the identification of practical use cases in
which such techniques prove to be useful, in particular
in the networking and security area, where models and
scenarios exhibit a priori a high complexity(Seo 2006).

ACKNOWLEDGMENTS
This work is co-supported by the European IST-FET
“AEOLUS” project and the French National Research
Agency (ANR) “SPREADS” and “OSERA” projects.

519



REFERENCES
Bruneton, E., Coupaye, T., and Stefani,

J. B.. 2004, February. The fractal com-
ponent model specification. Available from
http://fractal.objectweb.org/specification/. Draft
version 2.0-3.

Clements, P. C. 1996. A survey of architecture description
languages. 16: IEEE Computer Society.

Dalle, O. 2007, Februray. Component-based discrete
event simulation using the Fractal component model.
In AI, Simulation and Planning in High Autonomy
Systems (AIS)-Conceptual Modeling and Simulation
(CMS) Joint Conference. Buenos Aires, AR.

Davis, K. P., and Anderson, A. R.. 2003. Improving the
composability of department of defense models and
simulations. RAND Technical report available at
http://www.rand.org/publications/MG/MG101/ (last
accessed April 2008).

Elrad, T., Filman, R. E., and Bader, A.. 2001.
Aspect-oriented programming: Introduction. Com-
mun. ACM 44 (10): 29–32.

Medvidovic, N., and Taylor, R. N.. 2000. A classifica-
tion and comparison framework for software archi-
tecture description languages. IEEE Trans. Softw.
Eng. 26:70–93.

Seo, H. S. 2006, July. Network security agent DEVS sim-
ulation modeling. Simulation Modelling Practice and
Theory 14 (5). doi:10.1016/j.simpat.2005.08.010.

Stafford, T. F., and Urbaczewski, A.. 2004. Spyware:
The ghost in the machine. 291–306: Commun. AIS
14.

Zeigler, B. P. 1976. Theory of Modelling and Simulation.
Wiley & Sons, NY.

Zeigler, B. P., Kim, T. G., and Praehofer, H.. 2000. Theory
of Modeling and Simulation. Academic Press, Inc.

AUTHOR BIOGRAPHIES
JUDICAEL RIBAULT received his M.Eng. from
University of Nice-Sophia Antipolis in 2007. In 2007,
he joined the MASCOTTE common project-team of
the I3S-UNS/CNRS Laboratory and INRIA, in Sophia
Antipolis, where he started to work on the OSA
project as a Software Engineer. In 2008, he started
a PhD in the MASCOTTE team, in the context of
the ANR SPREADS project, investigating on new
Component-based Software Engineering techniques for
large scale Peer-to-peer systems simulation.

OLIVIER DALLE is associate professor in the C.S.
dept. of Faculty of Sciences at University of Nice-
Sophia Antipolis (UNS). He received his BS from U. of
Bordeaux 1 and his M.Sc. and Ph.D. from UNS. From
1999 to 2000 he was a post-doctoral fellow at the the
French space agency center in Toulouse (CNES-CST),
where he started working on component-based discrete
event simulation of complex telecommunication systems.
In 2000, he joined the MASCOTTE common project-team

of the I3S-UNS/CNRS Laboratory and INRIA, in Sophia
Antipolis.

520


