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ABSTRACT 
In the wide context of production planning a critical 
role is played by the operative programming, or short 
period production planning, whose results affect 
considerably the production system performances. The 
research work presented in this paper is focused on the 
Shop Orders scheduling problem into a real 
manufacturing system using dispatching rules and 
genetic algorithms based approaches supported by 
Modelling & Simulation. The objective is to verify the 
behaviour of different dispatching rules as well as to 
test the potentialities of production planning guidelines 
obtained by using genetic algorithms.  

 
Keywords: Manufacturing Systems, Production 
Planning, Shop Order Scheduling, Modeling & 
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1. INTRODUCTION 
As well known the Shop Orders (S.O.s) scheduling 
problem within manufacturing systems is usually 
characterized by high complexity due to the different 
interacting variables and to the stochastic nature of the 
system itself (i.e. stochastic process and set-up times, 
stochastic lead times, etc.). In addition a real 
manufacturing process is characterized by a number of 
peculiarities such as machines unavailability (due to 
failures) machines duplications, S.Os contemporarily 
worked on more machines, priority S.Os, limited 
capacity of the intermediate buffers between machines, 
significant transportation times. The representation of 
the mentioned aspects by means of analytical models is 
an exceeding difficult task. In effect the analytical 
models representing such type of systems are usually 
characterized by restrictive assumptions. Note that 
analytical models characterized by restrictive 
assumptions allow to gain confidence about the S.Os 
scheduling problem even if they often fall short of 
results applicability. 

One of the most widely used approach for studying 
scheduling problems within manufacturing systems is 
the Modeling & Simulation (M&S) approach that gives 
the possibility to take into consideration the high 

complexity of a manufacturing system avoiding 
restrictive assumptions and transferring on the real 
system the results obtained by using simulation models. 
Note that also a simulation model usually contains 
restrictive assumptions. However such assumptions 
usually aim at defining the physical and logical 
boundaries of the simulation model (i.e. modeling the 
inventory management system in a S.Os scheduling 
problem may not be necessary). In other words all the 
assumptions made in a simulation model allow to 
recreate a model that should be valid in its domain of 
applicability (the Verification, Validation and 
Accreditation assess the capability of a simulation 
model to represent a real system with satisfactory 
accuracy). 

The S.Os scheduling activities within a 
manufacturing system are usually part of the production 
planning process. In turn the production planning 
process schedules all the production activities over 
different period of time: in the long period the planning 
aims at evaluating the quantity to be produced for each 
product and the production resources to be used; in the 
short period the objective is the optimal scheduling of 
the S.Os on the available machines. 

In this paper we developed a simulation model of a 
real manufacturing system and we studies the S.Os 
scheduling problem by using both some classical 
dispatching rules and the genetic algorithms in order to 
find out specific scheduling guidelines to be used for 
improving manufacturing system performances. 

Before getting into details of the research work let 
us give a brief summary of the paper. Section 2 
describes the manufacturing process being analyzed in 
this paper. Section 3 proposes the manufacturing 
process modeling (simulation model development and 
simulation model verification, validation). Section 4 
presents the simulation results. Finally the last section 
reports the conclusions and the research activities still 
on going.  
 
2. THE MANUFACTURING PROCESS 
The research work has been done in collaboration with 
a manufacturing system producing small metallic 

817



carpentry structures. Due to the high number of 
different structures the company top management 
decided to carry out a study devote to improve the 
efficiency of the short period production planning. In 
effect such need comes out from the continuous delays 
in S.Os completion that, in turn, cause the decrease of 
the customers’ satisfaction level. To well understand all 
the steps of the research work, it is useful to give a brief 
description of the manufacturing process. 

The manufacturing process has to be regarded as a 
flow shop system in which each S.O. has the same 
routing, thus the visiting order of the machines is 
always the same. The main manufacturing operations 
are described as follows: 
 

• raw materials preparation (ID 1); 
• cutting (ID 2); 
• drilling (ID 3); 
• welding (ID 4); 
• assembly (ID 5); 
• sandblast (ID 6); 
• painting  and drying (ID 7). 

 
During the preparation phase all the materials, 

needed for each Shop Order are taken from the raw 
materials warehouse. The first operation of the 
manufacturing process is the cut performed by using a 
pantograph supported by laser cutting system and 
equipped for receiving CAM information (Computer 
Aided Manufacturing) directly from the production 
planning office. All the metallic components are then 
drilled in order to create all the holes needed for the 
assembly process. The main components are welding by 
using two types of welding technologies: MIG/MAG 
(Gas Metal Arc Welding) and TIG (Gas Tungsten Arc 
Welding). Thanks to the assembly process all the 
components are assembled and form the final metallic 
carpentry structure. The sandblast operation aims at 
cleaning the metallic surfaces (by using high speed 
particles that hit the surfaces) before the painting. 
Finally painting and drying activities complete the 
manufacturing process.  
 
3. MODELING THE MANUFACTURING 

PROCESS 
Two types of S.O. can enter the system: normal and 
priority. Usually normal S.Os are scheduled on a 2-
weeks time window (each new S.O. enters in the last 
position of  the 2-weeks queue). On the contrary, a 
priority S.O. can enter the 2-weeks queue in any 
position at any time (it depends on the priority level of 
the S.O.). In other words the system allows the passing 
between jobs. Each S.O. has a finite number m of 
operations, one on each machine and it is allowed to 
work twice a job on the same machine. All the S.Os 
entered into the system have to be necessarily 
completed. 

Machines could not be available during the 
scheduling period because of the failures. Failures have 
been modeled by using a negative exponential 

distribution for both the Mean Time To Failure (MTTF, 
expressing the time between two consecutive machine 
failures) and the Mean Time To Repair (MTTR, 
expressing the time required for repairing the machine). 
Finally process and set-up’s time are considered as 
stochastic variables each one with a specific statistical 
distribution. According to these hypotheses it follows 
that the case analysed belong to the dynamic-stochastic 
scheduling problem because new S.Os arrive during the 
scheduling horizon and most of the numerical quantities 
are stochastic.  

The main steps of the simulation model 
development can be summarized as follows: 
 

• data collection and distributions fitting; 
• simulation model implementation; 
• simulation model verification and validation. 

 
3.1. Data Collection and Distribution fitting 
The most important information were collected by 
means of interview and by using the company 
informative system. Data collected regard bill of 
materials, S.Os routing, S.Os inter-arrival times, 
number of S.Os for each customer, inventory control 
policies and suppliers lead times, process and set-up 
times, machines downtimes and uptimes, material 
handling modes and times. 
All the stochastic variables have been analyzed in order 
to find out statistical distributions capable of fitting the 
empirical data with satisfactory accuracy. Figure 1 
shows the histogram and the statistical distribution of 
the process time of the assembly operation. Figure 2 
shows the histogram and the statistical distribution of 
the process time of the drilling operation.  
 

 
Figure 1: Histogram and Statistical Distribution of the 
Process Time of the Assembly Operation 
 

 
Figure 2: Histogram and Statistical Distribution of the 
Process Time of the Drilling Operation 
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3.2. The simulation model development 
The simulation model was developed by using the 
discrete event simulation software eM-Plant by 
Tecnomatix Technologies. The main idea was to 
develop a flexible and time efficient simulator. A 
flexible simulator should be capable of easily 
integrating additional features as the time goes by; a 
time efficient simulator should require few time for 
executing simulation run.  

Note that the simulator flexibility cannot be easily 
achieved if library objects are used for developing the 
simulator architecture. In effect each library object 
should represent a specific component/part of a real 
system; sometime such objects do not represent the real 
system with satisfactory accuracy. The solution to this 
problem is the simulator development by using 
programming code. eM-Plant provide the users with a 
simulation language (Simple++) that can be used for 
implementing classes and objects. Such classes can be 
accessed and modified at any time (also saved and used 
in other simulation models) assuring, as a consequence, 
high level of flexibility in terms of both model accuracy 
and future changes. 

Concerning the computational efficiency of the 
simulator and the time required for executing simulation 
runs, we should take into consideration how a discrete 
event simulation software works. In a discrete event 
system the state of the system changes at discrete event 
time points due to the flow of entities inside the system 
(i.e. end of an operation, arrival of a new shop order, 
etc.). In other words entities take actions that change the 
state of the system. Usually entities are defined as 
classes instantiated inside the simulation model. Each 
entity can also have attributes used for storing specific 
information. Note that the higher is the number of 
entities flowing in the simulation model the higher is 
the computational load of the simulator. Consider the 
case of a manufacturing process in which thousands of 
components and products usually flow inside the system 
(it means thousands of entities flowing inside the 
simulation model). The approach used for developing 
the simulation model proposed in this paper is based on 
the idea to substitute the flow of entities with a flow of 
information opportunely stored in tables. The events 
generation is committed to specific objects (provided by 
the eM-Plant library) called event generators.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The change of the state of the system, due to the 
generation of an event, is managed by ad-hoc 
programmed routines; the programming code also takes 
care of updating all the information stored in the tables. 

By following this approach, two main advantages 
can be obtained: (i) a great gain in term of 
computational load of the simulator; (ii) reduction of the 
time required for executing simulation runs. Figure 3 
shows an example of information stored in table for 
each entity (shop order) flowing into the simulator. 
 The simulator main frame is called model. It 
contains 9 secondary frames. Each frame is built to 
recreate a specific operation of the real manufacturing 
system. In particular 7 frames recreate the operations 
described in section 2 (raw materials preparation, 
cutting, drilling, welding, assembly, sandblast, painting 
and drying) whilst the remaining 2 frames are 
respectively the Production Manager (PM) and the 
Graphic User Interface (GUI). The PM generates the 
S.Os and the relative production planning, takes care of 
S.Os scheduling, resource allocation and inventory 
management. The graphic user interface provides the 
user with many commands as, for instance, simulation 
run length, start, stop and reset buttons and a Boolean 
control for the random number generator (to reproduce 
the same experiment conditions in correspondence of 
different operative scenarios). Furthermore the GUI 
allows the user to select the dispatching rule to be used 
for S.Os scheduling or to select S.Os scheduling based 
on the results of genetic algorithms. 

Let us introduce now the performance indexes 
implemented in the simulation model used for 
evaluating the goodness of the S.Os scheduling. We 
propose a multi measure approach based on orders 
completion time and on due dates. In particular the 
simulator monitors for each S.O. the following 
performance measures: the average and the variance of 
the Flow Time (FT), the average and the variance of the 
Latiness (LT) and the Fill Rate (FR). The FT of the i-th 
S.O. is the difference between the S.O. Completion 
Time (CT) and the S.O. Release Time (RT) as reported 
in equation 1. 
 

iii RTCTFT −=                  (1) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 3: An example of information stored in table for each entity (shop order) flowing into the simulator 
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The LT of the i-th S.O. is the difference between 
the S.O. Completion Time and the S.O. Due Date (DD),  
as expressed by equation 2. 
 

iii DDCTFT −=      (2) 
 
Finally the FR is the percentage of S.Os meeting the 
due date as expressed by equation 3. 
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3.3. Simulation model Verification and Validation 
The accuracy and the quality throughout a simulation 
study are assessed by conducting verification and 
validation processes (Balci 1998). Usually a real world 
system is abstracted by a conceptual model; in turn a 
conceptual model is then translated into a computerized 
simulation model. The verification aims at determining 
if the computerized simulation is an accurate translation 
of the initial conceptual model. A simulator must 
substitute the real system for the purpose of 
experimentation; to this end the simulator has to 
represent the real system with satisfactory accuracy. 
The level of accuracy is usually evaluated by the 
validation phase. For further details on simulation 
model Verification & Validation, refer to the American 
Department of Defence Directive 5000.59.  

The simulator verification has been carried out by 
using the Assertion Checking dynamic technique. Such 
technique aims at checking what is happening inside the 
simulator against what we assume happening (further 
information in Adrion et al. 1982). In case of checking 
discordance, the technique reveals an error usually due 
to incorrect programming code or values. To detect 
errors inside the simulator we inserted global, region 
and local assertion in order to verify the entire model. A 
number of different errors were identified by the 
assertions and successively corrected (i.e. errors on S.O. 
routing, on machines set-up times, on raw materials 
inventory management, etc.  

The simulator validation has been carried out by 
using the Mean Square Pure Error analysis (MSPE).  
The MSPE aims at evaluating the length of the 
simulation run that guarantees the goodness of the 
statistical results in output from the simulation model.  

Considering the stochastic distributions 
implemented in the simulation model we can assert that 
the outputs of the simulation model are subjected to an 
experimental error with normal distribution, N(0, σ2). 
The best estimator of σ2 is the mean squares error. The 
simulation run has to be long enough to have small 
values of the MSpE of the performance measures being 
considered. In other words, the experimental error must 
not “cover” the simulation results. Considering the 
Flow Time, we can write: 

 

∑
= −
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=

n

h

h

n
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))()(()(                 (4) 

 
• FTh(t), value of the Flow Time at instant of 

time t during the replication h; 
• h=1,…,n number of replications. 

 
Analogous equation can be written for the LT and the 
FR. The simulation run length chosen is 200 days. Such 
time, evaluated with four replications, assures a 
negligible mean squares error for the Flow Time. The 
same analysis for the Lateness and the Fill Rate gives 
lower simulation run lengths. 
 
3.4. Genetic Algorithms implementation to support 

Shop Order scheduling 
Once tested the validity of the simulation model, further 
implementations were carried out to introduce Genetic 
Algorithms (GA) as support tool for short period 
production planning. The GA was implemented as 
functional part of a particular tool called optimizer. This 
object aims at: 
 

• optimising S.Os scheduling by means of GA; 
• testing the proposed scheduling; 
• monitoring the manufacturing system 

performances by using the Flow Time, the 
Lateness and the Fill Rate indexes. 

 
It is important to highlight the nature of problem 

which must be solved by the optimizer and, of course, 
understand how it works. The problems concerning the 
stochastic shop orders scheduling cannot be solved only 
by means of simulation tools. In effect, after 
establishing a certain S.Os scheduling a simulation 
model can only evaluates the system performance under 
the scheduling proposed. By proposing a new S.Os 
scheduling, the initial solution can be improved or 
worsened. To improve the S.Os scheduling it is 
therefore necessary to use optimization algorithms 
which, thanks to an interface with the simulation model, 
find out the most suitable solution optimizing the scalar 
function chosen to measure scheduling goodness (i.e. 
the Flow Time). Optimization algorithms must find out 
acceptable solutions, while the simulation model must 
test, validate and choose the best solutions. 

The interface between the simulation model and 
genetic algorithms was created through the 
programming of specific sub-routines, written using the 
simulation language Simple++. The use of genetic 
algorithms goes through three fundamental steps: (i) 
initial S.Os scheduling (proposed by the user); (ii) 
setting of genetic operators and algorithms initialization 
(iii) optimization. 

 
4. SIMULATION RESULTS AND ANALYSIS 
The research work focalizes on the Shop Orders 
scheduling problem into a real manufacturing system 
using dispatching rules and genetic algorithms based 
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approaches supported by Modelling & Simulation. The 
objective is to verify the behaviour of different 
dispatching rules as well as to test the potentialities of 
production planning guidelines obtained by using 
genetic algorithms.  
The scheduling rules (implemented in the simulator) 
being tested in the following analysis are: (i) the 
Shortest Production Time (SPT); (ii) the Due Date 
(DD); (iii) the Longest Production Time (LPT).  
Table 1 reports the average values of the FT, LT and FR 
in correspondence of each scheduling rule. The best 
performance in terms of flow time is guaranteed by the 
SPT rule, while the best performance in terms of LT 
and FR is guaranteed by the DD rule. Table 2 reports 
the standard deviation values for each performance 
measure in correspondence of each scheduling rule.  
 
Table 1: Shop Orders Scheduling Rules and average 
values of the Performance Measures 

 Flow Time 
(FT) [days] 

Lateness 
(LT) [days] 

Fill Rate 
(FR) [%] 

SPT 4.1 1.7 87.38 
DD 4.8 1.2 90.40 
LPT 6.4 2.6 83.26 
 

Table 2: Shop Orders Scheduling Rules and standard 
deviation of the Performance Measures 

 Flow Time 
(FT) [days] 

Lateness 
(LT) [days] 

Fill Rate 
(FR) [%] 

SPT 0.032 0.030 0.230 
DD 0.041 0.033 0.190 
LPT 0.037 0.036 0.210 
 
Figure 4 shows the FT and the LT versus the 

scheduling rules. Note that the DD performs better in 
terms of respect of the due dates. 
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Figure 4: Performance Measures Vs Scheduling Rules 

 
A number of simulation runs have been also made 

for investigating the S.Os scheduling by using the 
genetic algorithms. Three different optimizations have 
been carried out respectively trying to minimize the FT, 
minimize the LT and maximize the FR. Table 3 reports 
the simulated FT in correspondence of each generation; 

in particular for each generation the best value, the 
average value and the worst value are reported. 

 
Table 3: Flow Time Optimization: Best Average and 
Worst Solutions found by GA 

Generation FT 
Best 

FT 
Average 

FT  
Worst 

1 9.00 10.00 10.60 
2 7.50 8.30 9.60 
3 6.60 7.50 9.00 
4 6.00 7.00 8.80 
5 5.70 6.80 8.30 
6 5.40 6.50 7.90 
7 5.30 6.20 7.60 
8 5.00 6.00 7.40 
9 4.90 5.70 7.00 

10 4.85 5.40 6.50 
11 4.70 5.30 6.20 
12 4.50 5.10 5.80 
13 4.30 4.90 5.50 
14 4.20 4.70 5.00 
15 4.00 4.20 4.50 
16 3.90 4.00 4.30 
17 3.85 3.90 4.00 
18 3.75 3.80 3.90 
19 3.75 3.80 3.80 
20 3.70 3.80 3.80 
21 3.70 3.70 3.70 
22 3.70 3.70 3.70 
23 3.70 3.70 3.70 

 
After 23 replications the best, the average and the 

worst solutions converge to the value 3.70 days. Note 
that such value is lower than best result obtained with 
the SPT rule (the improvement is about 9.8%). The 
figure 5 reports the performance graph that shows the 
FT optimization 

 

GA - Performance Graph - Flow Time Optimization
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Figure 5: Flow Time Optimization 

 
Analogously the table 4 reports the optimization 

results for the LT (best, average and worst values over 
23 generations). 
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Table 4: Lateness Optimization: Best Average and 
Worst Solutions found by GA 

Generation LT 
Best 

LT 
Average 

LT  
Worst 

1 4.25 5.05 6.05 
2 3.75 4.65 5.45 
3 3.25 4.35 5.05 
4 3.00 3.95 4.85 
5 2.85 3.75 4.70 
6 2.65 3.50 4.45 
7 2.50 3.30 4.25 
8 2.25 3.05 4.00 
9 2.00 2.85 3.70 

10 1.85 2.75 3.50 
11 1.75 2.60 3.25 
12 1.65 2.35 3.00 
13 1.50 2.05 2.90 
14 1.40 1.85 2.65 
15 1.30 1.60 2.35 
16 1.30 1.40 2.05 
17 1.20 1.30 1.75 
18 1.15 1.25 1.50 
19 1.10 1.15 1.40 
20 1.10 1.15 1.30 
21 1.05 1.10 1.20 
22 1.05 1.10 1.20 
23 1.05 1.05 1.10 

 
After 23 replications the best, the average and the 

worst solutions converge to the value 1.05 days. Note 
that such value is lower than best result obtained with 
the DD rule (the improvement is about 12.5%). The 
figure 6 reports the performance graph that shows the 
LT optimization 
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Figure 6: Lateness Optimization 

 
Finally the table 5 reports the optimization results 

for the FR (best, average and worst values over 23 
generations). After 23 replications the best, the average 
and the worst solutions converge to the value 95%. 
Note that such value is greater than the best result 
obtained with the DD rule (the improvement is about 
4.6%). The figure 7 reports the performance graph that 
shows the FR optimization. 

 

Table 5: Fill Rate Optimization: Best Average and 
Worst Solutions found by GA 

Generation FR 
Best 

FR 
Average 

FR 
Worst 

1 81.25 79.00 78.00 
2 82.33 80.70 79.10 
3 83.10 81.50 80.20 
4 84.20 82.25 81.00 
5 85.00 83.30 81.90 
6 85.80 84.40 82.70 
7 86.70 85.50 83.90 
8 87.90 86.50 84.10 
9 89.00 87.70 85.50 

10 90.05 89.00 86.70 
11 90.88 89.65 87.90 
12 91.56 90.32 89.00 
13 92.21 91.15 89.90 
14 92.78 91.99 90.50 
15 93.50 92.10 91.40 
16 93.75 93.00 92.10 
17 94.00 93.50 92.80 
18 94.25 93.80 93.20 
19 94.35 94.20 93.80 
20 94.50 94.40 94.15 
21 94.77 94.60 94.45 
22 95.00 94.90 94.80 
23 95.00 95.00 95.00 
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Figure 7: Fill Rate Performance Graph 

 
5. CONCLUSIONS 
The main goal of the research study was to verify the 
behaviour of different dispatching rules and the 
potential of genetic algorithms for the S.Os scheduling 
within a manufacturing system devoted to produce 
metallic carpentry structure. To this end the authors 
implemented a discrete simulation model by using an 
advanced modeling approach.  

The analysis carried out show the behavior of three 
different scheduling rules in terms of Flow Time, 
Latiness and Fill Rate. In addition, three different 
optimizations have been made on the FT, LT and FR by 
using the genetic algorithms. The genetic algorithms are 
capable of finding better shop orders scheduling 
improving the results obtained by using the classical 
scheduling rule. 
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