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ABSTRACT 
In this work, we investigate evolutionary 
metamodelling of discrete-event simulation models with 
the buffer allocation problems. We propose a genetic 
programming approach in order to derive the artificial 
response functions of simulation models. Alternative to 
similar studies, we do not assume a form for the 
response function and perform symbolic regression 
analysis over simulation models of different sizes of 
serial production lines. We present a comparative 
analysis with another artificial technique, neural 
networks, to identify the efficiency and the performance 
of symbolic regression in deriving metamodels via 
simulation. 

 
Keywords: simulation optimisation, metamodelling, 
genetic programming, symbolic regression, decision 
support, buffer allocation problem, neural networks. 

 
1. INTRODUCTION 
A system can be described as a mechanism embodying 
the relationships among the interdependent entities in 
order to perform certain objectives, accompanied by 
performance metrics. The study of interacting 
components and analysis of their contribution on the 
system performance requires descriptive tools. One 
such a tool, discrete-event simulation (DES), facilitates 
a flexible environment to model and investigate many 
systems dealt by Operational Research/Management 
Science. This way, it enables understanding of the 
system behaviour and its performance dependent on 
model configuration, which can be particularly useful in 
system design and optimisation.  
 A possible means of exploring the effects of the 
system designs on the performance is to apply trial-error 
approaches by manipulating the system parameters. 
However, many real-world problems are NP-complete, 
with a large number of alternative configurations 
(William, Jerzy and Bahill 2001). Therefore, ‘what-if’ 
type techniques may remain inefficient in identification 
of this effect (Simpson, Peplinski, Koch et al. 2001). 
Alternatively, metamodelling can be utilised to perform 
this task. 
 Furthermore, efficiency in obtaining the system 
performance is an important factor in analysis and 

improvement of systems. As introduced earlier, DES 
provides its user the ability of modelling a system in as 
much detail as desired. While this is an important 
aspect, model execution times can be long, e.g. for DES 
models of large and stochastic systems. Real world 
systems may be of large scale resulting in long 
simulation runs. Reflecting the stochastic nature of most 
DES models multiple simulation replications will be 
required. The efficiency in providing system 
performance appears to be particularly important in 
computation intensive tasks, e.g. design, optimisation 
(Li, Azarm, Farhang-Mehr et al. 2006). The required 
amount of simulation runs in such applications may 
further render exploration for better system options not 
only challenging, but also impractical. Alternatively, 
with some sacrifice from accuracy, metamodelling can 
be an appealing alternative in modelling the system 
behaviour to replace DES. 

In this work, we will introduce an evolutionary 
approach, Genetic Programming (Koza 1992), for 
metamodelling of DES models. Genetic Programming 
(GP) is an evolutionary algorithm (EA) which has the 
ability to generate analytical models of the underlying 
training data via symbolic regression (SR). This 
opportunity is investigated first on different buffer 
allocation problems in serial production lines. 
Following, comparative analysis with Artificial Neural 
Networks (ANN) and complexity assessment of the 
results are presented to identify the performance and 
usability of SR in metamodelling of DES models. 

The remainder of this paper is organized as 
follows. In the following section, the literature review 
accompanied with the brief description of the BAP is 
provided. Subsequently, related experimental work 
illustrating the efficiency of GP in response surface 
metamodelling of DES will be given in Section 3. 
Finally, discussion and future work conclude the article. 

 
2. LITERATURE REVIEW 
2.1. Buffer Allocation Problem 
This study considers serial production lines (flow lines) 
of single machine servers, Mi, and finite intermediate 
buffers, Bi, of size qi, as shown in Figure 1, for m-
station serial line. The machines are modelled to have 
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exponential service rate with µi=1 in order to reflect the 
stochastic nature of the manufacturing plant. 
 

 
Figure 1: Serial production line. 

 

 
The model of interest can be explained as follows. Jobs 
arrive at the system at the first buffer and sequentially 
proceed through the line. As a result of having finite 
buffers and variability in processing times, starvation 
and blocking can be observed at intermediate stages. 
When a machine is free to process, it takes a job from 
its upstream buffer. If there is no job to process in its 
upstream buffer, then the machine is said to be starved. 
Conversely, blocking in production lines can be 
commonly observed in two different ways, 
communication and production blocking 
(Papadopoulos, Heavey and Browne 1993). In our 
model, we assume that only production blocking occurs. 
In this type of blocking, a free machine takes a job from 
its upstream buffer for processing and passes it on to the 
downstream buffer after completion. However, if there 
is no space available in the buffer, the machine gets 
blocked and can not process new jobs. It is further 
assumed that the first machine is never starved and the 
last machine is never blocked.  

Considering the illustrated processing scheme 
above, buffers can help improve efficiency and smooth 
operation of a manufacturing facility by eliminating 
disruptive effects of possible stochastic elements such 
as processing times and failures. The roles of buffers in 
manufacturing plants are further illustrated by Conway 
and Maxwell et al. (1988). The buffer allocation 
problem (BAP) addresses the efficient utilisation of 
storage spaces in manufacturing systems. It entails 
identifying the optimal allocation schemes to increase 
the performance of the operations. Besides 
manufacturing plants, similar problems can be observed 
in most supply chains operations and communication 
technologies (Dolgui, Eremeev and Sigaev 2007). 
Therefore, BAP has received a significant attention in 
research and practice, particularly in production and 
operations management. 

The literature identifies the different aspects of 
production lines studied via buffer allocation. Kim and 
Lee (2001) investigate minimisation of work-in-process 
inventory (WIP) via buffer allocation, satisfying a 
minimum production rate (throughput rate) and an 
allowable buffer space. Similarly, Nahas and Ait-Kadi 
et al. (2006) and Diamantidis and Papadopoulos (2004) 
consider throughput rate as the performance criteria. 
Alternatively, Andijani and Anwarul (1997) evaluate 
the buffer allocation schemes via combining of WIP, 
cycle time and production rate. To obtain the 
performance data of a design, different tools such as; 
analytical queuing network models (De Almeida and 
Kellert 2000), Markov chain analysis (Vidalis, 
Papadopoulos and Heavey 2005) and simulation 
(Bulgak 2006) can be utilised. Analytical models are 

advantageous in the sense that system evaluations 
require less computation time. However, Altiparmak 
and Dengiz et al. (2007) indicate that they may suffer 
from being approximate models. Moreover, unrealistic 
assumptions may also be necessary to make the 
problem more tractable. An advantage of simulation 
over its analytical counterparts is its ability to reflect the 
system realities as much in detail as desired. However, 
its drawback appears in the time-cost of the evaluation 
of real-world systems as pointed out in Section 1. This 
may negatively effect the computational intensive 
applications involving the exploration of different 
alternatives, e.g. design, optimisation. To illustrate, 
despite the numerous optimisation techniques 
developed (Fu 2002, Tekin and Sabuncuoglu 2004), 
long simulation runs to evaluate the possible system 
alternatives may still render the overall process time-
consuming. In such cases, approximate approaches can 
be alternatively used to estimate the response of a 
simulated system and to observe the effects of changes 
in model parameters. In the following section, a review 
of metamodelling in simulation is given. 

 
2.2. Metamodelling in Simulation 
It has been previously mentioned that metamodelling 
techniques can be appealing alternatives in modelling 
the system behaviour to replace DES with some 
sacrifice from accuracy when appropriate. There have 
been studies (Li, Azarm, Farhang-Mehr et al. 2006, 
Yang, Ankenman and Nelson 2007), in which 
simulation is coupled with metamodelling for more 
efficient performance measurements in the expense of 
the accuracy. Similarly, in this study a symbolic 
regression approach is taken in order to investigate 
metamodelling of the expected throughput rate 
dependent on the buffer allocation scheme.  
 

 
Figure 2: Simulation input-output relationship 

 
A system, or particularly a simulation model, can 

be summarised as shown in Figure 2. Parameters; q is 
an input vector whose indices correspond to individual 
qi's defining the decision variables of the system, where 
as Ji(q)'s represent the performance criterion for a given 
configuration. In this work, q represents a buffer 
allocation scheme and expected throughput rate is the 
only performance measure considered. 

Metamodelling can be defined as attaining an 
approximate function for Ji(q)'s dependent on qi's in 
order to understand behavioural aspects of the systems, 
e.g. estimation of the change in performance induced by 
the change in the configuration. It involves constructing 
approximate analytical models representing this 
function as in Equation 1, in which q is the system 
configuration and ε is the error in approximation.  
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The main concern in metamodelling is efficiently 
obtaining a reasonably accurate global model of the 
system (or a simulation model) (Wang and Shan 2007). 
While efficiency requires the minimum computational 
effort in attaining the metamodel, accuracy will reflect 
how close the metamodel is to the system. Generally, a 
metamodelling study is consisted of three major steps: 
 

1. Sampling the data, 
2. Modelling the collected data, 
3. Fitting the model to sampled data. 

 
Sampling refers to collecting sufficient data to 

reflect the system behaviour, i.e. attaining system 
performance at prespecified design points. Model 
choice and fitting are the subsequent steps in a 
metamodelling study. Briefly, the response is assumed 
to take a form, while this form can be a one or higher 
order polynomial dependent on the decision variables, 
network of neurons, decision trees or nonlinear 
transformations can be used as alternatives. There have 
been many techniques developed to perform these 
major steps above.  Batmaz and Tunali (2002) give a 
comparative study considering sampling. Wang and 
Shan (2007) gives an extensive overview of the field 
outlining the roles and benefits of metamodelling.  
Simpson and Peplinski et. al (2001) present some of the 
popular methods, among which Polynomial Regression 
(PR), Kriging (KG), Artificial Neural Networks (ANN) 
have been prominently utilised methods in 
metamodelling DES. Jin, Chen and Simpson (2001) 
present a systematic comparison of common techniques 
on problems of different scales and difficulties. 

There is a variety of metamodelling applications 
considering DES. In a recent study, Biles and Kleijnen 
et. al (2007) present a simulation-based optimisation 
study of constrained (s,S) inventory systems using KG. 
Noguera and Watson (2006) apply PR to attain the 
metamodel of a chemical plant as a function of capacity 
and throughput. Similarly, Durieux and Pierreval  
(2004) use second order polynomials to perform 
sensitivity analysis of a flexible manufacturing system 
to outline the effects of design parameters on average 
system utilisation.  Afonin and Derjabkina et. al (2007) 
exemplify the use of ANNs in analysis of complex 
systems via metamodelling.  

There have also been attempts exploiting ANNs to 
assist system evaluation in problems considering BAP. 
Artificial Neural Networks (ANNs), inspired by nature, 
emulate the nervous systems, such as human brain. As 
the interaction of neurons provides information 
processing capabilities, such as learning, ANNs can be 
trained over a set of data sample to generate the 
metamodels of simulated systems. Chambers and 
Mount-Campbell (2002) employ ANNs in a queuing 
system to derive product throughput rates and average 
system sojourn time to identify the optimum buffer 

sizes. Altiparmak, Dengiz and Bulgak (2007) 
investigate predictive capabilities of ANNs in assembly 
systems against polynomial and exponential regression 
models. Similarly, Bulgak (2006) uses ANNs in 
simulation metamodelling to obtain production rate of 
an assembly system in optimisation via buffer 
allocation. Finally, in a recent study, Person, Grimm 
and Ng (2008) exploits ANNs to assist optimisation 
routine in order to avoid long simulation runs. 

The above discussions indicate that metamodelling 
can be employed as an efficient tool to obtain 
reasonably accurate global approximations to DES 
models. Such global models can contribute to 
understanding of the system behaviour based on the 
decision parameters. The literature review implies that 
there is still room for further research. In the following 
section, genetic programming will be introduced in 
order to perform based metamodelling of DES models 
based on symbolic regression. 

 
2.3. Symbolic Regression with Genetic Programming 
Evolutionary algorithms (EAs) are meta-heuristic 
techniques that are developed to solve difficult non-
linear problems. In analogy to evolution in nature, EAs 
implement its operators and processes. The process of 
evolution imitated by EAs can be summarised as in the 
below pseudo-code: 

1. Generate initial population, P(t);  
2. Evaluate the individuals in P(t);  
3. Repeat  

a. Select parents from P(t) to reproduce; 
b. Generate new offspring via crossover 

and mutation 
c. Evaluate the new individuals and 

insert to next generation; 
4. Until termination. 

The abstract definition of EAs as shown above has led 
to many sub-branches. Genetic Programming (GP) is an 
EA which can be used to evolve programs (Koza 1992). 
These programs may be interpreted as mathematical 
expressions, building instructions, grammar rules, etc. 
GP can generate symbolic representations of the 
training data which are often simply mathematical 
expressions, functions of the application domain. 

Traditionally, regression refers to the use of 
numeric techniques to solve for the error against given 
training data, such as the back propagation algorithm of 
ANNs. Such approaches require prudent selection of 
configuration parameters to protect against the 
phenomenon of overfitting (Tetko, Alexander and Luik 
1995), where the complexity of the model inhibits its 
performance on unseen data. Furthermore, the resulting 
set of numeric parameters are very difficult to interpret 
meaningfully for practitioners.  

The use of GP for generating symbolic 
representations of training data was first proposed by 
(Koza 1992). Such representations are often simply 
mathematical expressions, functions of the application 
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domain. Through the use of effective convergence 
algorithms, wherein the dynamics of evolution are 
enhanced via constraints, GP can produce compact 
expressions which have excellent generalisation 
properties (Murphy and Ryan 2008). These derived 
solutions have great potential for yielding insight into 
the underlying functional relationships of the 
application domain and have been used to aid 
geneticists in the comprehension of complex regulatory 
networks used in expressing DNA (Moore, Barney and 
White 2008).  

A standard regression study involves determination 
of coefficients of a prespecified functional structure 
(generally a low order polynomial) which explains 
dependency of a parameter to independent design 
variables (Simpson, Peplinski, Koch et al. 2001). In 
contrast, symbolic regression does not require a strict 
specification of the size and shape, in other words, 
structural complexity of the solution. This stems from 
the fact that it requires a function set to evolve instead 
of assuming a compact analytical form. This implies 
that the functional form and its coefficients are explored 
simultaneously in symbolic regression to obtain 
response functions (Koza 1992). 

This study uses these properties of GP to generate 
accurate symbolic models of DES which are potentially 
of great use in both optimising the processes and in 
enhancing the confidence practitioners have in using 
such artificially derived solutions by virtue of the 
succinct expressions produced by GP. 

GP needs several important components to perform 
symbolic regression. GP uses a tree-based 
representation to search the space of solutions (see 
Figure 3.  
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*

r∏

*

* a

r r

Offspring 1 Offspring 2

 
Figure 3: Tree-based representation and an example of 
crossover operation in GP. Crossover points on the 
parents are indicated by bold circles. 
 
The traditional concepts of variation operators, i.e. 
recombination (crossover) and mutation in EAs, are 
adapted to the particular context of the GP 
representation, exemplified in the form of subtree swap 
in Figure 3. Similarly, mutation operates asexually and 

can perform removing (or replacing) subtrees. A 
discussion on the role of variation operators can be 
found in Luke and Spector (1997). Further details 
regarding the GP implementation can be found in 
Section 3. 

There have been a variety of applications of 
symbolic regression via genetic programming reported 
in the literature. Duffy and Warnick (1999) highlight 
the ability of GP in deriving functions implying 
strategies in decision-making. Castillo and Kordon et. al 
(2005) apply symbolic regression for statistical model 
building in industrial chemical processes. In another 
application, Korns (2007) investigates symbolic 
regression on large-scale complex problems and tries 
improving the efficiency of SR via integration of formal 
grammar rules to modelling process.  

To conclude, the above discussions justify the use 
of GP in simulation-based metamodelling. The 
following section will present the experiments to assess 
the quality and usability of symbolic regression in 
metamodelling of DES.  

 
3. EXPERIMENTS AND RESULTS 
This section presents the results of a set of experiments 
in which the ability of GP to generate accurate 
metamodels of simulations is compared and contrasted 
against an ANN performing the same task. Both 
systems used the buffer size of the stations in the 
simulation as their input and attempted to predict the 
throughput rate of the simulation. The performance 
graphs show the testing performance of the systems, a 
good measure of generalisation ability. The 
performance of the techniques are represented via root 
mean squared error between the predicted throughput 
and the actual throughput as 1/(1+RMSE). All results 
shown here are the results of 100 independent runs. 

The testing and training data was derived by 
generating a random distribution of buffer sizes 
amongst the stations of the model and evaluating the 
resulting throughput rate for that buffer configuration. 
Two sets of 100 buffer samples were used for testing 
and training on each simulation model. We used 
simulation models consisting of 4, 8, 12, 16 and 20 
stations with a maximum buffer size of 20. 

The GP algorithm used here employs a variation of 
the Hereditary Repulsion (HR) convergence 
manipulation protocol to enable the GP evolve compact 
and powerful expressions (Murphy and Ryan 2008). 
The algorithm uses a generational framework in which 
the next generation is produced entirely from the current 
generation. Crossover events cannot span more than one 
generation. The initial population is created using the 
ramped half and half initialisation method (Koza 1992). 
This produces a broad spread of expressions of varying 
size. Each expression is given a fitness derived from the 
RMSE of its ability to predict throughput; 1/(1+RMSE). 

Random selection is used to pick parents from the 
population. This selection strategy increases 
performance by reducing the pressure on the population 
to converge, thus allowing evolution more time to 
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discover useful functionality. Once an offspring from 
the random parents has been evaluated, it is only 
allowed into the next generation if it is better than both 
parents. Should the offspring fail this criterion, it is 
discarded and the process begins again. It is not 
possible for a parent to move from the current 
generation to the next generation. It must preserve its 
genes by combining with another solution in a manner 
superior to both parents. 

Because of the potential for failed crossovers, the 
number of evaluations per generation is variable with 
the HR algorithm; therefore it must be compared to 
other systems in terms of evaluations. The functional 
primitives used in the GP algorithm are as follows; (*, 
%, +, -, exponent, sqrt, cos, sin). Subtree crossover was 
used without any mutation, as the HR algorithm does 
not require it. The parameters used to initialise the GP 
settings are described in Table 1. 

 
Table 1: GP Parameters 

Parameters Value 
Population Size 1000 

Min Initial Tree Size 2 
Max Initial Tree Size 4 

Max Tree Size 12 
Initialisation Method Ramped Half and Half 

Evaluation Limit 106 
 
The Multi-Layer Perceptron (MLP) used a 

standard back-propagation algorithm to perform 
learning (Rumelhart, Hinton and Williams 1986). Its 
parameters are described Table 2. 

 
Table 2: MLP Parameters. These parameters were found 
to consistently give the best MLP performance across 
all the experiments. 

Parameters Value 
Hidden Layer Size 10 

Learning rate 0.01 
Initialisation Range  +/-1 
 

Table 3: GP vs. ANN testing fitness results giving a 
statistical confidence of %99.9 on GP performance 
surpasses the ANN for the given configurations. 

Simulation GP Fit T-Value MLP Fit 
4 Station 0.944215 -2.236917 0.945442 
8 Station 0.939218 30.427879 0.928591 

12 Station 0.941697 52.115238 0.933142 
16 Station 0.943745 22.775646 0.939181 
20 Station 0.947534 29.964231 0.941968 

 
The results are tabulated in Table 3. The Students 

T-Test was evaluated for each experiment. Table 3 
clearly shows that GP outperforms the MLP for all 
experiments except the easiest 4 station configuration. 
In absolute terms however; the performance difference 
between the paradigms is slight. Despite the slim 

difference between GP and the MLP, it was observed 
consistently in the experiments and produced high 
statistical confidence values. 

A figure illustrating the regression performance for 
both GP and the MLP over a duration of 10^6 
evaluations is given in Figure 4. This shows that the 
MLP quickly converges but fails to progress any 
further. By contrast, GP is slow to converge but 
manages to successfully sustain convergence, finding 
higher quality solutions than the MLP. 

 

 
Figure 4: Graph illustrating contrasting the regression 
dynamics of MLP and GP for the 20 station problem. 
MLP quickly converges but GP eventually surpasses the 
performance of the MLP. 
 

A clear sense of the difference between the GP and 
MLP emerges when one examines the complexity of the 
resulting solutions. We measure its complexity as the 
number of components involved in contributing to the 
solution. For the MLP, this is the number of weights in 
the network. For the 4 station experiment the MLP 
consisted of 50 weights, 4 input nodes by 10 hidden 
nodes plus the final 10 weights for the output nodes. 
Similarly, for the 8, 12, 16 and 20 station experiments, 
the MLP consisted of 90, 130, 170 and 210 
components. 

 
Figure 5: Fixed size MLP solutions are far more 
complex than the GP solutions. 
 

By contrast, GP consistently utilises a small 
fraction of the components used by the MLP, illustrated 
in Figure 5. These smaller compact solutions 
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immediately provide a viable platform for analysing the 
dynamics of the simulation model. Table 4 shows in 
detail the actual average sizes of evolved solutions in 
the GP population. 
 
Table 4: Table illustrating the contrast in size of 
solutions between GP and MLP. 

Simulation 
GP Tree  

Node Size 
MLP Weights 

Size 
4 Station 29.6925 50 
8 Station 30.5628 90 

12 Station 29.0962 130 
16 Station 24.0059 170 
20 Station 26.1847 210 

 
4. DISCUSSION AND CONCLUSIONS 
Discrete-event simulation provides a flexible modelling 
platform enabling the detailed analysis of many 
industrial systems. However, long model execution time 
particularly is a common challenge in simulation-based 
computation intensive studies, such as design and 
optimisation. In this work, we have tried to address this 
issue with symbolic regression via genetic 
programming (GP) by generating analytical 
approximations with %0.06 proximity to the actual 
model behaviour. 

In order to assess the applicability of genetic 
programming in metamodelling of simulation, serial 
production lines with buffer allocation problem were 
studied to identify dependency of average expected 
throughput rate on the individual buffer allocations. We 
have compared our results against ANNs, which are 
prominently applied in metamodeling of buffer 
allocation problem. The two techniques were analysed 
in terms of the quality of approximation and complexity 
of the generated models. It has been statistically shown 
that GP performance is not worse than the implemented 
ANN for the given test problems in terms of the 
accuracy of the approximation. Moreover, GP has 
demonstrated a tendency towards surpassing the 
performance of the ANN. We believe, this ability can 
be further improved with the use of appropriate 
sampling techniques to attain the training data, whereas 
randomly selected design points are utilised in our 
experiments. 

Furthermore, a clear sense of the difference 
between GP and ANN emerges when the complexity of 
the resulting solutions are examined. Our results have 
illustrated that GP consistently utilises a small fraction 
of the components used by the ANN. These smaller 
compact solutions immediately provide a viable 
platform for analysing the dynamics of the simulation 
model. This fact implies a considerable use to the 
practitioner as GP has provided a tangible functional 
decomposition of the simulation. In this respect, 
symbolic regression via GP can allow a window into the 
`black box' of the simulation. 

GP has been observed to exhibit latency at the 
initial stage of the experiments which is a consequence 

of the system expending a great effort to improve the 
initial random content of the population. However, this 
latency is a negligible drawback considering the fact 
that time cost of obtaining a metamodel is in fractions 
of attaining training data. Nonetheless, we would like to 
focus on this value loss in our future studies. 

Finally, an interesting observation deserves to be 
pointed out in model complexity. The complexity 
analyses indicate that GP consistently produces smaller 
solutions despite the problem size getting larger. This 
may be due to the fact that effect of certain buffer 
positions in the serial line may be more significant than 
others in describing the throughput rate of the model. 
While this leads GP to generate less complex 
expressions, it actually locates the bottleneck positions 
through the production line as well. This observation 
will need further analysis in future work. 
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