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ABSTRACT 
This work concerns the automated synthesis of priority 

rules for schedule optimization. Metaheuristic 

optimizers, in particular genetic programming (GP), are 

applied to develop the rule system for several 

scheduling situations in manufacturing scenarios. In this 

work, the rules are enhanced with a “no work” decision 

that leaves the deciding entity in a waiting state. 

Through simulation experiments it is shown how this 

enables the rule system to achieve a wider range of 

solutions. 

 

Keywords: priority-rule, dispatching, scheduling, 

genetic programming 

 

1. INTRODUCTION 
Scheduling is one of the key problems in the 

manufacturing industry. A bad schedule can result in 

problems such as low throughput, long lead times, large 

amounts of work in process (WIP) and failure to meet 

the shipping deadlines. Given an increasing number of 

product variety and customizations, naturally, it is 

difficult not to struggle with any of these. Usually 

however, companies focus on the last problem of 

matching the due dates only as they try to create and 

maintain a positive image in the eyes of their business 

partners. If there are signs that a deadline cannot be met, 

extra human effort is added to hold the deadline, 

sometimes “at all costs”. Still, the other problems 

remain and contribute to the overall situation. For 

workers this means that they have to work in a more 

stressful environment with deteriorating motivation.  

For a large production site with many jobs, solving 

a scheduling problem is an arduous task, even for a 

computer. A scheduling problem such as the job shop 

scheduling problem (JSSP) is NP-hard which means 

that there does not exist a polynomial time algorithm 

that calculates the optimal solution (Pinedo 2001; 

Garey, Johnson, and Sethi 1976). The complexity of 

these problems grows exponentially with the problem 

size, making it especially difficult to provide good 

solutions for larger and larger problems. 

Algorithms that solve such problems can be 

classified as being either online or offline, depending on 

what kind of information is available to them (Albers 

1997). Online algorithms schedule immediately while 

offline algorithms know all jobs to be scheduled in 

advance. 

In this work a priority rule-based scheduler is 

introduced that is able to delay a certain decision and 

consider it at a later time. It is not a pure online 

algorithm as it does not schedule jobs immediately, but 

is also not offline in that it does not know about all jobs 

in advance. Rather it aims to bridge the gap between 

online and offline algorithms. It is trained with several 

possible scenarios through simulation and thus has 

some expectations of how the near future may look like. 

It does not know about all the jobs that are to be 

scheduled in advance, but it has learned about a possible 

set of these jobs in the training phase. Thus the rule 

encodes an expectation of the set of jobs, but does not 

know the actual set of jobs.  Based on this learned 

knowledge, the algorithm can delay a decision when it 

looks more promising to make the decision at a later 

stage. 

 

1.1. Literature Review 
Synthesizing priority rules is still a rather young field of 

research. Existing publications describe the use of 

machine learning methods such as classifiers to derive 

new dispatching rules. The training and analysis of such 

rules is still performed on simple models. In the 

following a brief overview is given. 

(Olafsson and Li 2010) describe a method to learn 

new scheduling rules from generated schedules by 

simple rules using data mining techniques. They 
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combine a decision tree learner and an instance selector 

to derive high quality decision trees and thus priority 

rules that describe simple precedence conditions. For 

any two jobs the decision tree decides which of them 

should come before the other. A similar approach is 

described in (Aufenanger, Varnholt, and Dangelmaier 

2009), but they learn from the best of a large set of 

randomly generated schedules with different 

parameters. Their classifier detects similar situations 

and applies the same parameters that have led to 

promising results in the learning phase. 

(Mouelhi-Chibani and Pierreval 2010) describe an 

artificial neural network (ANN) that receives system 

parameters and states dispatching rules that should be 

applied as inputs and outputs. They use a simplified 

flow-shop model on which they run their learning 

method and compare it with dispatching rules selected 

by experts. Their approach is able to achieve a similar 

quality, but without requiring domain expert 

knowledge. 

Another different priority rule base approach is 

described in (Vázquez-Rodríguez and Petrovic 2009). 

Similar to (Mouelhi-Chibani and Pierreval 2010) they 

do not synthesize new rules, but optimize a batch of 

dispatching rules that are applied in cycles to rank the 

jobs in the queue. Their dispatching rule based genetic 

algorithm showed good performance on a number of 

test problems. However they do not take system or state 

information into account. This approach is more an 

example of an offline algorithm. The derived batches 

are likely not reusable and specific to a certain instance. 

The remainder of the paper is organized as follows: 

We will describe the method in section 2 and describe 

some of the scenarios that it is applied on in section 3. 

We will show and analyze the results in section 4 and 

finally draw conclusions. 

 

2. PRIORITY RULE SYNTHESIS 
(Olafsson and Li 2010) mention the interpretability of 

the learned model that is used as dispatching rule: “The 

interpretability of the results is also important and this 

can be directly related to the complexity of the resulting 

classification algorithm.” The model of a decision tree 

can be well interpreted, but the question remains how 

powerful it is to include the necessary information for 

more complex scenarios. The neural network of 

(Mouelhi-Chibani and Pierreval 2010) cannot be 

interpreted as easily and can be seen more as an 

automated black box method, however, ANN might 

scale to more complex situations more easily. 

 It is a challenge to have a model class that is 

expressive enough to describe complex scenarios, but 

still remain interpretable. From the point of view of the 

authors genetic programming might be a good solution 

to this problem as has been shown in (Beham, Winkler, 

Wagner, and Affenzeller 2008). 

 

2.1. From Simple to Complex Priority Rules 
In the case of online algorithms, such as priority-rule 

based scheduling, with non-preemptive tasks the 

question on what to do next needs to be determined at 

fixed points in time, e.g. when a job is introduced into 

the system, a machine becomes idle, or another kind of 

event changes the system state. Priority rules generally 

determine the next action by ranking each possible 

action according to predefined criteria and choosing the 

best ranked action. The rule itself is usually not very 

complex and can be evaluated in very short time on 

even a large set of possible actions. When an offline 

algorithm would probably run from several minutes to 

hours to react to a change in the system, the online 

algorithm takes just a few seconds. 

Several simple priority rules have already been 

identified in the literature, among them for example 

earliest due date first, shortest processing time first, 

least number of steps to complete first, and many others 

(Panwalkar and Iskander 1977). These rules usually 

take just a very small number of attributes into account. 

In previous publications it was described how these 

simple priority rules can be combined to complex 

priority rules using techniques such as genetic 

algorithms (GA) or genetic programming (Beham, 

Winkler, Wagner, and Affenzeller 2008; Kofler, 

Beham, Wagner, and Affenzeller 2009). By combining 

simple rules with mathematical functions and constants 

one can include a multitude of different attributes into 

the rule, see for example Figure 1. 

 

 
Figure 1 Example of a formula found by GP that 

combines the simple priority rules JobTime, which is 

the amount of time spent in the current queue, and 

JobFlex, the number of alternate machines a job can be 

processed on. 

 

 These complex priority rules are synthesized by 

combining members of the terminal set and members of 

the non-terminal set to create a mathematical formula. 

The terminal set consists of attributes of all entities 

(jobs, machines, workers, buffers, resources,…) that 

could possibly be taken into account as well as 

numerical constants. The non-terminal set consists of 

mathematical functions and relations. 

 

2.2. Benefit of Waiting Conditions 
Even though this optimization procedure can result in 

quite complex rules that are fit to a certain situation, 

there is a disadvantage in how these rules are applied. 

Currently a priority-rule would always rank available 

actions by the calculated priority and thus take an action 

at the first possible time. If there is only one job in the 

queue and the machine becomes idle, an online 

algorithm generally would schedule that job 

immediately. This leads to situations where e.g. a job 
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could be scheduled even though its due date is still far 

away. Under the presence of sequence dependent setup 

times this could for example mean that a setup step is 

introduced. 

We thus propose to enhance priority rules by 

introducing a “wait” decision with the ability to delay a 

certain decision and reevaluate it at a later time. With 

this in mind a priority rule will not attempt to take an 

action at the first possible time, but rather aims to take it 

at the best possible time given some expectations of the 

future state. 

Naturally, predicting the future is a difficult and 

error prone task and requires that the priority rule has in 

some ways learned about it. In the case of genetic 

programming this ability can be implicitly learned and 

trained. If the rule is evaluated by simulation in a virtual 

plant, then those rules that make the best estimation on 

the future state are able to perform the best decisions at 

the best time. They will dominate the others during the 

optimization run. As a result we will obtain an online 

algorithm in the form of a complex priority rule which 

has been trained offline. This algorithm is better 

informed than a pure online algorithm and can thus 

make better decisions, but of course it is also specific to 

the scenario or scenarios that it has been trained with. 

The rule implicitly decides whether the expected future 

is a more promising time to take a decision than the 

current time. 

To achieve this behavior, we use a threshold level, 

that is, a certain priority that needs to be surpassed for 

an action to be considered. Because GP is able to 

produce any complex priority-rule within any range we 

can arbitrarily decide on such a threshold, e.g. zero. The 

action that will finally be selected by the complex 

priority rule is the one with the highest priority greater 

than the threshold level. If no action has a priority 

greater than the threshold, the decision will be delayed 

until another event occurs that possibly results in a 

different ranking. 

 

2.3. Genetic Programming 
Genetic programming (GP) is a metaheuristic with a 

formula tree as its solution representation. Unlike the 

canonical genetic algorithm that uses a binary string to 

represent a solution of the problem domain, GP uses a 

mathematical formula which consists of functions 

(nodes) and terminals (leafs). The set of functions 

ranges from mathematical operations such as addition, 

subtraction, multiplication, and division to more 

complex ones such as cosine or the exponential 

function. In addition GP is able to make use of logical 

functions such as IF-THEN-ELSE or the logical 

connectors AND, OR, and NOT. The terminals in such 

a function tree are either constant values or variables. In 

the case of rule synthesis the variables represent the 

current state of the production system, job 

characteristics, or the rank that would be obtained with 

a simple priority rule. 

 Out of the possible space of function trees genetic 

programming then creates a random initial population 

and uses selection, crossover, and mutation to enhance 

and optimize them over the course of the simulated 

evolution. 

 The power to combine these simple priority rules 

into complex rules and enrich them with even more 

information on the current state is one of the major 

advantages of this approach. If GP is given a good set 

of information on the state of the system and a good set 

of simple priority rules it is able to combine this 

information in complex and presumably higher quality 

rules.  

 

3. MANUFACTURING SCENARIOS 
Systems such as the Game of Life show that even 

simple rules can lead to very complex results in the end. 

So, to evaluate the behavior of a priority rule it is 

required to test them in various scenarios. Computer 

simulation is one technique of evaluating these rules 

given a model of the production system that it will be 

applied to. 

 

 
Figure 2 Simplified manufacturing scenario involving 

two machines, and a shared queue. Products flow along 

the arrows from source to sink and through either one of 

the two machines. 

 

 To evaluate the enhanced rules we have defined a 

basic manufacturing scenario which is shown in Figure 

2. There is a set of products P with two kinds of 

products p1 and p2 and a set of machines M with two 

machines m1 and m2. Each product should be painted in 

shades of gray out of the set G at either machine. There 

are three different shades g1, g2, and g3. There is a 

processing time matrix T with elements tij that defines 

the processing times for each pi  P on machine mj  
M, a cost matrix C with elements cij that defines the 

costs for producing product pi  P on machine mj  M, 

and a setup matrix S with elements skl that defines the 

time required to change from shade k  G to shade l  
G. 

 We consider several scenarios where one time the 

costs should be optimized such that a priority rule is 

found that assigns each product to the machine with the 

lowest cost, and another scenario where setup times are 

taken into account. 

 

3.1. Scenario A 
The first scenario is a very simple scenario that 

primarily exists as a proof of concept. It does not 

consider setup times, and the only thing that a certain 

path through the shop has an effect on is costs. Certain 

products are cheaper to manufacture on certain 

machines. The optimal rule in this case is known 

beforehand and selects the appropriate products to be 
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processed on their cheapest machine. Since no other 

factors such as due dates are considered in the objective 

functions the rule is rather simple. 

Table 1 Cost matrix of Scenario A 

C [ ] p1 p2 

m1 1 2 

m2 2 1 

 

The processing time matrix T is defined such that 

, the setup time matrix S is the zero matrix. 

The products are generated with equal probability at a 

rate that is equal to the mean of the processing times of 

the machines. 

There is a difference though in the optimal rule, 

with regard to total costs, in the case without waiting 

conditions compared to the case with waiting 

conditions. Allowing a wait enables the machine to not 

act on a queue with products that would cost too much 

to be processed. This rule can achieve a better quality, 

because it can achieve a perfect split. 

However, naturally there are disadvantages. The 

downside of the rule goes hand in hand with the 

implication of introducing a decision to not work: Not 

producing anything would lead to zero costs. This is of 

course a problem that has to be dealt with and will be 

discussed in the results section. 

 

3.2. Scenario B 
This scenario is slightly more advanced than the 

previous and also more complex so that an a priori 

optimal solution is not known. The processing time 

matrix is given in Table 2 and the setup time matrix is 

given in Table 3. The cost matrix is the same as in 

Scenario A and given in Table 1. Note that minimizing 

the costs as well as the total processing time are in this 

case conflicting goals. The more expensive process is 

quicker to complete. As in Scenario A each product has 

equal probability to enter the queue, and the shade that 

it should be painted with is also chosen with equal 

probability among all three choices. 

The fitness function has also changed due to the 

multi-objective nature of the problem. It is a 

combination of average costs per product and average 

processing time per product such that both have about 

equal weight. 

 

Table 2 Matrix of processing times of products on the 

available machines of Scenario B. 

T [min] p1 p2 

m1 6 4 

m2 4 6 

 

Table 3 Matrix of setup times for Scenario B. The value 

represents the time in minutes to change from the shade 

in the row header to that in the column header. 

S [min] g1 g2 g3 

g1 0 1 1 

g2 2 0 1 

g3 4 2 0 

 

4. RESULTS 
4.1. Software Environment 
To test the hypothesis that a waiting condition is 

beneficial to the synthesis of advanced priority rules a 

simulation model that describes the simplified 

manufacturing scenario is created using the simulation 

framework SiRO (http://www.profactor.at/en/ 

production/produkte/siro.html). It models the flow of 

products as shown in Figure 2. Products arriving at the 

Sink are evaluated according to the selected 

performance criteria and after a predefined number of 

products have been passed through the system the 

aggregated performance over all finished products is 

calculated and presented to the GP metaheuristic as 

fitness value for the priority rule that was used in the 

simulation. 

 The GP algorithm was configured and tested in the 

HeuristicLab open source optimization environment 

(http://dev.heuristiclab.com). HeuristicLab was first 

released to the public in 2004. The latest version 3.3 

was released in 2010 and aims at providing a unified 

environment for metaheuristic optimization intended to 

cover algorithm design, configuration, experimenting, 

and analysis. 

 The results were computed using HeuristicLab’s 

genetic programming in version 3.2.0.2683. The full 

configuration is given in Table 4.  

 

Table 4 Configuration of the genetic programming 

optimizer 

Parameter Value 

PopulationSize 100 

Selector TournamentSelector 

Tournament Group Size 2 

Crossover Exchange sub trees 

Mutators (one of them 

will be chosen each 

time it is applied) 

OnePointShaker, 

FullTreeShaker, 

ChangeNodeTypeManipulation, 

CutOutNodeManipulation, 

DeleteSubTreeManipulation, 

SubstituteSubTreeManipulation 

MutationRate 15% 

Elites 1 

Maximum Generations 1000 
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4.2. Scenario A 
The problem of the “no work” decision appearing very 

often in certain rules posed a difficulty when evaluating 

their performance. Some rules exist that did not 

dispatch any jobs and the machines remained empty 

during the whole run, meanwhile the queue grew large 

and the evaluation of several thousand jobs in the queue 

slowed the simulation down considerably. Also there 

have been rules that managed to assign only half of the 

jobs correctly and the other half remained in the queue. 

These problems required to redesign the fitness function 

such that it combined two objectives: That of producing 

at the least cost possible and that of finishing as much 

jobs as possible. So the fitness function, at the end of a 

simulation run, assigned each job still in the queue the 

highest possible production cost. Finally the total costs 

were divided by the amount of jobs injected into the 

system. Additionally an early abort criterion was added 

to the model that detected when a rule would not 

dispatch any jobs at all. If such an abort occurred, the 

fitness value was multiplied with the ratio of injected to 

finished jobs as additional penalty. 

 For the simple scenario the best result is easy to 

obtain when C is known to the priority rule. The best 

rule was found quickly and says 

 

where c is substituted by the cost of the currently 

evaluated product on the currently evaluated machine. 

This formula can be simplified and interpreted easily: 

Any product is chosen where the costs are below a 

certain threshold. In our a priori optimal solution this 

would be an arbitrary number in the half-open interval 

]1, 2]. In the concrete rule this is the value 1.36. 

 

4.3. Scenario B 
In the more advanced second scenario sequence 

dependent setup times play an important role as they 

delay the production process. As has been stated the 

goal is to find a rule where the machine’s utilization can 

be lowered while maintaining the costs. After several 

generations, following rule was found to solve this 

problem best 

 

where again c is the cost, s is the appropriate setup time 

given the product shade and the current shade of the 

machine; i is the length of the period a machine has 

remained idle which was an additional system state 

available to the optimizer. Again with a little work the 

formula can be easily interpreted: The first job which 

doesn’t require setup should be taken, but if there is 

setup necessary, wait for a portion of the setup period 

and then take the job. The term -0.6*s is actually 

pulling the decision below the threshold line until the 

factor i increases the costs to a level that surpass the 

setup effort. The synthesized rules are quite elegant to 

analyze and reveal several things about the underlying 

system. A rule that has been found to optimize a certain 

situation can say a lot about that situation also providing 

important feedback to the human operator. Note that 

these cases are not free of starvation, because a starving 

job does not affect the fitness in this case. 

 A comparison of the actual results reveals that the 

found rule has slightly higher costs per unit, but a much 

lower utilization and processing times while having 

about an equal number of finished units. Table 5 lists 

the difference between a FIFO rule and the optimized 

rule broken down to several output values. As can be 

seen the optimized rule has finished about the same 

number of units, albeit at a slightly higher cost, but at a 

much lower utilization that helps to reduce stress in the 

plant. Certainly the rule could be optimized to favor 

costs more than processing time by changing the 

weights in the fitness function since costs and 

processing time are conflicting goals. 

 

Table 5 Comparison of the FIFO rule with that found by 

GP 

 FIFO GP 

Utilization AP1/AP2 96.7%/96.7% 74%/80% 

Avg. cost per product 1.51  1.55  

Processing time 372.75s 297.55s 

Produced Units 3135 3129 

 

5. CONCLUSIONS 
This work described the synthesis of priority rules using 

genetic programming and showed the benefit of 

including a no work decision. When a simulation model 

of the underlying process is available the rules can be 

optimized with an expectation of the future implicitly 

present in the rules themselves. The rules may choose to 

not perform decisions at the current time, but to delay 

them if it seems likely that a better choice is soon to 

arrive. 

 Naturally a problem with all learning approaches 

and also with the one described is the characteristics of 

training data set in comparison to the real situation. If 

they are very similar the rule has a good chance to make 

near optimal decisions, however if the real situation 

differs greatly the decisions will be made under false 

assumptions. One way to overcome this problem is to 

continually monitor the process and optimize rules in 

parallel to the real situation. 
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