
ENHANCED PRIORITY RULE SYNTHESIS WITH WAITING CONDITIONS

Andreas Beham(a), Monika Kofler(b), Stefan Wagner(c) , Michael Affenzeller(d), Helga Heiss(e) , Markus
Vorderwinkler(f)

(a – d)

 Upper Austria University of Applied Sciences

School for Informatics, Communications, and Media

Heuristic and Evolutionary Algorithms Laboratory

Softwarepark 11, 4232 Hagenberg, Austria

(e-f)

 PROFACTOR GmbH

Im Stadtgut A2

4407 Steyr-Gleink, Austria

(a)

andreas.beham@fh-hagenberg.at,
(b)

monika.kofler@fh-hagenberg.at,
(c)

stefan.wagner@fh-hagenberg.at,
(d)

michael.affenzeller@fh-hagenberg.at,
(e)

helga.heiss@profactor.at,
(f)

markus.vorderwinkler@profactor.at

ABSTRACT
This work concerns the automated synthesis of priority

rules for schedule optimization. Metaheuristic

optimizers, in particular genetic programming (GP), are

applied to develop the rule system for several

scheduling situations in manufacturing scenarios. In this

work, the rules are enhanced with a “no work” decision

that leaves the deciding entity in a waiting state.

Through simulation experiments it is shown how this

enables the rule system to achieve a wider range of

solutions.

Keywords: priority-rule, dispatching, scheduling,

genetic programming

1. INTRODUCTION
Scheduling is one of the key problems in the

manufacturing industry. A bad schedule can result in

problems such as low throughput, long lead times, large

amounts of work in process (WIP) and failure to meet

the shipping deadlines. Given an increasing number of

product variety and customizations, naturally, it is

difficult not to struggle with any of these. Usually

however, companies focus on the last problem of

matching the due dates only as they try to create and

maintain a positive image in the eyes of their business

partners. If there are signs that a deadline cannot be met,

extra human effort is added to hold the deadline,

sometimes “at all costs”. Still, the other problems

remain and contribute to the overall situation. For

workers this means that they have to work in a more

stressful environment with deteriorating motivation.

For a large production site with many jobs, solving

a scheduling problem is an arduous task, even for a

computer. A scheduling problem such as the job shop

scheduling problem (JSSP) is NP-hard which means

that there does not exist a polynomial time algorithm

that calculates the optimal solution (Pinedo 2001;

Garey, Johnson, and Sethi 1976). The complexity of

these problems grows exponentially with the problem

size, making it especially difficult to provide good

solutions for larger and larger problems.

Algorithms that solve such problems can be

classified as being either online or offline, depending on

what kind of information is available to them (Albers

1997). Online algorithms schedule immediately while

offline algorithms know all jobs to be scheduled in

advance.

In this work a priority rule-based scheduler is

introduced that is able to delay a certain decision and

consider it at a later time. It is not a pure online

algorithm as it does not schedule jobs immediately, but

is also not offline in that it does not know about all jobs

in advance. Rather it aims to bridge the gap between

online and offline algorithms. It is trained with several

possible scenarios through simulation and thus has

some expectations of how the near future may look like.

It does not know about all the jobs that are to be

scheduled in advance, but it has learned about a possible

set of these jobs in the training phase. Thus the rule

encodes an expectation of the set of jobs, but does not

know the actual set of jobs. Based on this learned

knowledge, the algorithm can delay a decision when it

looks more promising to make the decision at a later

stage.

1.1. Literature Review
Synthesizing priority rules is still a rather young field of

research. Existing publications describe the use of

machine learning methods such as classifiers to derive

new dispatching rules. The training and analysis of such

rules is still performed on simple models. In the

following a brief overview is given.

(Olafsson and Li 2010) describe a method to learn

new scheduling rules from generated schedules by

simple rules using data mining techniques. They

Page 65

combine a decision tree learner and an instance selector

to derive high quality decision trees and thus priority

rules that describe simple precedence conditions. For

any two jobs the decision tree decides which of them

should come before the other. A similar approach is

described in (Aufenanger, Varnholt, and Dangelmaier

2009), but they learn from the best of a large set of

randomly generated schedules with different

parameters. Their classifier detects similar situations

and applies the same parameters that have led to

promising results in the learning phase.

(Mouelhi-Chibani and Pierreval 2010) describe an

artificial neural network (ANN) that receives system

parameters and states dispatching rules that should be

applied as inputs and outputs. They use a simplified

flow-shop model on which they run their learning

method and compare it with dispatching rules selected

by experts. Their approach is able to achieve a similar

quality, but without requiring domain expert

knowledge.

Another different priority rule base approach is

described in (Vázquez-Rodríguez and Petrovic 2009).

Similar to (Mouelhi-Chibani and Pierreval 2010) they

do not synthesize new rules, but optimize a batch of

dispatching rules that are applied in cycles to rank the

jobs in the queue. Their dispatching rule based genetic

algorithm showed good performance on a number of

test problems. However they do not take system or state

information into account. This approach is more an

example of an offline algorithm. The derived batches

are likely not reusable and specific to a certain instance.

The remainder of the paper is organized as follows:

We will describe the method in section 2 and describe

some of the scenarios that it is applied on in section 3.

We will show and analyze the results in section 4 and

finally draw conclusions.

2. PRIORITY RULE SYNTHESIS
(Olafsson and Li 2010) mention the interpretability of

the learned model that is used as dispatching rule: “The

interpretability of the results is also important and this

can be directly related to the complexity of the resulting

classification algorithm.” The model of a decision tree

can be well interpreted, but the question remains how

powerful it is to include the necessary information for

more complex scenarios. The neural network of

(Mouelhi-Chibani and Pierreval 2010) cannot be

interpreted as easily and can be seen more as an

automated black box method, however, ANN might

scale to more complex situations more easily.

 It is a challenge to have a model class that is

expressive enough to describe complex scenarios, but

still remain interpretable. From the point of view of the

authors genetic programming might be a good solution

to this problem as has been shown in (Beham, Winkler,

Wagner, and Affenzeller 2008).

2.1. From Simple to Complex Priority Rules
In the case of online algorithms, such as priority-rule

based scheduling, with non-preemptive tasks the

question on what to do next needs to be determined at

fixed points in time, e.g. when a job is introduced into

the system, a machine becomes idle, or another kind of

event changes the system state. Priority rules generally

determine the next action by ranking each possible

action according to predefined criteria and choosing the

best ranked action. The rule itself is usually not very

complex and can be evaluated in very short time on

even a large set of possible actions. When an offline

algorithm would probably run from several minutes to

hours to react to a change in the system, the online

algorithm takes just a few seconds.

Several simple priority rules have already been

identified in the literature, among them for example

earliest due date first, shortest processing time first,

least number of steps to complete first, and many others

(Panwalkar and Iskander 1977). These rules usually

take just a very small number of attributes into account.

In previous publications it was described how these

simple priority rules can be combined to complex

priority rules using techniques such as genetic

algorithms (GA) or genetic programming (Beham,

Winkler, Wagner, and Affenzeller 2008; Kofler,

Beham, Wagner, and Affenzeller 2009). By combining

simple rules with mathematical functions and constants

one can include a multitude of different attributes into

the rule, see for example Figure 1.

Figure 1 Example of a formula found by GP that

combines the simple priority rules JobTime, which is

the amount of time spent in the current queue, and

JobFlex, the number of alternate machines a job can be

processed on.

 These complex priority rules are synthesized by

combining members of the terminal set and members of

the non-terminal set to create a mathematical formula.

The terminal set consists of attributes of all entities

(jobs, machines, workers, buffers, resources,…) that

could possibly be taken into account as well as

numerical constants. The non-terminal set consists of

mathematical functions and relations.

2.2. Benefit of Waiting Conditions
Even though this optimization procedure can result in

quite complex rules that are fit to a certain situation,

there is a disadvantage in how these rules are applied.

Currently a priority-rule would always rank available

actions by the calculated priority and thus take an action

at the first possible time. If there is only one job in the

queue and the machine becomes idle, an online

algorithm generally would schedule that job

immediately. This leads to situations where e.g. a job

Page 66

could be scheduled even though its due date is still far

away. Under the presence of sequence dependent setup

times this could for example mean that a setup step is

introduced.

We thus propose to enhance priority rules by

introducing a “wait” decision with the ability to delay a

certain decision and reevaluate it at a later time. With

this in mind a priority rule will not attempt to take an

action at the first possible time, but rather aims to take it

at the best possible time given some expectations of the

future state.

Naturally, predicting the future is a difficult and

error prone task and requires that the priority rule has in

some ways learned about it. In the case of genetic

programming this ability can be implicitly learned and

trained. If the rule is evaluated by simulation in a virtual

plant, then those rules that make the best estimation on

the future state are able to perform the best decisions at

the best time. They will dominate the others during the

optimization run. As a result we will obtain an online

algorithm in the form of a complex priority rule which

has been trained offline. This algorithm is better

informed than a pure online algorithm and can thus

make better decisions, but of course it is also specific to

the scenario or scenarios that it has been trained with.

The rule implicitly decides whether the expected future

is a more promising time to take a decision than the

current time.

To achieve this behavior, we use a threshold level,

that is, a certain priority that needs to be surpassed for

an action to be considered. Because GP is able to

produce any complex priority-rule within any range we

can arbitrarily decide on such a threshold, e.g. zero. The

action that will finally be selected by the complex

priority rule is the one with the highest priority greater

than the threshold level. If no action has a priority

greater than the threshold, the decision will be delayed

until another event occurs that possibly results in a

different ranking.

2.3. Genetic Programming
Genetic programming (GP) is a metaheuristic with a

formula tree as its solution representation. Unlike the

canonical genetic algorithm that uses a binary string to

represent a solution of the problem domain, GP uses a

mathematical formula which consists of functions

(nodes) and terminals (leafs). The set of functions

ranges from mathematical operations such as addition,

subtraction, multiplication, and division to more

complex ones such as cosine or the exponential

function. In addition GP is able to make use of logical

functions such as IF-THEN-ELSE or the logical

connectors AND, OR, and NOT. The terminals in such

a function tree are either constant values or variables. In

the case of rule synthesis the variables represent the

current state of the production system, job

characteristics, or the rank that would be obtained with

a simple priority rule.

 Out of the possible space of function trees genetic

programming then creates a random initial population

and uses selection, crossover, and mutation to enhance

and optimize them over the course of the simulated

evolution.

 The power to combine these simple priority rules

into complex rules and enrich them with even more

information on the current state is one of the major

advantages of this approach. If GP is given a good set

of information on the state of the system and a good set

of simple priority rules it is able to combine this

information in complex and presumably higher quality

rules.

3. MANUFACTURING SCENARIOS
Systems such as the Game of Life show that even

simple rules can lead to very complex results in the end.

So, to evaluate the behavior of a priority rule it is

required to test them in various scenarios. Computer

simulation is one technique of evaluating these rules

given a model of the production system that it will be

applied to.

Figure 2 Simplified manufacturing scenario involving

two machines, and a shared queue. Products flow along

the arrows from source to sink and through either one of

the two machines.

 To evaluate the enhanced rules we have defined a

basic manufacturing scenario which is shown in Figure

2. There is a set of products P with two kinds of

products p1 and p2 and a set of machines M with two

machines m1 and m2. Each product should be painted in

shades of gray out of the set G at either machine. There

are three different shades g1, g2, and g3. There is a

processing time matrix T with elements tij that defines

the processing times for each pi P on machine mj
M, a cost matrix C with elements cij that defines the

costs for producing product pi P on machine mj M,

and a setup matrix S with elements skl that defines the

time required to change from shade k G to shade l
G.

 We consider several scenarios where one time the

costs should be optimized such that a priority rule is

found that assigns each product to the machine with the

lowest cost, and another scenario where setup times are

taken into account.

3.1. Scenario A
The first scenario is a very simple scenario that

primarily exists as a proof of concept. It does not

consider setup times, and the only thing that a certain

path through the shop has an effect on is costs. Certain

products are cheaper to manufacture on certain

machines. The optimal rule in this case is known

beforehand and selects the appropriate products to be

Page 67

processed on their cheapest machine. Since no other

factors such as due dates are considered in the objective

functions the rule is rather simple.

Table 1 Cost matrix of Scenario A

C [] p1 p2

m1 1 2

m2 2 1

The processing time matrix T is defined such that

, the setup time matrix S is the zero matrix.

The products are generated with equal probability at a

rate that is equal to the mean of the processing times of

the machines.

There is a difference though in the optimal rule,

with regard to total costs, in the case without waiting

conditions compared to the case with waiting

conditions. Allowing a wait enables the machine to not

act on a queue with products that would cost too much

to be processed. This rule can achieve a better quality,

because it can achieve a perfect split.

However, naturally there are disadvantages. The

downside of the rule goes hand in hand with the

implication of introducing a decision to not work: Not

producing anything would lead to zero costs. This is of

course a problem that has to be dealt with and will be

discussed in the results section.

3.2. Scenario B
This scenario is slightly more advanced than the

previous and also more complex so that an a priori

optimal solution is not known. The processing time

matrix is given in Table 2 and the setup time matrix is

given in Table 3. The cost matrix is the same as in

Scenario A and given in Table 1. Note that minimizing

the costs as well as the total processing time are in this

case conflicting goals. The more expensive process is

quicker to complete. As in Scenario A each product has

equal probability to enter the queue, and the shade that

it should be painted with is also chosen with equal

probability among all three choices.

The fitness function has also changed due to the

multi-objective nature of the problem. It is a

combination of average costs per product and average

processing time per product such that both have about

equal weight.

Table 2 Matrix of processing times of products on the

available machines of Scenario B.

T [min] p1 p2

m1 6 4

m2 4 6

Table 3 Matrix of setup times for Scenario B. The value

represents the time in minutes to change from the shade

in the row header to that in the column header.

S [min] g1 g2 g3

g1 0 1 1

g2 2 0 1

g3 4 2 0

4. RESULTS
4.1. Software Environment
To test the hypothesis that a waiting condition is

beneficial to the synthesis of advanced priority rules a

simulation model that describes the simplified

manufacturing scenario is created using the simulation

framework SiRO (http://www.profactor.at/en/

production/produkte/siro.html). It models the flow of

products as shown in Figure 2. Products arriving at the

Sink are evaluated according to the selected

performance criteria and after a predefined number of

products have been passed through the system the

aggregated performance over all finished products is

calculated and presented to the GP metaheuristic as

fitness value for the priority rule that was used in the

simulation.

 The GP algorithm was configured and tested in the

HeuristicLab open source optimization environment

(http://dev.heuristiclab.com). HeuristicLab was first

released to the public in 2004. The latest version 3.3

was released in 2010 and aims at providing a unified

environment for metaheuristic optimization intended to

cover algorithm design, configuration, experimenting,

and analysis.

 The results were computed using HeuristicLab’s

genetic programming in version 3.2.0.2683. The full

configuration is given in Table 4.

Table 4 Configuration of the genetic programming

optimizer

Parameter Value

PopulationSize 100

Selector TournamentSelector

Tournament Group Size 2

Crossover Exchange sub trees

Mutators (one of them

will be chosen each

time it is applied)

OnePointShaker,

FullTreeShaker,

ChangeNodeTypeManipulation,

CutOutNodeManipulation,

DeleteSubTreeManipulation,

SubstituteSubTreeManipulation

MutationRate 15%

Elites 1

Maximum Generations 1000

Page 68

4.2. Scenario A
The problem of the “no work” decision appearing very

often in certain rules posed a difficulty when evaluating

their performance. Some rules exist that did not

dispatch any jobs and the machines remained empty

during the whole run, meanwhile the queue grew large

and the evaluation of several thousand jobs in the queue

slowed the simulation down considerably. Also there

have been rules that managed to assign only half of the

jobs correctly and the other half remained in the queue.

These problems required to redesign the fitness function

such that it combined two objectives: That of producing

at the least cost possible and that of finishing as much

jobs as possible. So the fitness function, at the end of a

simulation run, assigned each job still in the queue the

highest possible production cost. Finally the total costs

were divided by the amount of jobs injected into the

system. Additionally an early abort criterion was added

to the model that detected when a rule would not

dispatch any jobs at all. If such an abort occurred, the

fitness value was multiplied with the ratio of injected to

finished jobs as additional penalty.

 For the simple scenario the best result is easy to

obtain when C is known to the priority rule. The best

rule was found quickly and says

where c is substituted by the cost of the currently

evaluated product on the currently evaluated machine.

This formula can be simplified and interpreted easily:

Any product is chosen where the costs are below a

certain threshold. In our a priori optimal solution this

would be an arbitrary number in the half-open interval

]1, 2]. In the concrete rule this is the value 1.36.

4.3. Scenario B
In the more advanced second scenario sequence

dependent setup times play an important role as they

delay the production process. As has been stated the

goal is to find a rule where the machine’s utilization can

be lowered while maintaining the costs. After several

generations, following rule was found to solve this

problem best

where again c is the cost, s is the appropriate setup time

given the product shade and the current shade of the

machine; i is the length of the period a machine has

remained idle which was an additional system state

available to the optimizer. Again with a little work the

formula can be easily interpreted: The first job which

doesn’t require setup should be taken, but if there is

setup necessary, wait for a portion of the setup period

and then take the job. The term -0.6*s is actually

pulling the decision below the threshold line until the

factor i increases the costs to a level that surpass the

setup effort. The synthesized rules are quite elegant to

analyze and reveal several things about the underlying

system. A rule that has been found to optimize a certain

situation can say a lot about that situation also providing

important feedback to the human operator. Note that

these cases are not free of starvation, because a starving

job does not affect the fitness in this case.

 A comparison of the actual results reveals that the

found rule has slightly higher costs per unit, but a much

lower utilization and processing times while having

about an equal number of finished units. Table 5 lists

the difference between a FIFO rule and the optimized

rule broken down to several output values. As can be

seen the optimized rule has finished about the same

number of units, albeit at a slightly higher cost, but at a

much lower utilization that helps to reduce stress in the

plant. Certainly the rule could be optimized to favor

costs more than processing time by changing the

weights in the fitness function since costs and

processing time are conflicting goals.

Table 5 Comparison of the FIFO rule with that found by

GP

 FIFO GP

Utilization AP1/AP2 96.7%/96.7% 74%/80%

Avg. cost per product 1.51 1.55

Processing time 372.75s 297.55s

Produced Units 3135 3129

5. CONCLUSIONS
This work described the synthesis of priority rules using

genetic programming and showed the benefit of

including a no work decision. When a simulation model

of the underlying process is available the rules can be

optimized with an expectation of the future implicitly

present in the rules themselves. The rules may choose to

not perform decisions at the current time, but to delay

them if it seems likely that a better choice is soon to

arrive.

 Naturally a problem with all learning approaches

and also with the one described is the characteristics of

training data set in comparison to the real situation. If

they are very similar the rule has a good chance to make

near optimal decisions, however if the real situation

differs greatly the decisions will be made under false

assumptions. One way to overcome this problem is to

continually monitor the process and optimize rules in

parallel to the real situation.

ACKNOWLEDGMENTS
The work described in this paper was funded by the

Austrian Research Agency (FFG) under grant FdZ-

Projekt PROCOMPOSITE: FFG-ProjNr.: 813760 F-

WGF.

Page 69

REFERENCES
Albers, S., 1997. Better bounds for online scheduling.

STOC ’97: Proceedings of the 29th annual ACM
symposium on Theory of computing, pp. 130-139.

Aufenanger, M., Varnholt, H., and Dangelmaier, W.,

2009. Adaptive Flow Control in Flexible Flow

Shop Production Systems - A Knowledge-Based

Approach. Proceedings of the 2009 Winter
Simulation Conference, pp. 2164-2175, Austin,

TX, USA.

Beham, A., Winkler, S., Wagner, S., and Affenzeller,

M., 2008. A Genetic Programming Approach to

Solve Scheduling Problems with Parallel

Simulation. Proceedings of the 22nd IEEE
International Parallel & Distributed Processing
Symposium (IPDPS08), IEEE.

Garey, M.R., Johnson, D.S., and Sethi, R., 1976. The

complexity of flowshop and jobshop scheduling.

Mathematics of Operations Research, 1 (2), pp.

117-129.
Kofler, M., Beham, A., Wagner, S., and Affenzeller,

M., 2009. Evaluation of Various Dispatching

Strategies for the Optimization of a Real

Production Plant. Proceedings of the 2nd
International Symposium on Logistics and
Industrial Informatics (LINDI 2009), pp. 25-30.

IEEE Publications.

Mouelhi-Chibani, W., and Pierreval, H., 2010. Training

a neural network to select dispatching rules in real

time. Computers & Industrial Engineering, 58, pp.

249-256.

Olafsson, S., and Li, X., 2010. Learning effective new

single machine dispatching rules from optimal

scheduling data. International Journal of
Production Economics, doi:10.1016/j.ijpe.2010.

06.004.

Panwalkar, S.S., and Iskander, W., 1977. A Survey of

Scheduling Rules. Operations Research, 25, pp.

45-61.

Pinedo, M., 2001. Scheduling: Theory, Algorithms and

Systems, 2
nd

 edition. Prentice Hall.

Vazquéz-Rodríguez, J.A., and Petrovic, S., 2009. A new

dispatching rule based genetic algorithm for the

multi-objective job shop problem. Journal of
Heuristics, doi: 10.1007/s10732-009-9120-8.

AUTHORS BIOGRAPHY

ANDREAS BEHAM received his MSc in

computer science in 2007 from Johannes

Kepler University (JKU) Linz, Austria. His

research interests include heuristic

optimization methods in production

environments. Currently he is a research associate at the

Research Center Hagenberg of the Upper Austria

University of Applied Sciences (Campus Hagenberg).

MONIKA KOFLER studied Medical

Software Engineering at the Upper Austrian

University of Applied Sciences, Campus

Hagenberg, Austria, from which she

received her diploma’s degree in 2006. She

is currently employed as a research associate at the

Research Center Hagenberg and pursues her PhD in

engineering sciences at the Johannes Kepler University

Linz, Austria.

STEFAN WAGNER received his MSc in

computer science in 2004 and his PhD in

engineering sciences in 2009, both from

Johannes Kepler University (JKU) Linz,

Austria; he is professor at the Upper

Austrian University of Applied Sciences (Campus

Hagenberg). Dr. Wagner’s research interests include

evolutionary computation and heuristic optimization,

theory and application of genetic algorithms, machine

learning and software development.

MICHAEL AFFENZELLER has

published several papers, journal articles

and books dealing with theoretical and

practical aspects of evolutionary

computation, genetic algorithms, and meta-

heuristics in general. In 2001 he received his PhD in

engineering sciences and in 2004 he received his

habilitation in applied systems engineering, both from

the Johannes Kepler University of Linz, Austria.

Michael Affenzeller is professor at the Upper Austria

University of Applied Sciences, Campus Hagenberg,

and head of the Josef Ressel Center Heureka! at

Hagenberg.

HELGA HEISS works for PROFACTOR

GmbH and received her bachelor degree in

hardware software systems engineering in

2008 and currently pursues her master

degree in software engineering at the Upper

Austria University of Applied Sciences in Hagenberg.

Her research interests include computer simulation and

software development.

MARKUS VORDERWINKLER received

his diploma and doctoral degrees both in

electrical engineering from Vienna

University of Technology. Dr.

Vorderwinkler works for PROFACTOR

GmbH where he is head of consulting & solutions for

simulation based design & optimisation of logistics

systems. He managed more than 50 industrial and

international research projects. Mr. Vorderwinkler is

lector at the Upper Austrian University of Applied

Sciences. His research interests include manufacturing,

digital factory and computer simulation.

The Web-pages of the authors as well as further information about HeuristicLab and related scientific work can be found

at http://heal.heuristiclab.com/. The Web-page of PROFACTOR GmbH can be found at http://www.profactor.at.

Page 70

