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ABSTRACT 

This goal of the paper is transport network optimization. 

Transport networks are defined as network topologies 

where entities are forwarded from node to node 

constrained by capacity restrictions both on nodes and 

links. Examples include urban traffic 

(vehicles/signalized intersections) and IP networks 

(packets/routers). Optimization of such networks 

particularly has to provide the logic the nodes use to 

determine which entity to process next. Such logic can 

be imposed by a central authority based on global 

knowledge of the network state. In contrast, a self-

organizing network solely relies on local decision rules 

to prioritize entities. At the cost of a potential loss in 

performance, such a decentralized network control is 

scalable and robust. This paper proposes genetic 

programming to evolve local node rules. Results 

indicate that the performance is similar to centrally 

(near-optimally) controlled systems. 

 

Keywords: transport network optimization, genetic 

programming, discrete event simulation, simulation 

framework, Java 

 

1.  INTRODUCTION 

The target of the work is the optimization of a general 

class of networks, namely transport networks.  These 

are defined as graph topologies formed by nodes and 

links; continuously, entities “appear” at originating 

nodes (all nodes or only a subset may qualify as 

originating nodes). Such entities are queued for being 

“processed” by their origin nodes. After processing, the 

entities traverse links, thus queuing for processing at the 

next nodes on their routes until eventually reaching their 

destination nodes. Examples of such networks include 

urban traffic (vehicles advancing from one intersection 

to the next), conveyor-based manufacturing systems 

(items processed successively by different workstations) 

and telecommunication networks (e.g. IP packets being 

forwarded from one router to the next).  

Optimizing such a transport network typically may 

involve minimizing waiting or travel times or 

maximizing throughput. Apart from discarding entities 

or adjusting their routes (which may or may not be 

feasible, depending on the network type) and long-term 

improvements to the network topology itself (e.g. 

increasing nodes’ capacities, establishing additional 

links), the only degree of freedom for achieving such 

targets is the logic the nodes use to determine which 

entity (e.g. vehicle, item, IP packet) to process next. 

This logic for entity prioritization can be set up by 

a central authority, which is typically provided with 

global knowledge of the network state. For example, 

based on global (estimated) traffic density data, signals 

can be coordinated such that platoons of vehicles are 

able to traverse the network without stopping (“green 

waves”). However, such attempts to centrally optimize 

such networks typically imply exponential 

computational complexity (Holland 1995), yielding bad 

scaling behaviour. Further assuming the requirement to 

adaptively adjust to dynamic changes in traffic patterns, 

such approaches depend on the availability of the 

central server and the communication to this authority.  

This motivates applying decentralized 

optimization: Without being dependent on a central 

authority, each node (router, workstation, traffic light) 

independently decides which entity is processed next. 

This decision is based on information that is locally 

available (e.g. queue lengths, local flow estimations) 

only, enabling nodes to act autonomously if assuming 

means of obtaining theses data (e.g. induction loops and 

cameras and image processing capabilities at an urban 

intersection).  

Literature – e.g. in Bazzan 2005, Cools 2007, 

Gershenson 2005, Helbing 2008, Lämmer 2007 

attempting decentralized urban traffic optimization – 

already provides local node control logic performing 

almost as well as or better than centrally controlled 

systems for some special network topologies, e.g. for 

Manhattan grids with one-way traffic (i.e. north to south 

and west to east traffic only, Gershenson 2005) or 

intersection inflows from different directions assumed 

to be mutually exclusive (Lämmer 2007).  

The remainder of this paper is organized as 

follows: Section 2 provides further details about 

decentralized transport network optimization. Section 3 

proposes genetic programming (GP) as potential 

solution, evaluated in Section 4 by experiments in a 

simulation environment. The paper concludes with a 

summary and outlook about further work in Section 5. 
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2.  DECENTRALIZED TRANSPORT 

 NETWORK OPTIMIZATION 

Transport network optimization can be conducted by a 

central authority to which all relevant information is 

made available; examples include Diakaki 2003, 

Pohlmann 2010 or commercial systems like SCOOT 

(see e.g. United Kingdom Department for Transport 

1995). However, apart from the dependence on the 

communication of each node to this central authority, 

the run-time performance of such approaches scales 

badly with the network size, compare Section 1. 

Furthermore, as optimization is typically conducted in 

cycles of 15-60 minutes, reaction to patterns of traffic 

shifting or the failure of an adjacent node is delayed. 

This motivates applying decentralized 

optimization, analogously to the concept of self-

organization in thermodynamic and other natural 

sciences: A self-organizing system autonomously 

acquires and maintains order despite external influence 

subject to perturbations, which is typically achieved by 

a set of microscopic (local) decision rules independently 

used by each component (Wolf 2005). However, the 

development of such rules if not known in advance is 

difficult; designing a self-organizing system can be 

interpreted as reverse-engineering such rules from the 

desired macroscopic behaviour of the system: This 

behaviour (e.g. efficient transportation) is an emergent 

property of such rules, for which research thus far does 

not offer an agreed-upon and universally applicable 

means of obtaining (Zambonelli 2004). 

Nonetheless, the development of such local rules 

facilitating decentralized optimization of a transport 

network can be approached from the input side, i.e. the 

information locally available at the nodes: From Bazzan 

2005, Cools 2007, Gershenson 2005, Helbing 2008, 

Lämmer 2007 and other approaches to solve special 

cases of the network optimization problem, a set of 

criteria can be obtained, upon which the decision as to 

which entities to prioritize at a given instant is based.   

 Using from now on urban traffic terminology for 

example, these criteria apply either to a specific lane (a 

queue for vehicles arriving at a node on a certain link, 

waiting for processing and departure on one or more 

other links), to an intersection as whole (e.g. maximum 

queue length, total estimated arrival rate), or even to the 

overall network (e.g. switching penalty, during which 

all lanes are “red” for safety reasons). See Table 1 for 

further examples for such criteria.  

 Lämmer 2007 has also shown that any node logic 

can be expressed as function which he refers to as the 

priority index: Based on a subset of these criteria, one 

can determine the priority index of each lane; serve the 

vehicles from the lane with the highest priority, unless 

network stability would be violated if a lane did not 

receive any service for some maximum waiting period. 

Table 2 shows an extension of this mechanism using a 

set of lanes instead of single lanes, taking into account 

intersections serving more than one lane simultaneously 

(e.g. opposing traffic from north and south proceeding 

straight ahead).  

 

Flow (lane) 

Queue length (F, LQL) 

Longest waiting time (F, LWT) 

Est. arrival rate overall (F, LAO) 

Est. arrival rate current period (F, LAP) 

Current phase since (F, LPS) 

No green since (F, LGS) 

Utilization of incoming link (F, LIU) 

Maximum utilization of all outgoing links (F, LOU) 

Est. arrivals next period (F, LEA) 

Est. duration until next platoon arrival (F, LPA) 

Est. feasible flow/absolute (F, LFA) 

Est. feasible flow/relative (F, LFR) 

 
Node (intersection)  

Max. queue length (F, NQL) 

Longest waiting time (F, NWT) 

Est. arrival rate/overall (F, NAO) 

Est. arrival rate/current period (F,NAP) 

Duration of current phase (F, NPL) 

Idle (B, NID) 

blocked (B, NBL) 
 

Global (network) 

Average acceleration (F, GAA) 

Switching penalty (F, GSP) 

Passing possible in  queues (B, GPP) 

Table 1: Examples of criteria for entity (vehicle)  

prioritization in urban traffic; the suffix states the  

data types, either floating point numbers (F) or  

Boolean (B), and an abbreviation. 

 

 Lane set selection can for example be conducted on 

greedy basis: The lane with the highest priority is set to 

green. Repeatedly, from all lanes not mutually exclusive 

to a lane already set to green, the lane with the highest 

priority is set to green until no further lane exists that is 

neither set to green nor mutually exclusive to a lane 

already set to green. 

 
  

Determine priority index for each lane  

Unblock set of lanes with highest accumulated 

priority 

 

Repeatedly re-evaluate priority indices and switch 

to a different set of lane once their 

accumulated priority exceeds the priority of 

the current flows by a positive Δ 

 

 Ensure minimum green and maximum waiting 

periods are not violated 

Table 2: Link choice based on priority indices,  

extended from Lämmer 2007 

 

 With the input (the above-mentioned criteria) and 

the result (a priority index function) being specified, the 

open problem is determining how to obtain the latter 

from the former. For special network topologies, this 
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problem is already solved (compare literature quoted 

above), but not for the general case.  

 Part of a more general solution might be setting 

local rules such that certain desirable patterns – like 

green waves – are facilitated, see Göbel 2009. However, 

for network configurations, in which no such desirable 

patterns are known or where patterns available do not 

suffice for fully specifying a priority index function, we 

propose a different approach based on genetic 

programming (GP) in Section 3. 

 

3. NODE LOGIC EVOLTION BASED ON 

GENETIC PROGRAMMING 

Our target is to obtain priority index functions for 

decentralized transport network control based on the 

input criteria from Table 1. In the absence of any 

restrictions of which of these criteria to use and how to 

algebraically and logically determine a priority index 

(PI) from their respective values, genetic programming, 

see e.g. Koza 1992 or Poli 2008, has been chosen 

because is a flexible and robust search technique not 

relying on any preconditions which would limit is 

applicability to special cases of transport networks: 

Mimicking nature, programs to determine priority 

indices are evolved by successively improving existing 

programs. Note that GP can be interpreted as a 

generalization of genetic algorithms (GA): While the 

search space of a typical GA is a static chromosome on 

which parameter values to optimize are stored, this 

structure the chromosome in GP itself is subject to 

evolution. 
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Figure 1: Example of a GP node priority index function 

 

 To facilitate the evolution of genetic programs of 

arbitrary complexity, genetic programs typically have a 

tree-like structure consisting of nodes (“building 

blocks”) representing functions that can be flexibly 

combined, with the only restriction that arguments and 

result data types of adjacent node functions have to 

match.  

 An example priority index function is shown in 

Figure 1, composed of functions like for instance 

“Multiply” (bottom right), representing a function 

accepting two floating point numbers (F) as arguments 

and returning the product as floating point number as 

result. The overall result of the GP program is the return 

type of the top-level function (“Node programming 

logic”), which itself requires arguments determined by 

functions on the second level and so forth. Note that the 

closure of genetic programs assumes the availability of 

functions not requiring any argument, so-called 

terminals, e.g. numerical or Boolean constants or values 

read from variables (notation V/… to distinguish from 

constant terminals), like the node’s maximum queue 

length (V/NQL), the longest waiting time of an entity at 

a lane (V/LWT), a lane’s queue length (V/LQL) or a 

lane’s estimated overall arrival rate (V/LAO), compare 

Table 1.  

 A typical genetic programming cycle is 

summarized by Figure 2: Based on an initial population 

of programs generated at random, so-called genetic 

operators are applied to simulate biological evolution: 

The fitter (i.e. better network control performance) a 

program, the higher its probability of being selected for 

offspring composition by means of recombination; 

Figure 3 shows examples of recombination operators, 

particularly chromosome transfer �, aggregation �, 

projection �, and swapping �. 

 
 

termi-

nation?

Compose offsprings

- selection (mating)

- recombination

Update population

- selection (survival)

- evaluate population

Generation cycle

noyes

Mutation

- current generation 

- offsprings

Initialise

- generate population

- evaluate population

Output

- best solution(s)

 

Figure 2: GP evolution, based on Koza 1992 
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Figure 3: GP recombination operators 
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Figure 4: Alternative means of evaluating the fitness of a program 

   

Both existing programs 

and new offsprings have 

a small chance of 

undergoing a random 

mutation, e.g. functions 

replaced by other 

functions with the same 

input and result 

parameter types, 

including terminals 

potentially being replaced 

by other terminals of the 

same type. For the 

resulting set of programs, 

a fixed number is selected 

to “survive” and form the 

next generation. 

 The set of functions 

typically used to GP-

based mathematical 

functions includes 

numerical (plus, minus, 

multiply, divide, power, 

root, exp, log, abs) and 

logical operators (and, or, 

xor, not, greater, smaller) 

as well as statements to 

define piecewise 

functions (if/else, switch).  
  

Inversion of control 

and state-dependent 

priority indices 

The standard GP 

approach of determining 

the fitness of a program is 

shown in Figure 4, upper 

half: The full program – 

e.g. serving the purpose 

of creating a Mona Lisa 

forgery by drawing lines 

and filled polygons on a 

canvas (courtesy of 

Meffert 2011) – is 

executed once, followed 

by evaluating the fitness 

by comparison to the 

“real” Mona Lisa. 

 For two reasons, this 

paradigm is not 

appropriate for 

determining node priority 

index (PI) functions:  

 First, the evaluation 

of a PI function is driven 

by a simulation 

experiment calling the  PI 

function whenever 

desired.
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  Secondly, local PI functions as proposed by 

Gershenson 2005 or Lämmer 2007 are dependent on 

previous calls to the PI functions since they use partial 

conditionals (e.g. “if” without “else”, leaving PI 

calculation to the next line if the condition does not 

apply) and loops. Allowing such program components 

potentially yields programs evaluated only partially, 

compare Figure 4, bottom half: An equation 

determining the PI inside the “while”-function for 

instance may be evaluated repeatedly until the “while”-

condition is no longer fulfilled. 

 Our implementation, based on JGAP (Java Genetic 

Algorithms Package, see Meffert 2011) reflects this 

control flow.  Particularly, we propose a special 

function referred to as “Node Programming Logic” (see 

also Figure 1), which keeps a reference to the current 

(re-)entry point, i.e. the “line” to use at the moment to 

determine the priority of a lane, thus emulating program 

execution. Note that multiple nodes in a network require 

multiple program instances with a different (re-)entry 

point token each to reflect nodes potentially being in 

different states. The return type of “Node Programming 

Logic” is a PI floating point value, which allows for for 

hierarchically nesting partial conditionals and loops 

using multiple “Node Programming Logic” functions. 

After all lines have been used for determining a set of 

lanes to set to green, the program execution resumes at 

the first line.  

Wrapping up, the program from Figure 1 will 

assign the highest priority to the lane of the vehicle with 

longest waiting time, which yields a FIFO (First in, first 

out) service, see the “then” branch of the “if” clause, as 

long as congestion is moderate (less than 50 entities 

queued in total). Otherwise, lane priority is the product 

of queue length and arrival rate: As congestion 

increases, the function tends to prefer main roads and to 

serve multiple vehicles before switching to other links. 

Section 4 will investigate the performance of this 

GP approach of decentralized network optimization for 

three example networks (one intersection, two 

intersections, a small city area). 

 

4. EVALUATION 

We have built a discrete event simulation environment 

which is sufficiently parametrizable to represent 

different kinds of transport networks like urban traffic 

and IP packet routing; see Göbel 2009 for details about 

this environment. The mesoscopic logic of entity 

movement is derived from the traffic queuing model 

proposed by Nagel 2003. This simulation is based on 

DESMO-J, a framework for discrete event modelling 

and simulation in Java (see Page 2005 and the web page 

at http://www.desmoj.de), developed at the University 

of Hamburg. 

 To evaluate the performance of the described GP 

approach of transport network optimization, we have 

investigated three network scenarios S1, S2, S3: 

• S1 consists of a single isolated intersection 

with incoming traffic from two directions with 

identical conditions (same speed limit of 50 

km/h, single lanes). 

• In S2, two intersections are located 100 meters 

apart. Symmetrical traffic flow is restricted to 

W�N and E�S, yielding mutual 

exclusiveness at both intersections (see 

Figure 5, assuming right-hand traffic). 

• S3 is a network consisting of 11 intersections 

from southern Hanover/Germany subject to 

various flows from almost any entry to almost 

any exit, see Pohlmann 2010. 

 

 
Figure 5: Scenario 2 (Two intersections) 

 

 

Figure 6: Scenario 3 (Hanover) 

 

 The optimization target is to minimize the vehicles’ 

average overall waiting times. For S1, a near-optimal 

strategy is alternatingly (“round robin”) serving each 

flow until the queue is empty: Switching earlier is not 

optimal as intersection capacity would be given away 

due to the switching penalty incurred in terms of a two 

second safety period in which all traffic lights have to 

be red; switching later most likely wastes capacity as no 

vehicle is served (unless the next arrival of a vehicle not 

yet queued is very close at hand). 

 Since the space between the intersections is limited 

in S2, the optimization problem particularly involves 

synchronizing their traffic lights such that both 

intersections never waste capacity by being unable to 

server either of the flows. This undesired situation 
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occurs if the link towards the other intersection is fully 

congested (thus no further incoming vehicles from W at 

the western intersection and from E at the eastern 

intersection can be served) while at the same time no 

vehicles bound for N/S already served by the other 

intersection are waiting for service. A near-optimal 

centralized solution for S2 is “fill and clear”, exploiting 

the symmetry of the traffic flows offered: At both 

intersections the incoming flows from W at the western 

intersection and from E at the eastern intersection 

receive green until the link between the intersections is 

filled or until both queues incoming are empty. 

Synchronously, the vehicles bound for N/S now receive 

green at both intersections until the link between the 

intersections is cleared. Assuming enough “supply” of 

incoming vehicles, neither of the intersections ever 

wastes capacity apart from symmetry deficits caused by 

stochastic noise, e.g. one intersection clearing its 

vehicle queue on the link between the intersections 

faster than the other. 

 For S3, a heuristic is used serving the longest 

queues (typically four protected flows on a four-way 

intersection, e.g. W�S, E, N and N�W in right-hand 

traffic) until the queues for different combinations of 

flows are least 25 vehicles longer, yet at least for 

5 seconds. 

  

Network Control 
Avg. 

Wait 

Through- 

put 

S1 

(low load) 

Round robin 5.7 3167 

GP 5.4 3161 

S1 

(high load) 

Round robin 17.4 6243 

GP 19.0 6085 

S1 

(overload) 

Round robin 141.6 6376 

GP 135.5 6459 

S2 
Fill and clear 13.6 5170 

GP 13.0 5201 

S3 
Longest queue 77.3 18663 

GP 52.9 23377 

Table 3: Experiment performance results 

 

Network Program 

S1/S2 

 repeat 

 if (V/NID)  

    return PI = (V/LIU) 

 else  

  return PI = exp(V/LFA) 

S3 

 repeat 

 if (V/NID)  

    return PI = V/LAO 

 else 

    return PI = exp(V/LPF) * V/LWT 

 while (N/NQL > 68.4445) 

  return PI = V/GAA*exp(exp(V/LQL)) 

Table 4: GP evaluation results 

  

 Table 3 compares these means of intersection 

control to the best GP solution found in 100 generations 

of size 100 for S1/S2 (combined) and for S3; the table 

states average waiting time and vehicle throughput 

during 5 hours (average of 10 runs). S1 has been 

evaluated with three different load levels (approx. 3200, 

6400 and 9200 vehicles offered). The GP fitness 

function was the average waiting duration (the lower, 

the better), subject to a penalty proportional to the node-

count of the genetic program, thus implicitly bounding 

the complexity the programs evolved. Table 4 shows 

the “fittest” programs found in each of the runs S1/S2 

and S3. 

 Comparing the results of GP to the (near-)optimal 

solutions in the case of S1 and S2 or to the heuristic in 

S3 yields a GP performance similar or better (with the 

exception of the second S1 load level): Although not 

applying centralized control, e.g. explicit traffic light 

synchronization in S2, the GP solutions perform 

approximately equally well or in some cases even 

slightly better by exploiting the marginal remaining 

optimization potential, e.g. asymmetrical link clearance 

in S2 used to advance the traffic light switch at the 

relevant intersection which is advantageous in terms of 

overall waiting durations if the flow set to green is 

slower than its counterpart receiving green later.  

 

5. SUMMARY AND OUTLOOK 

This paper has presents a GP-based approach to 

decentralized, transport network optimization, providing 

local rules in terms of priority index functions. To the 

standard paradigm of GP evolution (Koza 1992), 

adjustments were necessary to cover inversion of 

control in fitness evaluation (simulation calling the 

program to be evaluated, not vice versa) and state-

dependently only partially executing the program to be 

evaluated; these adjustment were implemented 

extending JGAP (Java Genetic Algorithms Package, see 

Meffert 2011). Experiment results indicate that the 

performance is similar to centrally (near-optimally) 

controlled systems while at the same node control is 

scalable and not dependent on a central authority. 

“Performance” of course is not restricted to minimizing 

waiting times as conducted in the experiments in 

Section 4; the GP-based transport network is 

sufficiently flexible to use any fitness function, e.g. a 

weighted combination of waiting times and fuel 

consumption/emission production. 

 Further work will address the run-time performance 

of the GP evolution of node PI functions: As the fitness 

evaluation of a single program is relatively expensive 

due to the discrete event simulation runs to be executed 

(approx. 1 day for scenarios S1/S2, approx. 4 days for 

scenario S3 on a single machine), recognizing and not 

evaluating inferior programs may provide large 

improvements in run-time performance. Examples of 

such inferior programs are all programs containing 

branches that are never executed (e.g. all lines after a 

while(true) {…} statement) or programs not containing a 

single lane-specific criterion (compare Table 1) as they 

yield the same priority for all lanes at an intersection. 

 The convergence of the GP can also be improved 

by providing “higher level” criteria, e.g. including the 
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optimal priority for an isolated intersection subject to 

uniform flows (no stochastic noise) as determined by 

Lämmer 2007, thus relieving the GP evolution from 

producing such terms. 

 Another means of facilitating GP convergence is 

removing the need for co-evolution by allowing a sub-

tree referenced more than once: If the results 

determined by a certain sub-tree, the current GP 

approach would be required to create this repeating 

pattern more than once (Figure 7, left). Allowing 

multiple references (Figure 7, right) has to ensure 

infinite recursion is avoided, yet provides smaller 

programs without need to multiple branches undergoing 

the same evolution. 

  

 

Figure 7: Multiple references to a sub-tree 
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