
TRANSPORT NETWORK OPTIMIZIATION:

SELF-ORGANIZATION BY GENETIC PROGRAMMING

J. Göbel
(a)

, A.E. Krzesinski
(b)

, B. Page
(a)

(a)

 Department of Informatics, University of Hamburg, 22527 Hamburg, Germany
(b)

 Department of Mathematical Sciences, University of Stellenbosch, 7600 Stellenbosch, South Africa

(a)

{goebel,page}@informatik.uni-hamburg.de,
(b)

aek1@cs.sun.ac.za

ABSTRACT

This goal of the paper is transport network optimization.

Transport networks are defined as network topologies

where entities are forwarded from node to node

constrained by capacity restrictions both on nodes and

links. Examples include urban traffic

(vehicles/signalized intersections) and IP networks

(packets/routers). Optimization of such networks

particularly has to provide the logic the nodes use to

determine which entity to process next. Such logic can

be imposed by a central authority based on global

knowledge of the network state. In contrast, a self-

organizing network solely relies on local decision rules

to prioritize entities. At the cost of a potential loss in

performance, such a decentralized network control is

scalable and robust. This paper proposes genetic

programming to evolve local node rules. Results

indicate that the performance is similar to centrally

(near-optimally) controlled systems.

Keywords: transport network optimization, genetic

programming, discrete event simulation, simulation

framework, Java

1. INTRODUCTION

The target of the work is the optimization of a general

class of networks, namely transport networks. These

are defined as graph topologies formed by nodes and

links; continuously, entities “appear” at originating

nodes (all nodes or only a subset may qualify as

originating nodes). Such entities are queued for being

“processed” by their origin nodes. After processing, the

entities traverse links, thus queuing for processing at the

next nodes on their routes until eventually reaching their

destination nodes. Examples of such networks include

urban traffic (vehicles advancing from one intersection

to the next), conveyor-based manufacturing systems

(items processed successively by different workstations)

and telecommunication networks (e.g. IP packets being

forwarded from one router to the next).

Optimizing such a transport network typically may

involve minimizing waiting or travel times or

maximizing throughput. Apart from discarding entities

or adjusting their routes (which may or may not be

feasible, depending on the network type) and long-term

improvements to the network topology itself (e.g.

increasing nodes’ capacities, establishing additional

links), the only degree of freedom for achieving such

targets is the logic the nodes use to determine which

entity (e.g. vehicle, item, IP packet) to process next.

This logic for entity prioritization can be set up by

a central authority, which is typically provided with

global knowledge of the network state. For example,

based on global (estimated) traffic density data, signals

can be coordinated such that platoons of vehicles are

able to traverse the network without stopping (“green

waves”). However, such attempts to centrally optimize

such networks typically imply exponential

computational complexity (Holland 1995), yielding bad

scaling behaviour. Further assuming the requirement to

adaptively adjust to dynamic changes in traffic patterns,

such approaches depend on the availability of the

central server and the communication to this authority.

This motivates applying decentralized

optimization: Without being dependent on a central

authority, each node (router, workstation, traffic light)

independently decides which entity is processed next.

This decision is based on information that is locally

available (e.g. queue lengths, local flow estimations)

only, enabling nodes to act autonomously if assuming

means of obtaining theses data (e.g. induction loops and

cameras and image processing capabilities at an urban

intersection).

Literature – e.g. in Bazzan 2005, Cools 2007,

Gershenson 2005, Helbing 2008, Lämmer 2007

attempting decentralized urban traffic optimization –

already provides local node control logic performing

almost as well as or better than centrally controlled

systems for some special network topologies, e.g. for

Manhattan grids with one-way traffic (i.e. north to south

and west to east traffic only, Gershenson 2005) or

intersection inflows from different directions assumed

to be mutually exclusive (Lämmer 2007).

The remainder of this paper is organized as

follows: Section 2 provides further details about

decentralized transport network optimization. Section 3

proposes genetic programming (GP) as potential

solution, evaluated in Section 4 by experiments in a

simulation environment. The paper concludes with a

summary and outlook about further work in Section 5.

137

2. DECENTRALIZED TRANSPORT

 NETWORK OPTIMIZATION

Transport network optimization can be conducted by a

central authority to which all relevant information is

made available; examples include Diakaki 2003,

Pohlmann 2010 or commercial systems like SCOOT

(see e.g. United Kingdom Department for Transport

1995). However, apart from the dependence on the

communication of each node to this central authority,

the run-time performance of such approaches scales

badly with the network size, compare Section 1.

Furthermore, as optimization is typically conducted in

cycles of 15-60 minutes, reaction to patterns of traffic

shifting or the failure of an adjacent node is delayed.

This motivates applying decentralized

optimization, analogously to the concept of self-

organization in thermodynamic and other natural

sciences: A self-organizing system autonomously

acquires and maintains order despite external influence

subject to perturbations, which is typically achieved by

a set of microscopic (local) decision rules independently

used by each component (Wolf 2005). However, the

development of such rules if not known in advance is

difficult; designing a self-organizing system can be

interpreted as reverse-engineering such rules from the

desired macroscopic behaviour of the system: This

behaviour (e.g. efficient transportation) is an emergent

property of such rules, for which research thus far does

not offer an agreed-upon and universally applicable

means of obtaining (Zambonelli 2004).

Nonetheless, the development of such local rules

facilitating decentralized optimization of a transport

network can be approached from the input side, i.e. the

information locally available at the nodes: From Bazzan

2005, Cools 2007, Gershenson 2005, Helbing 2008,

Lämmer 2007 and other approaches to solve special

cases of the network optimization problem, a set of

criteria can be obtained, upon which the decision as to

which entities to prioritize at a given instant is based.

 Using from now on urban traffic terminology for

example, these criteria apply either to a specific lane (a

queue for vehicles arriving at a node on a certain link,

waiting for processing and departure on one or more

other links), to an intersection as whole (e.g. maximum

queue length, total estimated arrival rate), or even to the

overall network (e.g. switching penalty, during which

all lanes are “red” for safety reasons). See Table 1 for

further examples for such criteria.

 Lämmer 2007 has also shown that any node logic

can be expressed as function which he refers to as the

priority index: Based on a subset of these criteria, one

can determine the priority index of each lane; serve the

vehicles from the lane with the highest priority, unless

network stability would be violated if a lane did not

receive any service for some maximum waiting period.

Table 2 shows an extension of this mechanism using a

set of lanes instead of single lanes, taking into account

intersections serving more than one lane simultaneously

(e.g. opposing traffic from north and south proceeding

straight ahead).

Flow (lane)

Queue length (F, LQL)

Longest waiting time (F, LWT)

Est. arrival rate overall (F, LAO)

Est. arrival rate current period (F, LAP)

Current phase since (F, LPS)

No green since (F, LGS)

Utilization of incoming link (F, LIU)

Maximum utilization of all outgoing links (F, LOU)

Est. arrivals next period (F, LEA)

Est. duration until next platoon arrival (F, LPA)

Est. feasible flow/absolute (F, LFA)

Est. feasible flow/relative (F, LFR)

Node (intersection)

Max. queue length (F, NQL)

Longest waiting time (F, NWT)

Est. arrival rate/overall (F, NAO)

Est. arrival rate/current period (F,NAP)

Duration of current phase (F, NPL)

Idle (B, NID)

blocked (B, NBL)

Global (network)

Average acceleration (F, GAA)

Switching penalty (F, GSP)

Passing possible in queues (B, GPP)

Table 1: Examples of criteria for entity (vehicle)

prioritization in urban traffic; the suffix states the

data types, either floating point numbers (F) or

Boolean (B), and an abbreviation.

 Lane set selection can for example be conducted on

greedy basis: The lane with the highest priority is set to

green. Repeatedly, from all lanes not mutually exclusive

to a lane already set to green, the lane with the highest

priority is set to green until no further lane exists that is

neither set to green nor mutually exclusive to a lane

already set to green.

Determine priority index for each lane

Unblock set of lanes with highest accumulated

priority

Repeatedly re-evaluate priority indices and switch

to a different set of lane once their

accumulated priority exceeds the priority of

the current flows by a positive Δ

 Ensure minimum green and maximum waiting

periods are not violated

Table 2: Link choice based on priority indices,

extended from Lämmer 2007

 With the input (the above-mentioned criteria) and

the result (a priority index function) being specified, the

open problem is determining how to obtain the latter

from the former. For special network topologies, this

138

problem is already solved (compare literature quoted

above), but not for the general case.

 Part of a more general solution might be setting

local rules such that certain desirable patterns – like

green waves – are facilitated, see Göbel 2009. However,

for network configurations, in which no such desirable

patterns are known or where patterns available do not

suffice for fully specifying a priority index function, we

propose a different approach based on genetic

programming (GP) in Section 3.

3. NODE LOGIC EVOLTION BASED ON

GENETIC PROGRAMMING

Our target is to obtain priority index functions for

decentralized transport network control based on the

input criteria from Table 1. In the absence of any

restrictions of which of these criteria to use and how to

algebraically and logically determine a priority index

(PI) from their respective values, genetic programming,

see e.g. Koza 1992 or Poli 2008, has been chosen

because is a flexible and robust search technique not

relying on any preconditions which would limit is

applicability to special cases of transport networks:

Mimicking nature, programs to determine priority

indices are evolved by successively improving existing

programs. Note that GP can be interpreted as a

generalization of genetic algorithms (GA): While the

search space of a typical GA is a static chromosome on

which parameter values to optimize are stored, this

structure the chromosome in GP itself is subject to

evolution.

Lin
e2

Lin
e3

Line1
Lin

eK

Prio
rit

y

index

Then
Else

Cond

X Y

Prio
rit

y

X>Y?

Value
Value

Value

X Y

X*Y

Value
Value

Figure 1: Example of a GP node priority index function

 To facilitate the evolution of genetic programs of

arbitrary complexity, genetic programs typically have a

tree-like structure consisting of nodes (“building

blocks”) representing functions that can be flexibly

combined, with the only restriction that arguments and

result data types of adjacent node functions have to

match.

 An example priority index function is shown in

Figure 1, composed of functions like for instance

“Multiply” (bottom right), representing a function

accepting two floating point numbers (F) as arguments

and returning the product as floating point number as

result. The overall result of the GP program is the return

type of the top-level function (“Node programming

logic”), which itself requires arguments determined by

functions on the second level and so forth. Note that the

closure of genetic programs assumes the availability of

functions not requiring any argument, so-called

terminals, e.g. numerical or Boolean constants or values

read from variables (notation V/… to distinguish from

constant terminals), like the node’s maximum queue

length (V/NQL), the longest waiting time of an entity at

a lane (V/LWT), a lane’s queue length (V/LQL) or a

lane’s estimated overall arrival rate (V/LAO), compare

Table 1.

 A typical genetic programming cycle is

summarized by Figure 2: Based on an initial population

of programs generated at random, so-called genetic

operators are applied to simulate biological evolution:

The fitter (i.e. better network control performance) a

program, the higher its probability of being selected for

offspring composition by means of recombination;

Figure 3 shows examples of recombination operators,

particularly chromosome transfer �, aggregation �,

projection �, and swapping �.

termi-

nation?

Compose offsprings

- selection (mating)

- recombination

Update population

- selection (survival)

- evaluate population

Generation cycle

noyes

Mutation

- current generation

- offsprings

Initialise

- generate population

- evaluate population

Output

- best solution(s)

Figure 2: GP evolution, based on Koza 1992

139

Figure 3: GP recombination operators

repeat
repeat

Evaluation

Program

Fitness

Traffic

Simulation

repeat

while (cond1)

return PI = …

while (cond2)

return PI = …

if (cond3)

return PI = …

else

return PI = ...

Instanciate
once per node

= current (re-)entry point

Polygon 1

Polygon 2

Line 1

Line 2

Polygon 3

Evaluation

Program

Fitness

E.g. draw

E.g. compare to

Figure 4: Alternative means of evaluating the fitness of a program

Both existing programs

and new offsprings have

a small chance of

undergoing a random

mutation, e.g. functions

replaced by other

functions with the same

input and result

parameter types,

including terminals

potentially being replaced

by other terminals of the

same type. For the

resulting set of programs,

a fixed number is selected

to “survive” and form the

next generation.

 The set of functions

typically used to GP-

based mathematical

functions includes

numerical (plus, minus,

multiply, divide, power,

root, exp, log, abs) and

logical operators (and, or,

xor, not, greater, smaller)

as well as statements to

define piecewise

functions (if/else, switch).

Inversion of control

and state-dependent

priority indices

The standard GP

approach of determining

the fitness of a program is

shown in Figure 4, upper

half: The full program –

e.g. serving the purpose

of creating a Mona Lisa

forgery by drawing lines

and filled polygons on a

canvas (courtesy of

Meffert 2011) – is

executed once, followed

by evaluating the fitness

by comparison to the

“real” Mona Lisa.

 For two reasons, this

paradigm is not

appropriate for

determining node priority

index (PI) functions:

 First, the evaluation

of a PI function is driven

by a simulation

experiment calling the PI

function whenever

desired.

140

 Secondly, local PI functions as proposed by

Gershenson 2005 or Lämmer 2007 are dependent on

previous calls to the PI functions since they use partial

conditionals (e.g. “if” without “else”, leaving PI

calculation to the next line if the condition does not

apply) and loops. Allowing such program components

potentially yields programs evaluated only partially,

compare Figure 4, bottom half: An equation

determining the PI inside the “while”-function for

instance may be evaluated repeatedly until the “while”-

condition is no longer fulfilled.

 Our implementation, based on JGAP (Java Genetic

Algorithms Package, see Meffert 2011) reflects this

control flow. Particularly, we propose a special

function referred to as “Node Programming Logic” (see

also Figure 1), which keeps a reference to the current

(re-)entry point, i.e. the “line” to use at the moment to

determine the priority of a lane, thus emulating program

execution. Note that multiple nodes in a network require

multiple program instances with a different (re-)entry

point token each to reflect nodes potentially being in

different states. The return type of “Node Programming

Logic” is a PI floating point value, which allows for for

hierarchically nesting partial conditionals and loops

using multiple “Node Programming Logic” functions.

After all lines have been used for determining a set of

lanes to set to green, the program execution resumes at

the first line.

Wrapping up, the program from Figure 1 will

assign the highest priority to the lane of the vehicle with

longest waiting time, which yields a FIFO (First in, first

out) service, see the “then” branch of the “if” clause, as

long as congestion is moderate (less than 50 entities

queued in total). Otherwise, lane priority is the product

of queue length and arrival rate: As congestion

increases, the function tends to prefer main roads and to

serve multiple vehicles before switching to other links.

Section 4 will investigate the performance of this

GP approach of decentralized network optimization for

three example networks (one intersection, two

intersections, a small city area).

4. EVALUATION

We have built a discrete event simulation environment

which is sufficiently parametrizable to represent

different kinds of transport networks like urban traffic

and IP packet routing; see Göbel 2009 for details about

this environment. The mesoscopic logic of entity

movement is derived from the traffic queuing model

proposed by Nagel 2003. This simulation is based on

DESMO-J, a framework for discrete event modelling

and simulation in Java (see Page 2005 and the web page

at http://www.desmoj.de), developed at the University

of Hamburg.

 To evaluate the performance of the described GP

approach of transport network optimization, we have

investigated three network scenarios S1, S2, S3:

• S1 consists of a single isolated intersection

with incoming traffic from two directions with

identical conditions (same speed limit of 50

km/h, single lanes).

• In S2, two intersections are located 100 meters

apart. Symmetrical traffic flow is restricted to

W�N and E�S, yielding mutual

exclusiveness at both intersections (see

Figure 5, assuming right-hand traffic).

• S3 is a network consisting of 11 intersections

from southern Hanover/Germany subject to

various flows from almost any entry to almost

any exit, see Pohlmann 2010.

Figure 5: Scenario 2 (Two intersections)

Figure 6: Scenario 3 (Hanover)

 The optimization target is to minimize the vehicles’

average overall waiting times. For S1, a near-optimal

strategy is alternatingly (“round robin”) serving each

flow until the queue is empty: Switching earlier is not

optimal as intersection capacity would be given away

due to the switching penalty incurred in terms of a two

second safety period in which all traffic lights have to

be red; switching later most likely wastes capacity as no

vehicle is served (unless the next arrival of a vehicle not

yet queued is very close at hand).

 Since the space between the intersections is limited

in S2, the optimization problem particularly involves

synchronizing their traffic lights such that both

intersections never waste capacity by being unable to

server either of the flows. This undesired situation

141

occurs if the link towards the other intersection is fully

congested (thus no further incoming vehicles from W at

the western intersection and from E at the eastern

intersection can be served) while at the same time no

vehicles bound for N/S already served by the other

intersection are waiting for service. A near-optimal

centralized solution for S2 is “fill and clear”, exploiting

the symmetry of the traffic flows offered: At both

intersections the incoming flows from W at the western

intersection and from E at the eastern intersection

receive green until the link between the intersections is

filled or until both queues incoming are empty.

Synchronously, the vehicles bound for N/S now receive

green at both intersections until the link between the

intersections is cleared. Assuming enough “supply” of

incoming vehicles, neither of the intersections ever

wastes capacity apart from symmetry deficits caused by

stochastic noise, e.g. one intersection clearing its

vehicle queue on the link between the intersections

faster than the other.

 For S3, a heuristic is used serving the longest

queues (typically four protected flows on a four-way

intersection, e.g. W�S, E, N and N�W in right-hand

traffic) until the queues for different combinations of

flows are least 25 vehicles longer, yet at least for

5 seconds.

Network Control
Avg.

Wait

Through-

put

S1

(low load)

Round robin 5.7 3167

GP 5.4 3161

S1

(high load)

Round robin 17.4 6243

GP 19.0 6085

S1

(overload)

Round robin 141.6 6376

GP 135.5 6459

S2
Fill and clear 13.6 5170

GP 13.0 5201

S3
Longest queue 77.3 18663

GP 52.9 23377

Table 3: Experiment performance results

Network Program

S1/S2

 repeat

 if (V/NID)

 return PI = (V/LIU)

 else

 return PI = exp(V/LFA)

S3

 repeat

 if (V/NID)

 return PI = V/LAO

 else

 return PI = exp(V/LPF) * V/LWT

 while (N/NQL > 68.4445)

 return PI = V/GAA*exp(exp(V/LQL))

Table 4: GP evaluation results

 Table 3 compares these means of intersection

control to the best GP solution found in 100 generations

of size 100 for S1/S2 (combined) and for S3; the table

states average waiting time and vehicle throughput

during 5 hours (average of 10 runs). S1 has been

evaluated with three different load levels (approx. 3200,

6400 and 9200 vehicles offered). The GP fitness

function was the average waiting duration (the lower,

the better), subject to a penalty proportional to the node-

count of the genetic program, thus implicitly bounding

the complexity the programs evolved. Table 4 shows

the “fittest” programs found in each of the runs S1/S2

and S3.

 Comparing the results of GP to the (near-)optimal

solutions in the case of S1 and S2 or to the heuristic in

S3 yields a GP performance similar or better (with the

exception of the second S1 load level): Although not

applying centralized control, e.g. explicit traffic light

synchronization in S2, the GP solutions perform

approximately equally well or in some cases even

slightly better by exploiting the marginal remaining

optimization potential, e.g. asymmetrical link clearance

in S2 used to advance the traffic light switch at the

relevant intersection which is advantageous in terms of

overall waiting durations if the flow set to green is

slower than its counterpart receiving green later.

5. SUMMARY AND OUTLOOK

This paper has presents a GP-based approach to

decentralized, transport network optimization, providing

local rules in terms of priority index functions. To the

standard paradigm of GP evolution (Koza 1992),

adjustments were necessary to cover inversion of

control in fitness evaluation (simulation calling the

program to be evaluated, not vice versa) and state-

dependently only partially executing the program to be

evaluated; these adjustment were implemented

extending JGAP (Java Genetic Algorithms Package, see

Meffert 2011). Experiment results indicate that the

performance is similar to centrally (near-optimally)

controlled systems while at the same node control is

scalable and not dependent on a central authority.

“Performance” of course is not restricted to minimizing

waiting times as conducted in the experiments in

Section 4; the GP-based transport network is

sufficiently flexible to use any fitness function, e.g. a

weighted combination of waiting times and fuel

consumption/emission production.

 Further work will address the run-time performance

of the GP evolution of node PI functions: As the fitness

evaluation of a single program is relatively expensive

due to the discrete event simulation runs to be executed

(approx. 1 day for scenarios S1/S2, approx. 4 days for

scenario S3 on a single machine), recognizing and not

evaluating inferior programs may provide large

improvements in run-time performance. Examples of

such inferior programs are all programs containing

branches that are never executed (e.g. all lines after a

while(true) {…} statement) or programs not containing a

single lane-specific criterion (compare Table 1) as they

yield the same priority for all lanes at an intersection.

 The convergence of the GP can also be improved

by providing “higher level” criteria, e.g. including the

142

optimal priority for an isolated intersection subject to

uniform flows (no stochastic noise) as determined by

Lämmer 2007, thus relieving the GP evolution from

producing such terms.

 Another means of facilitating GP convergence is

removing the need for co-evolution by allowing a sub-

tree referenced more than once: If the results

determined by a certain sub-tree, the current GP

approach would be required to create this repeating

pattern more than once (Figure 7, left). Allowing

multiple references (Figure 7, right) has to ensure

infinite recursion is avoided, yet provides smaller

programs without need to multiple branches undergoing

the same evolution.

Figure 7: Multiple references to a sub-tree

REFERENCES

Bazzan, A., Oliveira, D. de, and Lesser, V., 2005. Using

Cooperative Mediation to Coordinate Traffic

Lights: A Case Study. Proceedings of Fourth

International Joint Conference on Autonomous

Agents and Multiagent Systems, pp. 463-469, July

25-29, Utrecht (The Netherlands).

Cools, S.-B., Gershenson, C., and D'Hooghe, B., 2007.

Self-organizing traffic lights: A realistic

simulation. In M. Prokopenko (ed): Self-

Organization: Applied Multi-Agent Systems,

pp. 41-49. London (UK): Springer.

Diakaki, C., Dinopoulou, V, Aboudolas, K.,

Papageorgiou, M., Ben-Shabat, E., Seider, E., and

Leibov, A., 2003. Extensions and new applications

of the traffic signal control strategy TUC.

Transportation Research Board, 1856:202-211.

Gershenson, C., 2005. Self-Organizing Traffic Lights.

Complex Systems 16(1):29-53.

Göbel, J., 2009. On Self-Organizing Transport

Networks – an Outline. Proceedings of the 6th

Vienna International Conference on Mathematical

Modelling (MATHMOD) 2009, p. 82. Feb 11-13,

Vienna (Austria).

Helbing, D., and Lämmer, S., 2008. Self-Control of

Traffic Lights and Vehicle Flows in Urban Road

Networks. Journal of Statistical Mechanics:

Theory and Experiment 4(P04019):1-33

Holland, J. H., 1995. Hidden Order – How Adaption

builds complexity. New York (New York, USA):

Basic Books.

Koza, J. R., 1992. On the programming of computers by

means of natural selection. Cambridge

(Massachusetts, USA): MIT Press.

Lämmer, S., 2007. Reglerentwurf zur dezentralen

Online-Steuerung von Lichtsignalanlagen in

Straßennetzwerken. PhD Thesis, Technical

University of Dresden (Germany).

Meffert, K. et al., 2011: JGAP – Java Genetic

Algorithms and Genetic Programming Package.

URL: http://jgap.sf.net

Nagel, K., 2003. Traffic networks. In S. Bornholdt,

H. G. Schuster (eds): Handbook on networks. New

York (NY, USA): Wiley.

Page, B. and Kreutzer, W., 2005. The Java Simulation

Handbook – Simulating Discrete Event Systems

with UML and Java. Aachen (Germany): Shaker.

Pohlmann, T., 2010. New Approaches for Online

Control of Urban Traffic Signal Systems. PhD

Thesis, Technical University of Braunschweig

(Germany).

Poli, R., Langdon, W. B. and McPhee, N.F., 2008.

A Field Guide to Genetic Programming, Raleigh

(North Carolina, USA): Lulu.com

United Kingdom Department for Transport, 1995.

“SCOOT” Urban Traffic Control System. United

Kingdom Department for Transport Traffic

Advisory Leaflet 04/1995.

Wolf, T. de and Holvoet, T., 2005. Emergence Versus

Self-Organisation. In S. A. Brueckner, et al. (eds):

Engineering Self-Organising Systems, pp. 1-15.

Berlin (Germany): Springer.

Zambonelli, F., Gleizes, M.-P., Mamei, M., and

Tolksdorf, R., 2004. Spray Computers: Frontiers

of Self-Organization. Proceedings of the First

IEEE International Conference on Autonomic

Computing (ICAC'04), pp. 268-269, May, Miami

(Florida, USA).

AUTHORS BIOGRAPHY

J. Göbel holds a diploma in Information Systems from

the University of Hamburg, Germany. He is scientific

assistant and PhD candidate at the Center of

Architecture and Design of IT-Systems at the

University of Hamburg; his research interests focus on

discrete event simulation and network optimization.

A. E. Krzesinski obtained the MSc from the University

of Cape Town and the PhD from Cambridge University,

England. He is a Professor of Computer Science at the

University of Stellenbosch, South Africa. His research

interests centre on the performance evaluation of

communication networks.

B. Page holds degrees in Applied Computer Science

from the Technical University of Berlin, Germany, and

from Stanford University, USA. As professor for

Applied Computer Science at the University of

Hamburg he researches and teaches in the field of

Modelling and Simulation as well as in Environmental

Informatics.

143

