
A METHODOLOGY FOR DEVELOPING
DES MODELS: EVENT GRAPHS AND SHARPSIM

Arda Ceylan (a), Murat M.Gunal (b)

(a) Institude of Naval Science and Engineering
Turkish Naval Academy, Tuzla, Istanbul, Turkey

(b) Department of Industrial Engineering
Turkish Naval Academy, Tuzla, Istanbul, Turkey

(a) aceylan@dho.edu.tr (b) mgunal@dho.edu.tr

ABSTRACT
In this paper, a methodology for fast development of
Discrete Event Simulation (DES) models is presented.
The methodology simply works in two stages. In the
first stage the modeler builds a Conceptual Model (CM)
of the system to be modeled. A CM is represented as an
Event Graph (EG). EGs are used to document the events
and their causes in a system. In the second stage the CM
is translated to an Event Based DES model. To fulfill
this task we developed a DES library, SharpSim, using
C# (CSharp) programming language. This paper gives
an introduction to our methodology. We provide an
insight into SharpSim and EGs, and illustrate a
modeling example.

Keywords: Discrete Event Simulation Library, Event
Scheduling, Event Graph, Simulation Software.

1. INTRODUCTION
Due to its popularity in simulation world, plenty of
Discrete Event Simulation (DES) software has been
developed and this trend is likely to continue in the
future. There are two main types of simulation software;
those which aim at non-programmers (e.g. a graphical
user interface which provides drag and drop facilities to
build a model by simple mouse clicks) and others which
require programming skills (e.g. extending a given
source code library to write a full program). First type
of software is Commercials-Off-The-Shelf (COTS)
such as Arena, Simul8, and Flexsim and they reach a
wider user community than the other type does. It is in
fact for this reason why the first type dominates the
market. The obvious difference of the two types is the
user friendliness; one requires the knowledge of how
the software is used, and the other requires special
expertise, e.g. programming. It is noteworthy that it is
dangerous to strictly separate the two types since most
COTS software today provides limited programming
features.

In either type of simulation software, a DES is
approached by a variety of worldviews. A worldview is
described as a “modeling framework that a modeler
uses to represent a system and its behavior” (Carson,

1993). Simulation software adopts one of these world-
views. DES worldviews in the literature can be
categorized into:

• Process Interaction
• Activity Scanning
• Three Phase
• Event Scheduling

Process Interaction focuses on processes which can

be described as “set of events” (Roader, 2004). In this
approach, entity flows play the main role where flows
include all states of objects. The process is described as
“a time-ordered sequence of events, activities and
delays that describe the flow of a dynamic entity
through a system” (Carson, 1993). Process Interaction is
popular and widely used since it is easier to conceive
and implement, but “deadlock problem” (Pidd, 1998)
stands as the weak point. This approach is used
commonly by COTS simulation software, such as
Automod. Another common approach, Flow
Transaction, is a derivative of Process Interaction.
Arena, ProModel and Witness are some of popular
software using this approach (Abu-Taieh and Sheikh,
2008).

In Activity Scanning, all activities are scanned in
each time step and initiated up to their conditions. It is
also called as Two Phase. Three Phase approach is a
variant of Activity Scanning. It is more tedious to
model, but faster since only conditional activities are
scanned at each step.

Event Scheduling requires the identification of
events and their impacts on system’s state variables.
This approach is most efficient but can be complicated
to conceptually represent when the model size is big.

In this paper, we particularly focus on Event
Scheduling world-view. As a first step of our interest
we review the methods for conceptual modeling, such
as Event Graphs (EG). Secondly, we present a new DES
library developed in C#: SharpSim. Additionally we
give a general idea about some basics of DES and
pertinent general purpose DES software in use, and then
position the SharpSim in this picture. Finally, we

278

provide an EG of M/M/n queuing system and a short
tutorial on how a SharpSim model can be built.

2. A BRIEF REVIEW OF CONCEPTUAL

MODELING METHODS AND EVENT
GRAPHS

Conceptual modeling in DES is an active research area
and there is still no consensus among simulation
modelers on its representation, although Onggo (2009)
is an attempt in which unified conceptual modeling is
discussed. There are a variety of methods to
conceptualize the problems in hand in terms of logical
flow of objects and events in the system. We review
three methods here.
 The first method is the most commonly used;
Process Flow Diagrams (PFD). PFDs focus on the flows
of entities in a system and are used by most COTS
simulation software. A PFD is created by simply
placing drag-and-drop objects to represent processes
and links between these processes to represent
interactions between processes. The modeler, in a way,
treats him or herself as an entity and follows the
processes which transform an entity.
 The second method is Activity Cycle Diagrams
(ACD) for conceptualizing the logical flows of objects
in the system. In an ACD, life cycle of entities in the
system is shown. In their life time, entities changes state
and interact with each other. Entity states alternate from
active to dead states. Simulation time moves forward
and entities of the system spend time in these states.
Active states represent activities which different types
of entities can cooperate. Once an entity enters an active
state, its duration can be determined, generally by
taking a sample from a probability distribution.
However some conditions must be satisfied for an entity
to be in an active state, for example, if there is a server
available and there is a client waiting in a queue, a
customer entity enters to a service active state. Dead
state is the opposite of an active state that is when an
entity is idle or waiting for something to happen. This
generally means a waiting area. Unlike an active state,
duration of a dead state cannot be determined in
advance since the time an entity spends in dead state is
bound to preceding and succeeding activities.
 Finally, Event Graphs (EG) are used to
conceptualize a system by focusing on its events. EGs
work well with Event Scheduling approach since
“Event Graphs are a way of representing the Future
Event List logic for a discrete-event model” (Buss,
2001). There are two main components of EG; nodes to
represent events and edges to represent transitions
between events. Figure 1 shows the basic structure of
EG (Roader, 2004).

Figure 1: A Basic Event Graph

 The translation of the EG in Figure 1 is as follows;
“If condition (i) is true at the instant event A occurs,
then event B will immediately be scheduled to occur t
time units in the future with variables k assigned the
values j”.

3. SHARPSIM OVERVIEW
In the second stage of our methodology an Event Graph
is translated into computer code to build a simulation
model. SharpSim is developed for this purpose.
SharpSim is an open-source Discrete Event Simulation
(DES) code library developed in C# (The code can be
accessed at http://sharpsim.codeplex.com). It
implements Event Scheduling world-view which
involves three main classes; Simulation, Event, Edge
and 3 secondary abstract classes; Entity, Resource and
Stats. The objects instantiated from these classes are
used to implement the EG drawn, as described in the
first stage of our methodology. SharpSim is appropriate
for multi threading. This is particularly helpful for
animation, for example a simulation model running as a
thread can communicate with animation classes, e.g.
updating screen objects periodically. In this section we
briefly explain how SharpSim works.

3.1. Simulation Class

Simulation class is the core of SharpSim. It
includes the main Event Scheduling algorithm and the
thread that executes the model. Number of replications
and seed number for random number generation are the
parameters of this class.

There are four properties of simulation class and
their descriptions are as follows;

• Future Event List (FEL): This collection
involves the set of events that will be executed in the
future. An instance of the event that is to be scheduled
is inserted into FEL. FEL is sorted by the due time of
the events, e.g. earliest event is on top of the list. Note
that the event scheduling simulation algorithm scans
FEL repeatedly until no events exist in FEL. After the
execution of an event, it is removed from the list.

• Clock: The clock variable keeps the simulation
time. It is handled in Run method and proceeds to the
execution time of the next event.

• Events: This collection involves the set of
events instantiated at the beginning of simulation and
provides easy manipulation of events. Note that the
events of a model are instantiated in the model class that
is coded outside of SharpSim library.

• Edges: This collection involves the set of
edges instantiated at the beginning of the simulation and
provides easy manipulation of edges as in the Events
list.

Simulation class includes two main and two
supplementary methods. Main methods are described
below. The two supplementary methods, Create Events
and Create Edges, are useful for reading event and edge
details direct from an Excel input file. Events and Edges
are instantiated and added to Events and Edges
collections.

279

• Run: The Event Scheduling algorithm is
handled in this method. It involves a loop for each
replication and another embedded loop for each event in
the future event list. The first loop iterates for a number
of replication times while the second embedded loop
iterates till termination event is executed. In the second
loop, first the clock is set to next event’s execution
time, then event is executed and at the end of the
execution it is removed from future event list.

• Start Simulation Thread: This method is used
to start simulation thread which is created when a
simulation object is instantiated.

3.2. Event Class
Event is an activity which causes a state change. The set
of events together with edges forming a system is
created at the start of the simulation and according with
interrelations among events and edges new events are
cloned and added to future event list during simulation.

The constructor of this class has four arguments;
event id, event name, priority, and event due time. If an
instance of an event class is created with an event due
time, the event is inserted to FEL directly. When more
than one event has the same execution time, a second
parameter is needed to decide which event will be
executed first. Priority provides this secondary
regulation. It is crucial to assign priorities on events
particularly in complex systems. Properties of this class
are explained below;

• Execution Time: Each event has an execution
time. The execution time of an event is mostly set
during the simulation.

• Parameter: This property is used to implement
parameter passing on edges in EGs. When an event is
executed, a parameter, either a single value such as an
integer or an object such as a customer object, can be
set into the next event. With this mechanism, for
example, individual entities can be transferred from
event to event.

• Queue: This property is used to keep the
entities that are waiting to be scheduled into the FEL.

There is one method in the Event class, Event
Executed, which is a delegate method associated with
the next event. This is the point where C# event
handling mechanism meets with the simulation’s
events. When the due time of an event comes this
method is called to schedule the next event linked to the
current event being executed. The event schedule occurs
if the condition on the edge is true. It clones a new
independent event from the following event, provides
parameter passing between edge and cloned event, and
sets its execution time and finally insert cloned event
into the FEL.

3.3. Edge Class

Edge is a link between two events. It defines relations
between events and accordingly flow of the system.
Scheduling of events is decided up to edge conditions.
Furthermore, execution times of newly cloned events
are set according with edge’s next event time value. The
constructor of this class has three parameters; name of
the edge, source event, and target event. Target events
subscribe to source events. There are three properties of
the edge class; next event time, attribute, and condition.
Next event times can be deterministic or stochastic.
Attribute is a variable which is set when parameters are
passed between events. Condition is the condition of
scheduling an event.

The modeler can create entities and resources by
inheriting from the entity and resource classes.
Additionally Stats class provides an easy output
manipulation for the simulation.

4. M/M/N SERVICE SYSTEM SIMULATION
In this section, we aim to describe how a model of an
M/M/n service system can be built using our
methodology. As stated earlier, the first stage requires
drawing an event graph of the system to be modeled.
M/M/n queuing system’s event graph is drawn in Figure
2. There are four events and six edges in this graph.

Figure 2: Event Graph of M/M/n

280

The Event Graph (EG) in Figure 2 has four events
which represent start of simulation, arrival of
customers, start of service, and end of service events in
a queuing system. The variables are ID (arriving
customers’ ID number), S (number of available
servers), and C (Customer Entity).

The explanation of this EG is as follows; When the
Run event occurs, set the ID to 1 (first customer’s ID),
the S to n (there are n servers) and create C (an instance
of Customer object). Setting the attribute of Edge [1-2]
to C is required to pass the C object to the next event.

When the Arrival event occurs you first need to
add the receiving Customer object to the next event’s
queue. Later you pull a Customer entity from the Start
Event’s queue and set this to the edge’s attribute.
Likewise, you need to create a new Customer instance
and set it to the self loop attribute. Finally, you need to
set the condition on edge between Arrival and Start
events based on S (number of available servers).

When the Start event occurs, first customer in the
Start event’s queue is removed, since it is time for that
customer to be served. Number of available servers
decremented by one and the receiving customer entity is
set as the parameter on the edge. This is to transfer the
customer to the leave (end of service) event.

Final event is Leave event. Executing a leave event
means that a customer finished the service and therefore
number of available servers (S) must be incremented by
one and a new Start event must be scheduled.
Scheduling a Start event is possible if number of
customers waiting in the queue (Q) is non-zero. Q is the
queue count of Start event (Event[3]).

4.1. Building a SharpSim model

To build a simulation model in SharpSim, a C# project
must be created. You need to create a Windows Forms
Application project in a C# compiler such as Microsoft
C# Express Edition 2008. The project must include the
SharpSim library. SharpSim Library is a DLL file
although full source code is provided and can be added
to the project.

On the default form in your project, generally
named as Form1, a variable of type Simulation, five
variables of type Event, and five variable of type Edge
are defined. You need to add a button and a richtextbox
components on to the form to create a basic user
interface. The model will run when the button is clicked
and an output will appear in the text area.

On the button’s click event, firstly you need to
instantiate your simulation model by calling Simulation
class’s constructor. The constructor has three
parameters; track list to show a default output screen,
replication number, and seed number. Secondly, events
are instantiated. An event has an ID, name, and priority
parameters. Note that these simulation events have no
due time given since all four events instantiated, and
shown in Figure 2, are dynamic event. This means that
their due time will be known during the simulation. On
the other hand, the fifth event is the Termination event,

which triggers when to stop the simulation, and has a
due time. Termination event’s due time is the
replication length of the simulation.

After creating the events, you need to add State
Change Listeners. State change listeners are related to
C# event handling mechanism and help connect
SharpSim events with C# form events, for example
when the Run event occurs in SharpSim, Run method of
the form is executed. An instance of Edge is instantiated
for every edge in Figure 2. The Edge class has three
parameters; name, source event, and target event. The
modeller can set the time distribution and the
distribution parameters on an edge by setting its “.dist”
and “.mean” properties.

After the definitions, a stats collection line can be
written, such as the delay time between arrival and
leave events. The delay between these two events
means the total time of customers in the system. And
finally, the run method of the simulation instance is
called which causes the simulation to start.

4.2. State Change Handlers

When a SharpSim event occurs, its corresponding
method in the form is also executed. These methods are
coded in the model file and inside these methods there
are state change related codes, such as incrementing
state variables and creating new entities.

Inside a state change handler, it is essential to write
code inside “evt.EventExecuted += delegate(object
obj1, EventInfoArgs e){ ...}” block. For example for
the Run event in Figure 2, write a “public void Run”
method and inside the method write the delegate line
and then set the ID variable to 1 which means that the
very first arriving customer’s ID will be 1, set the S
variable to 2 which means that we have initially 2
servers, create a new customer instance, and set the
edge between Event 1 and 2 parameter value to this new
customer.

For every event in the model, there must be a State
Change handler method in the code.

4.3. Running the model

After buiding a SharpSim model as described above, the
project is built and run. Clicking the button on the
default form will start the simulation. This means that
an instance of Simulation class, instances of events and
edges will be created. Since the starting event is Run
and scheduled to time 0, the model will start with this
event. Execution of Run event will then cause
scheduling an arrival event and in turn new arrivals will
be created and so on.

In the text area, text outputs will appear as simulation
runs. Note that any message, simulation related or not,
can be written to the text area on the form inside the
state change handlers.

281

5. CONCLUSION

In this paper we presented a methodology for building
DES models. The methodology incorporates Event
Graphs, as a conceptual modeling tool, and SharpSim, a
new Discrete Event Simulation (DES) library. The DES
library, SharpSim, is created using C# language and
allows modelers to build DES models by programming
in C#.

The SharpSim library is an implementation of event
scheduling simulation approach. It aims at translating
event graphs into simulation models easily. SharpSim is
open source and can be downloaded at
http://sharpsim.codeplex.com. The website also
includes tutorials on modeling examples.

REFERENCES
Abu-Taieh, E.M.O., El Sheikh, A.A.R. (2008).

Methodologies and Approaches in Discrete Event
Simulation

Abu-Taieh, E.M.O., El Sheikh, A.A.R. Commercial
Simulation Packages: A Comparative Study

Buss, A. (2001). Technical Notes, Basic Event Graph
Modeling.

Carson, J.S. 1993. Modeling and Simulation
Worldviews.

Pidd, M. (1998). Computer Simulation in Management
Science. Chicester, UK: John Wiley & Sons.

Roeder, T.M.K. (2004). An Information Taxonomy for
Discrete Event Simulations

Rossetti, M. D. (2008) “JSL: An Open-Source Object-
Oriented Framework for Discrete-Event
Simulation in Java”, International Journal of
Simulation and Process Modeling, vol. 4., no. 1,
pp69-87, DOI: 10.1504/ IJSPM. 2008. 020614
Evans, W.A., 1994. Approaches to intelligent
information retrieval. Information Processing and
Management, 7 (2), 147–168.

Schruben, L. (1983). Simulation Modeling with Event
Graphs. Communications of the ACM, Volume
23, Number 11.

Tocher, K. D. 1963. The art of simulation. London.
English Universities Press.

Onggo, BSS. 2009. Towards a unified conceptual
model representation: a case study in healthcare.
Journal of Simulation, 2009, 3, 40-49.

AUTHORS BIOGRAPHY
Arda Ceylan has received his MSc Naval Operations
Research degree at the Institute of Naval Science and
Engineering in Turkish Naval Academy.

Murat Gunal is an assistant professor at the department
of Industrial Engineering in Turkish Naval Academy.

282

