
AN IMPROVED TIME-LINE SEARCH ALGORITHM TO OPTIMIZE INDUSTRIAL
SYSTEMS

Miguel Mujica(a), Miquel Angel Piera(b)

(a,b)Autonomous University of Barcelona, Faculty of Telecommunications and Systems Engineering,
08193, Bellaterra, Barcelona

(a)miguelantonio.mujica@uab.es, (b)miquelangel.piera@uab.es

ABSTRACT
The coloured Petri net formalism has been used recently
to analyze and optimize industrial systems making use
of the state space analysis. This approach has great
potential to give very good results when it is properly
implemented. In this article an improved version of the
algorithm known as the time line search for optimizing
the makespan of manufacturing models is presented.
The algorithm uses a compact state space of coloured
Petri net models in order to analyze the highest possible
number of configurations.

Keywords: timed Petri nets, state space, optimization,
simulation, manufacturing.

1. INTRODUCTION
In this article an improved version of the time line
search algorithm is presented. The initial version of the
TLS (Mujica and Piera 2010) was implemented as a
heuristic to generate the state space using an algorithm
in two phases (Mujica et al. 2010). The performance of
the implementation yielded very good results when it
was implemented in models that had state spaces small
enough so they could be stored in the computer
memory. Based on those results an algorithm that
analyses and generates the compact timed state space
(CTSS) in a better way was devised. The original
algorithm, (which will be called from now on as the old
algorithm) presented some shortages that caused some
time penalties due to the node evaluation activity. The
new implementations are devised with the purpose of
overcoming those drawbacks giving as a result a better
version of the time line search algorithm. The new
algorithm has been tested with the industrial model of a
CNC eye-glass machine (Mujica and Piera 2009b)
which generates big state spaces when small workloads
are simulated.

2. TIMED COLOURED PETRI NETS
Coloured Petri Nets (CPN) is a simple yet powerful
modelling formalism which allows to properly model
discrete-event dynamic systems which present a
concurrent, asynchronous and parallel behaviour
(Moore et al. 1996, Jensen 1997). CPN is a bipartite
graph which is composed of two types of nodes: the
place nodes and the transition nodes. Place nodes are

commonly used to model system resources or logic
conditions, and transition nodes are associated to
activities of the real system. The entities that flow in the
model are known as tokens and they have attributes
known as colours. The characteristics of the formalism
allow modelling not only the dynamic behaviour of
systems but also the information flow which is a key
attribute in decision making.

In order to evaluate systems performance it is necessary
to make an extension to the formalism attaching time
stamps that determine the availability of tokens, a
global clock that represents the model time and a time
delay to transitions that model the time consumed by
the activities. Formally they can be defined as follows.

Definition 1. Timed Coloured Petri Nets (TCPN)

 TCPN = (P, T, A,∑, V, C, G, E, D, I) where

1. P is a finite set of places.

2. T is a finite set of transitions T such that P ∩ T = ∅

3. A ⊆ P ×T ∪ T×P is a set of directed arcs

4. ∑ is a finite set of non-empty colour sets.

5. V is a finite set of typed variables such that Type [υ]
∈∑ for all variables υ ∈V.

6. C: P →∑ is a colour set function assigning a colour
set to each place.

7. G: T→EXPR is a guard function assigning a guard
to each transition T such that Type [G(T)] = Boolean.

8. E: A→EXPR is an arc expression function assigning
an arc expression to each arc a, such that:
 Type [E(a)] = C(p)
Where p is the place connected to the arc a
9. D: T→EXPR is a transition expression which
assigns a delay to each transition (this delay is
commonly represented with a ‘@’ sign).

10. I is an initialization function assigning an initial
timed marking to each place p such that:
Type [I(p)] = C(p)

EXPR denotes the expressions used by the inscription
language, and TYPE[e] denotes the type of an

357

expression e ∈EXPR, i.e. the type of values obtained
when evaluating e. The set of free variables in an
expression e is denoted VAR[e] and the type of a
variable v is denoted TYPE[v].
Type [I(p)] = C(p)

In TCPN context the state of every model is also called
the timed marking which is composed by the
expressions together with their time stamps associated
to each place p and they must be closed expressions i.e.
they cannot have any free variables.

The markings are defined as follows:

Definition 2. The timed marking of a TCPN is a
function M :P EXPRT → such that MT(p)∈C(p). It
maps each place p into a multi set of values MT(p)
representing the timed marking of place p. The
individual elements of the multi set are called timed
tokens and the expressions contain also time stamps.

Definition 3. The untimed marking MU of a TCPN
model is a function M :P EXPRU → that maps each
place p into a multi set of values MU(p)∈C(p)
representing the untimed marking of place p . In this
case the expressions do not contain any time
information.

In order to fire a transition, the number of tokens in the
input place nodes (the directed arcs go from the places
to the transition) must satisfy not only the arc
inscriptions but also the restrictions imposed by the
guard expressions. Only the tokens that have time stamp
values less than or equal to the global clock participate
in the transition enabling procedure.

When a transition occurs, the output tokens will have a
time stamp tΔ time units larger than the current global
clock Gc which simulates time delay due to the
execution of an activity. The time stamp calculated by
formula (1) represents the earliest model time when the
output tokens can be used again for a new transition
firing, i.e. the token will not be available for tΔ time
units.

 ot Gc t= +Δ (1)

Where ot is the time stamp value that must be attached
to the output tokens when the transition firing takes
place, Gc is the global clock of the model when the
firing occurs and tΔ is the time associated with the
transition.

3. THE COMPACT TIMED STATE SPACE
The reachability graph is a directed graph which has
been traditionally used by scientific community for the
verification and analysis of behavioural properties of
timed and non-timed CPN models (Christensen et al.
2001, Kristensen and Mailund 2002, Wolf 2007). The
reachability graph is also known as the state space (SS)

because it generates and stores all the different
reachable states from an initial one. The SS analysis can
be performed with timed or untimed models to evaluate
properties, such as liveness, boundedness and
reachability of states among others (Jensen et al. 2001)
to determine the behaviour of the modelled system.

 In timed models each node of the SS represents a timed
marking of the TCPN model. Some authors have
developed different ways of representing the timed state
space (TSS) basing their representations on different
structural characteristics of the model (Chiola et al.
1997, Jensen et al. 2001). Those representations have
been developed in order to reduce or delay as much as
possible the state explosion problem (Valmari 1998)
without loosing the necessary analysis capabilities to
verify model properties.

The following definitions are common to almost every
state space representation.

Definition 4. Let TM be the set of timed markings of
a state space, and T

iM , T T
kM ∈M be timed markings.

A state T
kM will be called old node if it is exactly the

same (together with its time values) as one that have
been previously generated in any other level of the SS,
i.e. T

kM = T
iM

It is possible to reduce the amount of states to be
analyzed when the symmetry of the colours in the
tokens is exploited without taking into account the time
stamps of the markings. Therefore it is possible to
define a special kind of "repeated state", the symmetric
old node or S-old node.

Definition 5. Let TM be the set of timed markings of a
state space. Let T

iM and T
kM be timed markings with

their correspondent untimed markings U
iM and U

kM .

A marking T
iM is an S-old node to another T

kM
marking when the following condition holds:

 ,T T T U U
i k i kM M M M∈ ∧ =M

The representation using the S-old nodes is called the
compact timed state space (CTSS) since it is possible to
reduce the amount of space needed to store all the
information generated in the state space (Mujica et al.
2010).

Other characteristics common to the CTSS and the TSS
are:

• The root node represents the initial marking of the
system.

• The successor or children nodes correspond to the
new states or markings obtained once the enabled
transitions have been fired.

• For each node in the tree as many successor nodes
as enabling combination of tokens in the marking must
be generated.

358

• Each node is connected with its successor nodes
through directed arcs.

• The connecting arcs represent transition firings and
they also contain the information concerning the
transition fired and the tokens used in the firing.

4. NEW ALGORITHM TO GENERATE THE

CTSS
The old time line search algorithm has been developed
based on an algorithm in two steps (Mujica and Piera
2009a). It generates the CTSS making use of an
incremental variable and the firing time of every
marking is used as a key that matches the value of the
incremental variable. The main elements needed for the
algorithm are:

a) A key that is assigned to each node in the CTSS. It
will be used to determine the sequence of
evaluation. The key takes into account the global
clock when the firing takes place and the time
stamps of the marking using the following formula:
Being T

iM T∈M a timed marking, Ti its
correspondent time stamp list and Gc the global
clock of the timed marking. The function tlinek
assigns the key in the following way.

(2)

b) An incremental variable which determines the
group of nodes that must be evaluated next. The nodes
whose keys match the value of the variable will be the
ones to be evaluated next.
c) A list of node numbers with the sequence of
evaluation based on the progress measure.

Making use of these elements the state space is
generated and analyzed in two phases. The first phase
generates the CTSS following the mentioned sequence
and the second phase is used to improve the feasible
path that has been found during the first phase.

Since the constructed CTSS is event-driven (Mujica and
Piera 2009a), the markings to be evaluated are those
that occur closest to the current global clock. Based
upon this characteristic, the states with a firing time
value greater than the current global value will not be
evaluated until the progress value reaches the value of
the firing time of the group. The latter situation caused
in the old version of the TLS algorithm that the
evaluation of some S-old nodes with good potential was
delayed even if they would be fired with a global time
earlier than the one from the already generated node.
Figure 1 illustrates the situation when an S-old node
with good potential was forced to a later evaluation.

Figure 1: Generation of the SS (drawback)

This figure represents a compact timed state space. The
nodes in the figure are being evaluated in order of
appearance but the sequence of evaluation depends on
the value of the time variable. The first group of nodes
(nodes #1,#2,#3,#4,#5,#6 and #8) have been evaluated
when the time variable had the value of 0 units. If we
put focus on node #6, during its evaluation it generated
nodes #12 and #13. In the case of node #12 the firing
time was 6 time units while the node #13 was 1 time
unit. In the case of node #2 it generated node #7 at a
firing time of 1 unit. When all the nodes of the 0-time
group were evaluated, the time variable (Time Var)
headed to the next value (1 time unit). The second
group of nodes was evaluated starting in node #7 which
in this case generated the S-old node #12 and the node
#16. If we put focus on the S-old node #12 it can be
appreciated that it had been already generated by node
#6 which produced it at a firing time of 6 units while
the same S-old node can be generated by node #7 with a
time value of 2 time units!.

The latter situation illustrates the shortage that was
incurred by the old algorithm. In order to follow the
principle of the time line, node #12 should have been
evaluated when the leading variable reached 2 time
units instead of 6 which happened with the old
approach. The first improvement to the new algorithm
aims to overcome this shortage, and it is explained in
the following subsection.

4.1. IMPROVEMENT A: UPDATING THE TIME
LINE

A procedure which analyzes on-the-fly whether a node
is better or not has been developed in order to avoid the
shortage discussed in the previous sub-section.
The improved algorithm will use the same elements of
the old TLS algorithm but during the evaluation it will

Ti
m

e

 V
ar

ia
bl

e

1

T1@0 T1@0 T2@0 T2@0

T2@0

T3@1

T2@0

T3@1

T1@0

T4@6

T1@0

T4@6

T3@6
T4@2

T1@1T2@1

T3
@1

T4@6

T1@1
T2@1

T1@10

0

1

2

6

10

2 43 5

6

9

14

8

7

171613

12

15 10 11

18

T3@2
T3@2

19

Time Var= 1

T3@6

{ }{ }1

:

(,) ,..., ,

k
k

i i ik

tline

T Gc Max Min T T Gc

× →N N N

359

verify that the firing time of the correspondent nodes is
certainly the smallest one.
 The verification is performed every time a group of
nodes has been evaluated. Therefore it is assured that
the firing times used so far have the earliest values.
Figure 2 illustrates graphically the procedure performed
by the algorithm to overcome the shortage.

Figure 2: Generation of SS (overcoming the shortage)

Figure 2A represents the state space when the time

variable has the value 0. During this instant of time the
first nodes to be evaluated are nodes #1, #2, #3 #4 and
#5 which generate nodes #6 to #15. During these
evaluations nodes #6 and #8 are generated with a firing
time of 0 units. The time variable value will not change
until all the nodes that fall in the group of 0-firing-time
value have been evaluated including nodes #6 and #8
(which were generated during the first evaluation). The

rest of the nodes take their place in the list waiting for
their evaluation time to come.

 When all the nodes of the 0-firing-time value
group have been evaluated, the S-old nodes generated
so far (the gray-shaded nodes in the figure) must be
analyzed in order to determine if they have the smallest
firing-time value for the successive evaluations. In
Figure 2A the S-old nodes #6 and #8 are generated with
the 0-firing-time value from their father nodes.

Figure 2B represents the next step in the evaluation
procedure, the time variable heads to the new value (1
time unit). The group that matches the new time value is
evaluated following the sequence #7,#9,#13 and node
#14. The resulting state space from that evaluation
sequence is illustrated in Figure 2B. It can be
appreciated that four new S-old nodes have been
generated during this evaluation, nodes #10, #12, #14
and #19.

 In this figure, node #12 represents the S-old node
that has been generated when node #6 was evaluated.

When all the nodes from the group of 1-firing-time
value have been evaluated, the firing times of the new
S-old nodes are verified in order to ensure that the firing
time value is the smallest possible:

• The algorithm takes the list of the S-old nodes

and makes a comparison between the firing
times of the nodes that generate an S-old node.

• If it is found a firing time that is less than the
original firing time, it will update the time
values of the found node (time stamps and
global time) and the information related to the
father node that generated the node will be
replaced with the one that produce the best
time values. If the node has not been evaluated
yet it will be removed from the group that
originally belonged to and it will take its
position into the new group. In the case of
node #12 its father node will be changed from
node #6 to node #7, Figure 2C.

• If the node has been already processed then it
will update its time values and afterwards it
will update the time values of the branch that
hangs from the node.

Implementing this analysis strategy, it is ensured

that the evaluated nodes in the generation phase of the
CTSS use the smallest time values.

It can be argued that the branch-updating operation
would need a lot of operations in order to perform the
updating; but it is expected that the number of nodes to
be updated are few since they have been evaluated
accordingly to the progress measure, therefore the
branch is not big compared to the total amount of nodes
to be generated.

4.2. IMPROVEMENT B: Differentiating similar

markings
A problem arises when there are groups of nodes

that result difficult to distinguish based upon their

Ti
m

e

 V
ar

ia
bl

e

1

T1@0 T1@0 T2@0 T2@0

T2@0

T3@1

T2@0

T3@1

T1@0

T4@6

T1@0

T4@6

T3@6
T4@2

T2@1
T3@1

T4@6

T1@10

0

1

2

6

10

2 43 5

6

9

14

8

7

13

12

15 10 11

Time Var= 0

Ti
m

e

 V
ar

ia
bl

e

1

T1@0 T1@0 T2@0 T2@0

T2@0

T3@1

T2@0

T3@1

T1@0

T4@6

T1@0

T4@6

T3@6
T4@2

T1@1T2@1

T3
@1

T4@6

T1@1
T2@1

T1@10

0

1

2

6

10

2 43 5

6

9

14

8

7

171613

12

15 10 11

18

T3@2
T3@2

19

Time Var= 1

T3@6

Ti
m

e

 V
ar

ia
bl

e

1

T1@0 T1@0 T2@0 T2@0

T2@0

T3@1

T2@0

T3@1

T1@0

T4@6

T1@0

T4@6
T3@6

T4@2

T1@1T2@1

T3
@1

T4@6

T1@1
T2@1

T1@10

0

1

2

6

10

2 43 5

6

9

14

8

7

171613

12

15 10 11

18

T3@2
T3@2

19

Time Var= 1

T3@6

A)

B)

C)

360

potential to improve the final node. Due to this
condition it is not an easy task to decide which father
node must be maintained for the subsequent
evaluations. The latter situation shows up when two
states are fired at the same global time and the
operations take similar time; in that case the resulting
markings will represent different logistic states but the
time stamps of both markings will have similar values.
In order to establish a difference between the conflicting
nodes the following implementation was developed:

• If two states have the same firing time, the one

with the earliest time stamp will be selected.
This action assumes that this token will be
ready earlier than the one from the other state.

• If the two characteristics hold (the firing time
is the same and the earliest time stamp is the
same) then it will be selected the second
earliest time stamp and so on until it is found
one time stamp that differentiate both
markings.

The previous implementation assumes that all the
tokens that compose the markings have the same
probability of enabling a transition of the model. Figure
3 gives an example of the developed procedure to
distinguish between two nodes.

Figure 3: Differentiating two markings

In this example the S-old node #8 can be generated

from nodes #4 and #5. Both nodes have the same firing
time (3 time units) therefore they can only be
differentiated evaluating their time stamps. Using the
previous approach, the time stamp values that are taken
into account for the decision have the values 3,4,5 for
the S-old node that can be generated from node #4 and
3,5,6 for the S-old node that can be generated from node
#5. The time stamp that differentiates both nodes is the
second one thus in this example node #8 would be
evaluated using the time values generated from node #4.
If the S-old node #8 were originally generated from
another node than node #4 then node #8 would be

updated with the new time values. If the node has not
been evaluated yet then the updating process ends in
that node; if there were a sub branch that hanged from
the node then the time values of the complete branch
must have be updated.

4.3. Algorithm of the improved time line algorithm
In this section the flowchart of the new time line
algorithm is presented.

Figure 4: Improved time line search algorithm

This algorithm presents some advantages that

come from the old algorithm and from the one in two-
phases (Mujica and Piera 2009a):

• Good information management to store all the

generated information
• Property verification can be performed prior to

the optimization phase
• Good initial feasible path

1

2
3

4 5 6

7 8 9 10 11

4 :T1@3 [2’(3,4)@3,5 , 1’(1)@4 + 1’(2)@5 , 0 , 0]

5 : T3@3 [2’(3,4)@3,6 , 1’(1)@5 + 1’(2)@6 , 0 , 0]

Start •Initial Marking
•Objective Marking

Processing of the
Initial Marking

•LIST 1: New and
Processed States

•LIST 2: S-old nodes
(initially empty)

processed all the
Nodes of the same group?

NO

YES

END

S-old node
Analysis

Time Variable
Initial Setting

Processing of a
non-evaluated node

within the group

•Detection of S-old nodes
•Generation of new states
•State-addition to
the corresponding lists
•Objective marking
Evaluation
•Property Verif ication

Consistency Evaluation
of the Time Line

•Verif ication of f iring times
•Sub-branch updatings
•Path Updatings

Time variable
advance

Stop Criteria satisf ied?

YES

NO

•Analysis of undecided
nodes
•Path Updatings

Results

361

 The consistency evaluation step of the time line
verifies if the S-old nodes to be evaluated certainly have
the smallest possible firing time. If that is not the case
the correspondent time value switching is performed
and the sub-branches are updated if there are any.

 The S-old node analysis step of Figure 4 evaluates
in a second phase the generated S-old node list in order
to optimize the feasible path whenever is needed. In this
case it is fair to mention that the initial path can be used
if a fast response of the algorithm is needed (Mujica and
Piera 2010).

4.4. Experimental Results
In order to verify the improvements achieved with the
new algorithm, it has been tested with small workloads
of the CNC machine (Mujica and Piera 2009b). The
proposed workloads are small enough to be stored in the
computer memory therefore the achievements can be
appreciated when a comparison is made testing three
different algorithms: the two phase algorithm, the old
TLS algorithm and the new one. Table 1 presents the
results obtained from the performed optimizations.

Table 1: Obtained results from the benchmark

It can be appreciated that making the

implementations presented in this article the new TLS
algorithm gives a better makespan. It can also be
appreciated that in all the presented cases the new
algorithm outperforms the previous ones.

5. CONCLUSIONS AND FUTURE WORK
The scheduling of industrial systems is a challenging
problem due to the combinatorial nature present in most
of them. The experiments with a timed coloured Petri
net model of a CNC machine shows that the makespan
is improved when the nodes are evaluated on a smallest-
firing-time basis. The implementations presented in this
article are crucial in order to develop an approach such
as the time line search algorithm which uses the CTSS
as the search space for performing the optimization of
the makespan of industrial models.

In order to have the capacity to evaluate big state
spaces a garbage collection algorithm for the CTSS is
needed. This algorithm is being part of the current
research of the authors.

REFERENCES

Chiola, G., Dutheillet, C., Franceschinis, G., Haddad,

S., 1997. A Symbolic Reachability Graph for
Coloured Petri Nets. Journal of Theoretical
Computer Science, vol.176 (1-2), pp. 39-65.

Christensen, S., Jensen, K., Mailund, T., Kristensen,
L.M., 2001. State Space Methods for Timed
Coloured Petri Nets. Proc. of 2nd International
Colloquium on Petri Net Technologies for
Modelling Communication Based Systems, pp. 33-
42, Berlin.

Jensen, K., 1997. Coloured Petri Nets: Basic Concepts,
Analysis Methods and Practical Use. vol. 1
Springer-Verlag, Berlin.

Jensen K., T. Mailund, L.M. Kristensen,2001. State
Space Methods for Timed Coloured Petri Nets.
Proceedings of 2nd Intenational Colloquium on
Petri Net Technologies for Modelling
Comunication Based Systems, Berlin

Kristensen, L.M., Mailund, T., 2002. A Generalized
Sweep-Line Method for Safety Properties. FME,
Springer-Verlag, pp. 549-567, Berlin- Heidelberg.

Moore, K.E., Gupta, S.M., 1996. Petri Net Models of
Flexible and Automated Manufacturing Systems:
A Survey. International Journal of Production
Research, Vol. 34(11), pp. 3001-3035.

Mujica, M.A., Piera M.A., (2009a). A Two Step
Algorithm to Improve Systems Optimization based
on the State Space Exploration for Timed
Coloured Petri Net Models. Proc. of the
TiStoWorkshop, Paris, France, pp.47-61.

Mujica, M.A., Piera M.A., (2009b). Performance
Optimization of a CNC Machine through
exploration of Timed State Space. Proc. of the
International Modelling Multiconference (I3M),
Tenerife, Spain, pp.20-25, 23-25 Sept.

Mujica M.A., Piera M.A., Narciso M., 2010. Revisiting
state space exploration of timed coloured petri net
models to optimize manufacturing system's
performance. Simulation Modelling Practice and
Theory, Vol.18, 9, p.p. 1225-1241.

Mujica M.A., Piera M.A., 2010. Time Line Search for
the State Space-based Optimization Algorithm for
Timed Coloured Petri Nets. Proc. of MCPL
IFAC’10, Coimbra, Portugal, 8-10 Sep 2010.

Valmari, A.,1998. The State Explosion Problem.
Lecture Notes in Computer Science, vol. 1491,
Springer-Verlag, London, pp. 429-528.

Wolf, K., 2007. Generating Petri Net State Spaces.
Proc. of the 28th int. conf. on applications and
theory of Petri nets and other models of
concurrency, pp.29-42, Springer.

Final Marking of the
Buckets Place node

Obtained
Makespan

DFS Approach

Obtained
Makespan

Old TLS Approach
New TLS

Implementation

Structural
Information of

the CTSS

Buckets:
2’(1,1,1,2,6,6,215,220)

1,039 sec. 635 sec. 590 sec.

No. Nodes: 19,232
No. Arcs:59,610
No. OLD
Nodes:15,431
Levels: 53

Buckets:
3’(1,1,1,2,6,6,215,220)

1,335 sec. 960 sec. 833 sec

No. Nodes:
172,242
No. Arcs:765,177
No. OLD
Nodes:145,911
Levels: 84

Buckets:
2’(1,1,1,2,6,6,215,220)
+1’(2,1,3,4,6,6,120,120)

955 sec. 821 sec. 720 sec

No. Nodes:
562,799
No. Arcs:1,800,951
No. OLD
Nodes:471,939
Levels: 81

Buckets:
2’(1,1,1,2,6,6,215,220)
+1’(2,1,3,4,6,6,120,120)
+1’(3,1,5,6,6,6,540,540)

1,913 sec.
(500,000nodes

explored)
Unable to reach the

Objective State
Unable to reach

the Objective
State

No. Nodes: ---
No.
Arcs:>2,541,330
No. OLD
Nodes:>676,223
Levels: 105

362

