
AN IMPROVED TIME-LINE SEARCH ALGORITHM TO OPTIMIZE INDUSTRIAL 
SYSTEMS 

 
Miguel Mujica(a), Miquel Angel Piera(b) 

 
 

(a,b)Autonomous University of Barcelona, Faculty of Telecommunications and Systems Engineering, 
08193, Bellaterra, Barcelona 

 
(a)miguelantonio.mujica@uab.es, (b)miquelangel.piera@uab.es 

 
 
 
 
ABSTRACT 
The coloured Petri net formalism has been used recently 
to analyze and optimize industrial systems making use 
of the state space analysis. This approach has great 
potential to give very good results when it is properly 
implemented. In this article an improved version of the 
algorithm known as the time line search for optimizing 
the makespan of manufacturing models is presented. 
The algorithm uses a compact state space of coloured 
Petri net models in order to analyze the highest possible 
number of configurations. 

 
Keywords: timed Petri nets, state space, optimization, 
simulation, manufacturing. 

 
1. INTRODUCTION 
In this article an improved version of the time line 
search algorithm is presented. The initial version of the 
TLS (Mujica and Piera 2010) was implemented as a 
heuristic to generate the state space using an algorithm 
in two phases (Mujica et al. 2010). The performance of 
the implementation yielded very good results when it 
was implemented in models that had state spaces small 
enough so they could be stored in the computer 
memory. Based on those results an algorithm that 
analyses and generates the compact timed state space 
(CTSS) in a better way was devised. The original 
algorithm, (which will be called from now on as the old 
algorithm) presented some shortages that caused some 
time penalties due to the node evaluation activity. The 
new implementations are devised with the purpose of 
overcoming those drawbacks giving as a result a better 
version of the time line search algorithm. The new 
algorithm has been tested with the industrial model of a 
CNC eye-glass machine (Mujica and Piera 2009b) 
which generates big state spaces when small workloads 
are simulated.  

 
2. TIMED COLOURED PETRI NETS 
Coloured Petri Nets (CPN) is a simple yet powerful 
modelling formalism which allows to properly model 
discrete-event dynamic systems which present a 
concurrent, asynchronous and parallel behaviour 
(Moore et al. 1996, Jensen 1997). CPN is a bipartite 
graph which is composed of two types of nodes: the 
place nodes and the transition nodes. Place nodes are 

commonly used to model system resources or logic 
conditions, and transition nodes are associated to 
activities of the real system. The entities that flow in the 
model are known as tokens and they have attributes 
known as colours. The characteristics of the formalism 
allow modelling not only the dynamic behaviour of 
systems but also the information flow which is a key 
attribute in decision making.  

In order to evaluate systems performance it is necessary 
to make an extension to the formalism attaching time 
stamps that determine the availability of tokens, a 
global clock that represents the model time and a time 
delay to transitions that model the time consumed by 
the activities. Formally they can be defined as follows. 

Definition 1. Timed Coloured Petri Nets (TCPN) 

 TCPN = (P, T, A,∑, V, C, G, E, D, I) where 

1. P is a finite set of places. 

2. T is a finite set of transitions T such that P ∩ T = ∅  

3. A ⊆ P ×T ∪ T×P is a set of directed arcs 

4. ∑ is a finite set of non-empty colour sets. 

5. V is a finite set of typed variables such that Type [υ ] 
∈∑ for all variables υ ∈V. 

6. C: P →∑ is a colour set function assigning a colour 
set to each place. 

7. G: T→EXPR is a guard function assigning a guard 
to each transition T such that Type [G(T)] = Boolean. 

8. E: A→EXPR is an arc expression function assigning 
an arc expression to each arc a, such that: 
   Type [E(a)] = C(p) 
Where p is the place connected to the arc a 
9. D: T→EXPR is a transition expression which 
assigns a delay to each transition (this delay is 
commonly represented with a ‘@’ sign). 

10. I is an initialization function assigning an initial 
timed marking to each place p such that: 
Type [I(p)] = C(p) 
 
EXPR denotes the expressions used by the inscription 
language, and TYPE[e] denotes the type of an 
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expression e ∈EXPR, i.e. the type of values obtained 
when evaluating e. The set of free variables in an 
expression e is denoted VAR[e] and the type of a 
variable v is denoted TYPE[v]. 
Type [I(p)] = C(p) 

In TCPN context the state of every model is also called 
the timed marking which is composed by the 
expressions together with their time stamps associated 
to each place p and they must be closed expressions i.e. 
they cannot have any free variables.  

The markings are defined as follows:  

Definition 2. The timed marking of a TCPN is a 
function M :P EXPRT → such that MT(p)∈C(p). It 
maps each place p into a multi set of values MT(p) 
representing the timed marking of place p. The 
individual elements of the multi set are called timed 
tokens and the expressions contain also time stamps. 
 

Definition 3. The untimed marking MU of a TCPN 
model is a function M :P EXPRU → that maps each 
place p into a multi set of values MU(p)∈C(p) 
representing the untimed marking of place p . In this 
case the expressions do not contain any time 
information. 

In order to fire a transition, the number of tokens in the 
input place nodes (the directed arcs go from the places 
to the transition) must satisfy not only the arc 
inscriptions but also the restrictions imposed by the 
guard expressions. Only the tokens that have time stamp 
values less than or equal to the global clock participate 
in the transition enabling procedure. 

When a transition occurs, the output tokens will have a 
time stamp  tΔ  time units larger than the current global 
clock Gc which simulates time delay due to the 
execution of an activity. The time stamp calculated by 
formula (1) represents the earliest model time when the 
output tokens can be used again for a new transition 
firing, i.e. the token will not be available for tΔ   time 
units.  

      ot Gc t= +Δ                  (1) 

Where ot is the time stamp value that must be attached 
to the output tokens when the transition firing takes 
place, Gc is the global clock of the model when the 
firing occurs and tΔ  is the time associated with the 
transition. 

 

3. THE COMPACT TIMED STATE SPACE 
The reachability graph is a directed graph which has 
been traditionally used by scientific community for the 
verification and analysis of behavioural properties of 
timed and non-timed CPN models (Christensen et al. 
2001, Kristensen and Mailund 2002, Wolf 2007). The 
reachability graph is also known as the state space (SS) 

because it generates and stores all the different 
reachable states from an initial one. The SS analysis can 
be performed with timed or untimed models to evaluate 
properties, such as liveness, boundedness and 
reachability of states among others (Jensen et al. 2001) 
to determine the behaviour of the modelled system.  

 In timed models each node of the SS represents a timed 
marking of the TCPN model. Some authors have 
developed different ways of representing the timed state 
space (TSS) basing their representations on different 
structural characteristics of the model (Chiola et al. 
1997, Jensen et al. 2001). Those representations have 
been developed in order to reduce or delay as much as 
possible the state explosion problem (Valmari 1998) 
without loosing the necessary analysis capabilities to 
verify model properties. 

The following definitions are common to almost every 
state space representation. 

Definition 4. Let  TM  be the set of timed markings of 
a state space, and T

iM  , T T
kM ∈M  be timed markings. 

A state  T
kM  will be called old node if it is exactly the 

same (together with its time values) as one that have 
been previously generated in any other level of the SS, 
i.e.  T

kM = T
iM  

It is possible to reduce the amount of states to be 
analyzed when the symmetry of the colours in the 
tokens is exploited without taking into account the time 
stamps of the markings. Therefore it is possible to 
define a special kind of "repeated state", the symmetric 
old node or S-old node. 

Definition 5.  Let TM  be the set of timed markings of a 
state space. Let T

iM and T
kM  be timed markings with 

their correspondent untimed markings U
iM and U

kM . 

A marking T
iM  is an S-old node to another T

kM  
marking when the following condition holds: 

  ,T T T U U
i k i kM M M M∈ ∧ =M   

The representation using the S-old nodes is called the 
compact timed state space (CTSS) since it is possible to 
reduce the amount of space needed to store all the 
information generated in the state space (Mujica et al. 
2010).   

Other characteristics common to the CTSS and the TSS 
are: 

• The root node represents the initial marking of the 
system. 

• The successor or children nodes correspond to the 
new states or markings obtained once the enabled 
transitions have been fired. 

• For each node in the tree as many successor nodes 
as enabling combination of tokens in the marking must 
be generated. 
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• Each node is connected with its successor nodes 
through directed arcs. 

• The connecting arcs represent transition firings and 
they also contain the information concerning the 
transition fired and the tokens used in the firing. 

 
4. NEW ALGORITHM TO GENERATE THE 

CTSS 
The old time line search algorithm has been developed 
based on an algorithm in two steps (Mujica and Piera 
2009a). It generates the CTSS making use of an 
incremental variable and the firing time of every 
marking is used as a key that matches the value of the 
incremental variable. The main elements needed for the 
algorithm are: 

a) A key that is assigned to each node in the CTSS. It 
will be used to determine the sequence of 
evaluation. The key takes into account the global 
clock when the firing takes place and the time 
stamps of the marking using the following formula: 
Being T

iM T∈M a timed marking, Ti its 
correspondent time stamp list and Gc the global 
clock of the timed marking. The function tlinek 
assigns the key in the following way. 

(2) 
 

b) An incremental variable which determines the 
group of nodes that must be evaluated next. The nodes 
whose keys match the value of the variable will be the 
ones to be evaluated next. 
c) A list of node numbers with the sequence of 
evaluation based on the progress measure. 
 

Making use of these elements the state space is 
generated and analyzed in two phases. The first phase 
generates the CTSS following the mentioned sequence 
and the second phase is used to improve the feasible 
path that has been found during the first phase. 

Since the constructed CTSS is event-driven (Mujica and 
Piera 2009a), the markings to be evaluated are those 
that occur closest to the current global clock. Based 
upon this characteristic, the states with a firing time 
value greater than the current global value will not be 
evaluated until the progress value reaches the value of 
the firing time of the group. The latter situation caused 
in the old version of the TLS algorithm that the 
evaluation of some S-old nodes with good potential was 
delayed even if they would be fired with a global time 
earlier than the one from the already generated node.  
Figure 1 illustrates the situation when an S-old node 
with good potential was forced to a later evaluation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Generation of the SS (drawback) 
 
This figure represents a compact timed state space. The 
nodes in the figure are being evaluated in order of 
appearance but the sequence of evaluation depends on 
the value of the time variable. The first group of nodes 
(nodes #1,#2,#3,#4,#5,#6 and #8) have been evaluated 
when the time variable had the value of 0 units. If we 
put focus on node #6, during its evaluation it generated 
nodes #12 and #13. In the case of node #12 the firing 
time was 6 time units while the node #13 was 1 time 
unit. In the case of node #2 it generated node #7 at a 
firing time of 1 unit. When all the nodes of the 0-time 
group were evaluated, the time variable (Time Var) 
headed to the next value (1 time unit). The second 
group of nodes was evaluated starting in node #7 which 
in this case generated the S-old node #12 and the node 
#16. If we put focus on the S-old node #12 it can be 
appreciated that it had been already generated by node 
#6 which produced it at a firing time of 6 units while 
the same S-old node can be generated by node #7 with a 
time value of 2 time units!.  

The latter situation illustrates the shortage that was 
incurred by the old algorithm. In order to follow the 
principle of the time line, node #12 should have been 
evaluated when the leading variable reached 2 time 
units instead of 6 which happened with the old 
approach. The first improvement to the new algorithm 
aims to overcome this shortage, and it is explained in 
the following subsection. 

4.1. IMPROVEMENT A: UPDATING THE TIME 
LINE 

A procedure which analyzes on-the-fly whether a node 
is better or not has been developed in order to avoid the 
shortage discussed in the previous sub-section.  
The improved algorithm will use the same elements of 
the old TLS algorithm but during the evaluation it will 
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verify that the firing time of the correspondent nodes is 
certainly the smallest one.  
 The verification is performed every time a group of 
nodes has been evaluated. Therefore it is assured that 
the firing times used so far have the earliest values. 
Figure 2 illustrates graphically the procedure performed 
by the algorithm to overcome the shortage. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Generation of SS (overcoming the shortage) 
 
Figure 2A represents the state space when the time 

variable has the value 0. During this instant of time the 
first nodes to be evaluated are nodes #1, #2, #3 #4 and 
#5 which generate nodes #6 to #15. During these 
evaluations nodes #6 and #8 are generated with a firing 
time of 0 units. The time variable value will not change 
until all the nodes that fall in the group of 0-firing-time 
value have been evaluated including nodes #6 and #8 
(which were generated during the first evaluation). The 

rest of the nodes take their place in the list waiting for 
their evaluation time to come. 

 When all the nodes of the 0-firing-time value 
group have been evaluated, the S-old nodes generated 
so far (the gray-shaded nodes in the figure) must be 
analyzed in order to determine if they have the smallest 
firing-time value for the successive evaluations. In 
Figure 2A the S-old nodes #6 and #8 are generated with 
the 0-firing-time value from their father nodes.  

Figure 2B represents the next step in the evaluation 
procedure, the time variable heads to the new value (1 
time unit). The group that matches the new time value is 
evaluated following the sequence #7,#9,#13 and node 
#14. The resulting state space from that evaluation 
sequence is illustrated in Figure 2B. It can be 
appreciated that four new S-old nodes have been 
generated during this evaluation, nodes #10, #12, #14 
and #19.  

 In this figure, node #12 represents the S-old node 
that has been generated when node #6 was evaluated.  

When all the nodes from the group of 1-firing-time 
value have been evaluated, the firing times of the new 
S-old nodes are verified in order to ensure that the firing 
time value is the smallest possible: 

 
• The algorithm takes the list of the S-old nodes 

and makes a comparison between the firing 
times of the nodes that generate an S-old node.  

• If it is found a firing time that is less than the 
original firing time, it will update the time 
values of the found node (time stamps and 
global time) and the information related to the 
father node that generated the node will be 
replaced with the one that produce the best 
time values. If the node has not been evaluated 
yet it will be removed from the group that 
originally belonged to and it will take its 
position into the new group. In the case of 
node #12 its father node will be changed from 
node #6 to node #7, Figure 2C.  

• If the node has been already processed then it 
will update its time values and afterwards it 
will update the time values of the branch that 
hangs from the node. 

 
Implementing this analysis strategy, it is ensured 

that the evaluated nodes in the generation phase of the 
CTSS use the smallest time values. 

It can be argued that the branch-updating operation 
would need a lot of operations in order to perform the 
updating; but it is expected that the number of nodes to 
be updated are few since they have been evaluated 
accordingly to the progress measure, therefore the 
branch is not big compared to the total amount of nodes 
to be generated. 
 
4.2. IMPROVEMENT B: Differentiating similar 

markings 
A problem arises when there are groups of nodes 

that result difficult to distinguish based upon their 
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potential to improve the final node. Due to this 
condition it is not an easy task to decide which father 
node must be maintained for the subsequent 
evaluations. The latter situation shows up when two 
states are fired at the same global time and the 
operations take similar time; in that case the resulting 
markings will represent different logistic states but the 
time stamps of both markings will have similar values. 
In order to establish a difference between the conflicting 
nodes the following implementation was developed: 

 
• If two states have the same firing time, the one 

with the earliest time stamp will be selected. 
This action assumes that this token will be 
ready earlier than the one from the other state.  

• If the two characteristics hold (the firing time 
is the same and the earliest time stamp is the 
same) then it will be selected the second 
earliest time stamp and so on until it is found 
one time stamp that differentiate both 
markings. 

 
The previous implementation assumes that all the 
tokens that compose the markings have the same 
probability of enabling a transition of the model. Figure 
3 gives an example of the developed procedure to 
distinguish between two nodes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Differentiating two markings 
 
 
In this example the S-old node #8 can be generated 

from nodes #4 and #5. Both nodes have the same firing 
time (3 time units) therefore they can only be 
differentiated evaluating their time stamps. Using the 
previous approach, the time stamp values that are taken 
into account for the decision have the values 3,4,5 for 
the S-old node that can be generated from node #4 and 
3,5,6 for the S-old node that can be generated from node 
#5. The time stamp that differentiates both nodes is the 
second one thus in this example node #8 would be 
evaluated using the time values generated from node #4. 
If the S-old node #8 were originally generated from 
another node than node #4 then node #8 would be 

updated with the new time values.  If the node has not 
been evaluated yet then the updating process ends in 
that node; if there were a sub branch that hanged from 
the node then the time values of the complete branch 
must have be updated.  

 
4.3. Algorithm of the improved time line algorithm 
In this section the flowchart of the new time line 
algorithm is presented. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Improved time line search algorithm 
 
This algorithm presents some advantages that 

come from the old algorithm and from the one in two-
phases (Mujica and Piera 2009a): 

 
• Good information management to store all the 

generated information 
• Property verification can be performed prior to 

the optimization phase 
• Good initial feasible path 
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 The consistency evaluation step of the time line 
verifies if the S-old nodes to be evaluated certainly have 
the smallest possible firing time. If that is not the case 
the correspondent time value switching is performed 
and the sub-branches are updated if there are any. 

 The S-old node analysis step of Figure 4 evaluates 
in a second phase the generated S-old node list in order 
to optimize the feasible path whenever is needed. In this 
case it is fair to mention that the initial path can be used 
if a fast response of the algorithm is needed (Mujica and 
Piera 2010). 
 
4.4. Experimental Results 
In order to verify the improvements achieved with the 
new algorithm, it has been tested with small workloads 
of the CNC machine (Mujica and Piera 2009b). The 
proposed workloads are small enough to be stored in the 
computer memory therefore the achievements can be 
appreciated when a comparison is made testing three 
different algorithms: the two phase algorithm, the old 
TLS algorithm and the new one. Table 1 presents the 
results obtained from the performed optimizations. 

 
Table 1: Obtained results from the benchmark 
 
 
 
 
 
 
 
 
 
 
 
 

 
It can be appreciated that making the 

implementations presented in this article the new TLS 
algorithm gives a better makespan. It can also be 
appreciated that in all the presented cases the new 
algorithm outperforms the previous ones.  

 
5. CONCLUSIONS AND FUTURE WORK 
The scheduling of industrial systems is a challenging 
problem due to the combinatorial nature present in most 
of them. The experiments with a timed coloured Petri 
net model of a CNC machine shows that the makespan 
is improved when the nodes are evaluated on a smallest-
firing-time basis. The implementations presented in this 
article are crucial in order to develop an approach such 
as the time line search algorithm which uses the CTSS 
as the search space for performing the optimization of 
the makespan of industrial models. 

In order to have the capacity to evaluate big state 
spaces a garbage collection algorithm for the CTSS is 
needed. This algorithm is being part of the current 
research of the authors. 
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