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Abstract--Scheduling of job-shop is very important in the fields 
of production management and combinatorial optimization. 
This paper proposes a method for solving general job-shop 
scheduling problems based on hybridized algorithm that 
combines a genetic algorithm with a taboo search in two 
distinct phases research. In the first phase an operations-coded 
genetic algorithm is used to find an elite population. The set of 
elite solutions obtained from the first phase acts as the initial 
population of the second phase, in which a taboo search 
algorithm is applied to each one of them to intensify the 
research. The effectiveness of this algorithm is confirmed by 
applying it to a set of benchmarks with the makespan as the 
objective function. The results obtained show that local search 
applied at the final population can improve greatly the 
research. 

Index Terms-- Job-Shop Scheduling, Hybrid Meta-
Heuristic, Genetic Algorithm, Local Search, Taboo 
Search.

INTRODUCTION

The job-shop scheduling problem (JSSP) plays an 
important role in the scheduling theory and finds many 
practical applications. It deals with the sequencing of a set 
of jobs on a set of machines, in order to minimize an 
objective function [9]. For years, job-shop scheduling has 
attracted the attention of many researchers in the fields of 
both production management and combinatorial 
optimization. Efficient methods for solving the JSSP have 
significant effects on performance of production system. It 
has been demonstrated that this problem is usually an NP-
complete (nondeterministic polynomial time complete) 
problem [5]. An indication for this is that one 10x10 
problem formulated by Muth & Thompson in 1963 [10] 
remained unsolved for twenty years [12]. For this hardiness, 
exact methods become quickly inapplicable in practice. 
Instead, it is often preferred to use approximation 
algorithms such as heuristics and meta-heuristics e.g. 
simulated annealing, genetic algorithms, and taboo search.

In recent years, much attention has been devoted to four 
general heuristics: simulated annealing (SA), taboo search 
(TS), genetic algorithm (GA), and neural network (NN) 
[13]. These methods are capable of providing high-quality 
solutions with reasonable computational effort. However, 
the problem is hard that cannot be solved efficiently by 
applying any single technique and a great deal of research 
have focused on hybrid methods [14]. Several authors 
pointed out that the performance of genetic algorithm on 
some combinatorial optimization problems was a bit 
inferior to that of neighborhood search algorithms (e.g., 
local search, simulated annealing and taboo search). Hybrid 
methods of genetic algorithms and those neighborhood 
search algorithms were proposed, and their high 
performance was reported [6].

In this paper, we propose a genetic local search 
algorithm to improve the search process, the proposed 
algorithm acts in two phases. In the first one, a genetic 
algorithm is developed to find a set of best solutions. In the 
second, a local search algorithm with a memory has to 
intensify the research around each solution to improve it. 
The performance of the algorithm will be assessed through 
an experimental analysis with a set of benchmark problems. 
The remainder of this paper is organized as follows: in the 
next section we describe the problem of general job-shop 
scheduling to be solved. In section 3 we describe the 
proposed algorithm and its process. A numerical experiment 
is presented in the section 4.

PROBLEM DESCRIPTION

The problem studied in this paper is a deterministic and 
static n-job, m-machine job-shop scheduling problem 
(JSSP). The aim behind is to optimally allocate different 
operations for each job across a set of machines respecting 
temporal and resource constraints. This problem is 
formulated as follows:

There are n jobs J1,..., Jn to be scheduled on m machines 
M1,..., Mm. Each job j consists of a sequence of nj operations 
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Oij (i = 1, . . . , nj) that must be processed on the m machines 
in a given order O1j - O2j - ... - Onj,j (in our case nj = m). Each 
operation is characterized by specifying both the required 
machine M ∈ {M1,..., Mm}, and the fixed processing time pij  
> 0 [4].

Furthermore, several constraints considered on jobs and 
machines, are listed as follows:

(i) Each job must pass through each machine once and 
only once.
(ii) Each job should be processed through the machines 
in a particular order.
(iii) Each operation executed must be uninterrupted on a 
given machine (no pre-emption is allowed).
(iv) Each machine can only process one operation at a 
time.

The objective is to determine a feasible schedule with 
minimal makespan (i.e. minimizing the completion time of 
the last job) which is the most common goal for these 
problems:

Cmax = maxj=1,..,n{Cj}, 

where Cj  is the completion time of job Jj .

Table 1 presents an example of a job-shop problem 
formed of 3 jobs (J1, J2, J3) which processed on 3 machines 
(M1, M2, M3). For this problem, a solution schedule is 
presented by Gantt chart in Fig.1. 

TABLE I

An example of a job-shop scheduling problem

J1:  M1:4     M2:3     M3:3 
 
J2:  M1:1     M3:5     M2:3 

J3:  M2:2     M1:4     M3:1 

Fig. 1.  A Gantt-Chart representation of a solution for the instance in TABLE I.

I. THE PROPOSED GENETIC LOCAL SEARCH ALGORITHM 

For solving this problem, we introduced a fast and easily 
implemented hybrid algorithm. The proposed algorithm 
combines a genetic algorithm with a local search one. The 
former has to find a set of best solutions, and the local 
search procedure is applied to each solution generated by 
genetic operations to "dig" around for improving it. The 

global procedure of this algorithm is described briefly as 
follows:

A.  First phase

In the first phase, we apply a genetic algorithm which 
begin with an initial population and attempt to improve it 
through successive generations. The process of this 
algorithm is presented in Algorithm 1.

Algorithm 1: The genetic algorithm
Input A scheduling problem instance P ;
Output A set of best schedules for instance P ;

1. Generate the initial population;
2. Evaluate the population;

while No termination criterion is satisfied do
3. Select chromosomes from the current population;
4. Apply the recombination operator to the chromosomes selected at step 3 to generate new ones;
5. Evaluate the chromosomes generated at step 4;
6. Apply the mutation operator to a randomly selected chromosomes;
7. Apply the selection criteria to replace new chromosomes;

return A set of best schedules evaluated so far;
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1 Chromosome Representation: To represent the 
chromosome, we base on an Operation-Based 
representation that uses an unpartitioned permutation with 
m-repetitions of job numbers [3]. For an n-job m-machine 
problem, a chromosome contains n×m genes. Each job 
appears in the chromosome exactly m times, and each 
repeating gene does not indicate a concrete operation of a 
job but refers to an operation which is context-dependent. 

For example, considering the problem above (TABLE I), one 
of the chromosomes may be [231213123], which should be 
interpreted to a schedule as shown in Fig. 2. Each job 
number is repeated three times because each job has three 
operations. The first job number represents the first 
operation of the job, and the second represents the second 
operation. The order of genes in the chromosome represents 
the order in which the operations of jobs are scheduled. 

Fig. 2. A schedule building from a chromosome of the problem showed in TABLE I.

2 Initialization: In this algorithm the initial population 
consists of randomly generated chromosomes.   

3 Gentic operators: The genetic evolution is done using 
three main genetic operators: crossover, mutation, and 
selection.

Crossover: In this study we adopt the Generalized 
Order-Crossover (GOX) scheme that generates only 
feasible solutions [3]. In GOX, one chromosome (donor) 
contributes a substring of length in the range of one third to 
half of his length. This substring is inserted in the receiver 
chromosome in the same position of the substring first gene 
after deleting all genes from the receiver with the same 
position as the genes in the substring according to their 
order in the jobs. 

Mutation: The mutation operator has to bring a change 
to the chromosome. In our algorithm, we use a special 
mutation operator, that we called Job Based Mutation 
(JBM). In this mutation two jobs are randomly chosen. 
After that, all genes of the considered chromosome 
corresponding to one job are changed to the other. For 
example, chromosome [2 3 1 2 1 3 1 2 3] become [1 3 2 
1 2 3 2 1 3] if considering jobs 1 and 2 to be swapped. 

Selection: The selection mechanism for reproduction in 
this paper is based on the fitness ranking of the 
chromosomes. Two chromosomes are chosen with a 
probability proportional to their fitness for crossover among 
best individuals (some rate of worst solutions is excluded 
from being reproduced). Then deleting the worst member of 
the population.
4 Fitness Function: Solutions in both phases are evaluated 
according to their fitness. In this study, we use the 
makespan value of schedules as the fitness function.

B. Second phase

In this phase a local search procedure is applied to the 
best solutions among final offspring solutions generated by 
genetic operations. Essentially, local search consists in 
moving from a solution to another one in its neighborhood. 
So, we implant a simple taboo search method in order to 
avoid recycling. For this, two elements are necessary to 
define: the neighborhood structure and the memory (taboo 
list). The basic role of the taboo list is to prevent the search 
process from turning back to solutions visited in previous 
steps. The taboo list stores the arcs that have recently been 
reversed rather than the whole solutions. The length of the 
taboo list is usually of critical importance. Thus, we have 
used a dynamic taboo list that varying between two values 
[min, max] as it is proposed in [11]. Its length is decreased 
by one unit when the current solution is better than the 
previous one; otherwise it is increased in same amount. 

For the neighborhood structure, in our taboo search, we 
adopt the technique used by Nowocki and Smutnicki [11], 
In this neighborhood, a critical path composed of b blocks 
is generated. A critical block of operations is defined as a 
set with the maximum successive operations that belong to 
the critical path and that are processed on a same machine. 
If 1 < l < b (l: block order), then swap the first two 
operations on the last block and the last two operations on 
the first block. However, if l = 1 swap only the last two 
operations in this block, on the other hand if l = b swap the 
first two operations [11].

Algorithm 2 shows the taboo search algorithm we have 
considered here. This algorithm is a simple one, in the first 
step, the initial solution is taken from the set given by the 
first phase. Then, it iterates over a number of steps.  In each 
iteration, the neighborhood of the current solution is built 
and one of the neighbors is selected for the next iteration. 
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The tabu search finishes after a fixed number of iterations that is no so much high. Then it passes to the following 
solution of the elite set to begin with it again.

Algorithm 2: The local search algorithm
Input A set of best schedules C and a problem instance P; 
Output A schedule for instance P;
for all set of best solutions i do

1. Evaluate schedule C(i);
2. Generate the NS neighborhood of the current solution;
If there is a better solution then 

3. replace the current solution with and return to 1;
4. update the tabu list;

else
5. replace the current solution with best solution among the examined; 
6. update the tabu list;

If iterations threshold is not reached then go to 2;
return the best schedule evaluated so far;

II. NUMERICAL EXPERIMENTS

The presented above genetic local search algorithm was 
programmed in Pascal Object (Delphi environment) and 
was run on a PC computer with a processor Intel P Dual 2.2 

GHz for all the experiments. Fig. 3 shows a screenshot of 
this program solving the famous FT10 proposed in Muth & 
Thompson [10]. 

Fig.3. A screenshot of the program showing optimal solution of FT10.

The performance of the algorithm is analyzed on a set of 
benchmarks on the job-shop scheduling problem instances 
from literature. The size of the benchmark instances varies 
from 10 to 20 jobs and from 5 to 20 machines. We consider 
(FT10, FT20) proposed by Fisher and Thompson [10]; 

three problems (ABZ5-7) generated by Adams, Balas & 
Zawack [1]; ten 10 × 10 problems (ORB01-10) generated 
by Applegate and Cook [2] and 15 problems of different 
sizes (LA01-15) generated by Lawrence [8]. 
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Table II shows the makespan performance statistics of 
the proposed GLS algorithm for the selected benchmark 
problems comparatively with a simple genetic algorithm 
that constitute the first phase of the whole GLS algorithm. It 
lists problem name, problem size (number of jobs, number 

of operations), the best-known solution, the best solution 
obtained by simple genetic algorithm in five attempts (i.e 
after first phase processing only), and the best solution 
obtained by our GLS algorithm in five attempts.

TABLE II

Computational results obtained by the proposed algorithm on benchmark problems

Instance Size (n,m) Best known 
solution

Best generated 
solution with GA 
in 5 attempts

Best generated 
solution with GLS in 
5 attempts

FT10
FT20
ABZ5
ABZ6
ABZ7
ORB01
ORB02
ORB03
ORB04
ORB05
ORB06
ORB07
ORB08
ORB09
ORB10
LA01
LA02
LA03
LA04
LA05
LA06
LA07
LA08
LA09
LA10
LA11
LA12
LA13
LA14
LA15

(10,10)
(20,5)
(10,10)
(10,10)
(15,20)
(10,10)
(10,10)
(10,10)
(10,10)
(10,10)
(10,10)
(10,10)
(10,10)
(10,10)
(10,10)
(10,5)
(10,5)
(10,5)
(10,5)
(10,5)
(15,5)
(15,5)
(15,5)
(15,5)
(15,5)
(20,5)
(20,5)
(20,5)
(20,5)
(20,5)

930
1165
1234
943
656
1059
888
1005
1005
887
1010
397
899
934
944
666
655
597
590
593
926
890
863
951
958
1222
1039
1150
1292
1207

938 
1173
1238
944
680
1068
897
1011
1032
890
1010
397
899
934
944
666
665
597
590
593
926
890
863
951
958
1222
1039
1150
1292
1207

930 
1165
1234
943
667
1059
889
1008
1012
887
1010
397
899
934
944
666
665
597
590
593
926
890
863
951
958
1222
1039
1150
1292
1207

From the computational results of the table 1, it could be 
concluded that the proposed algorithm produced good 
solutions on all instances tested. In most of cases, it returns 
optimal solutions. In the few other cases the solutions are 
very near of the optimal. It could be concluded also, that the 
GLS algorithm returns best solutions or at least equal 
solutions to those returned by the simple genetic algorithm 
that constitute the first phase of the proposed algorithm. 
This means that the second phase improves really the 
research process.  

CONCLUSION

Due to the stubborn nature of job-shop scheduling, much 
effort shown in the literature has focused on hybrid 
methods, since most single techniques cannot solve this 
problem efficiently [7]. In this paper, we have considered a 
general job-shop problem, and we have proposed a genetic 
local search algorithm. The proposed algorithm acts in two 
steps. Firstly, a genetic algorithm with operation-based 
encoding, GOX crossover, JBM mutation and elitist 
strategy selection is applied to get a set of best solutions. In 
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a second step, a tabu search procedure is applied to each 
solution of the elite set generated by genetic operations 
hopefully to improve some of them.

An empirical study is carried out to test the proposed 
strategies on a set of standard JSP instances taken from the 
literature. The results show that the proposed algorithm is 
an efficient mean in solving the problem considered. This 
algorithm gives better results than the two algorithms 
separately. It's concluded that combination of local search 
and genetic algorithms is a promising approach for 
improving resolution of job-shop scheduling problems.
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