
A LOCAL SEARCH GENETIC ALGORITHM FOR THE
JOB SHOP SCHEDULING PROBLEM

Kebabla Mebarek, Mouss Leila Hayat and Mouss Nadia
Laboratoire d'automatique et productique, Université Hadj Lakhdar -Batna

kebabla@yahoo.fr, hayet_mouss@yahoo.fr, kinzmouss@sahoo.fr

Abstract--Scheduling of job-shop is very important in the fields
of production management and combinatorial optimization.
This paper proposes a method for solving general job-shop
scheduling problems based on hybridized algorithm that
combines a genetic algorithm with a taboo search in two
distinct phases research. In the first phase an operations-coded
genetic algorithm is used to find an elite population. The set of
elite solutions obtained from the first phase acts as the initial
population of the second phase, in which a taboo search
algorithm is applied to each one of them to intensify the
research. The effectiveness of this algorithm is confirmed by
applying it to a set of benchmarks with the makespan as the
objective function. The results obtained show that local search
applied at the final population can improve greatly the
research.

Index Terms-- Job-Shop Scheduling, Hybrid Meta-
Heuristic, Genetic Algorithm, Local Search, Taboo
Search.

INTRODUCTION

The job-shop scheduling problem (JSSP) plays an
important role in the scheduling theory and finds many
practical applications. It deals with the sequencing of a set
of jobs on a set of machines, in order to minimize an
objective function [9]. For years, job-shop scheduling has
attracted the attention of many researchers in the fields of
both production management and combinatorial
optimization. Efficient methods for solving the JSSP have
significant effects on performance of production system. It
has been demonstrated that this problem is usually an NP-
complete (nondeterministic polynomial time complete)
problem [5]. An indication for this is that one 10x10
problem formulated by Muth & Thompson in 1963 [10]
remained unsolved for twenty years [12]. For this hardiness,
exact methods become quickly inapplicable in practice.
Instead, it is often preferred to use approximation
algorithms such as heuristics and meta-heuristics e.g.
simulated annealing, genetic algorithms, and taboo search.

In recent years, much attention has been devoted to four
general heuristics: simulated annealing (SA), taboo search
(TS), genetic algorithm (GA), and neural network (NN)
[13]. These methods are capable of providing high-quality
solutions with reasonable computational effort. However,
the problem is hard that cannot be solved efficiently by
applying any single technique and a great deal of research
have focused on hybrid methods [14]. Several authors
pointed out that the performance of genetic algorithm on
some combinatorial optimization problems was a bit
inferior to that of neighborhood search algorithms (e.g.,
local search, simulated annealing and taboo search). Hybrid
methods of genetic algorithms and those neighborhood
search algorithms were proposed, and their high
performance was reported [6].

In this paper, we propose a genetic local search
algorithm to improve the search process, the proposed
algorithm acts in two phases. In the first one, a genetic
algorithm is developed to find a set of best solutions. In the
second, a local search algorithm with a memory has to
intensify the research around each solution to improve it.
The performance of the algorithm will be assessed through
an experimental analysis with a set of benchmark problems.
The remainder of this paper is organized as follows: in the
next section we describe the problem of general job-shop
scheduling to be solved. In section 3 we describe the
proposed algorithm and its process. A numerical experiment
is presented in the section 4.

PROBLEM DESCRIPTION

The problem studied in this paper is a deterministic and
static n-job, m-machine job-shop scheduling problem
(JSSP). The aim behind is to optimally allocate different
operations for each job across a set of machines respecting
temporal and resource constraints. This problem is
formulated as follows:

There are n jobs J1,..., Jn to be scheduled on m machines
M1,..., Mm. Each job j consists of a sequence of nj operations

5

mailto:kinzmouss@sahoo.fr
mailto:hayet_mouss@yahoo.fr
mailto:kebabla@yahoo.fr

Oij (i = 1, . . . , nj) that must be processed on the m machines
in a given order O1j - O2j - ... - Onj,j (in our case nj = m). Each
operation is characterized by specifying both the required
machine M ∈ {M1,..., Mm}, and the fixed processing time pij
> 0 [4].

Furthermore, several constraints considered on jobs and
machines, are listed as follows:

(i) Each job must pass through each machine once and
only once.
(ii) Each job should be processed through the machines
in a particular order.
(iii) Each operation executed must be uninterrupted on a
given machine (no pre-emption is allowed).
(iv) Each machine can only process one operation at a
time.

The objective is to determine a feasible schedule with
minimal makespan (i.e. minimizing the completion time of
the last job) which is the most common goal for these
problems:

Cmax = maxj=1,..,n{Cj},

where Cj is the completion time of job Jj .

Table 1 presents an example of a job-shop problem
formed of 3 jobs (J1, J2, J3) which processed on 3 machines
(M1, M2, M3). For this problem, a solution schedule is
presented by Gantt chart in Fig.1.

TABLE I

An example of a job-shop scheduling problem

J1: M1:4 M2:3 M3:3

J2: M1:1 M3:5 M2:3

J3: M2:2 M1:4 M3:1

Fig. 1. A Gantt-Chart representation of a solution for the instance in TABLE I.

I. THE PROPOSED GENETIC LOCAL SEARCH ALGORITHM

For solving this problem, we introduced a fast and easily
implemented hybrid algorithm. The proposed algorithm
combines a genetic algorithm with a local search one. The
former has to find a set of best solutions, and the local
search procedure is applied to each solution generated by
genetic operations to "dig" around for improving it. The

global procedure of this algorithm is described briefly as
follows:

A. First phase

In the first phase, we apply a genetic algorithm which
begin with an initial population and attempt to improve it
through successive generations. The process of this
algorithm is presented in Algorithm 1.

Algorithm 1: The genetic algorithm
Input A scheduling problem instance P ;
Output A set of best schedules for instance P ;

1. Generate the initial population;
2. Evaluate the population;

while No termination criterion is satisfied do
3. Select chromosomes from the current population;
4. Apply the recombination operator to the chromosomes selected at step 3 to generate new ones;
5. Evaluate the chromosomes generated at step 4;
6. Apply the mutation operator to a randomly selected chromosomes;
7. Apply the selection criteria to replace new chromosomes;

return A set of best schedules evaluated so far;

M
1

M
2

M
3

J
1

 J
2

J
3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 Time (Units)

6

1 Chromosome Representation: To represent the
chromosome, we base on an Operation-Based
representation that uses an unpartitioned permutation with
m-repetitions of job numbers [3]. For an n-job m-machine
problem, a chromosome contains n×m genes. Each job
appears in the chromosome exactly m times, and each
repeating gene does not indicate a concrete operation of a
job but refers to an operation which is context-dependent.

For example, considering the problem above (TABLE I), one
of the chromosomes may be [231213123], which should be
interpreted to a schedule as shown in Fig. 2. Each job
number is repeated three times because each job has three
operations. The first job number represents the first
operation of the job, and the second represents the second
operation. The order of genes in the chromosome represents
the order in which the operations of jobs are scheduled.

Fig. 2. A schedule building from a chromosome of the problem showed in TABLE I.

2 Initialization: In this algorithm the initial population
consists of randomly generated chromosomes.

3 Gentic operators: The genetic evolution is done using
three main genetic operators: crossover, mutation, and
selection.

Crossover: In this study we adopt the Generalized
Order-Crossover (GOX) scheme that generates only
feasible solutions [3]. In GOX, one chromosome (donor)
contributes a substring of length in the range of one third to
half of his length. This substring is inserted in the receiver
chromosome in the same position of the substring first gene
after deleting all genes from the receiver with the same
position as the genes in the substring according to their
order in the jobs.

Mutation: The mutation operator has to bring a change
to the chromosome. In our algorithm, we use a special
mutation operator, that we called Job Based Mutation
(JBM). In this mutation two jobs are randomly chosen.
After that, all genes of the considered chromosome
corresponding to one job are changed to the other. For
example, chromosome [2 3 1 2 1 3 1 2 3] become [1 3 2
1 2 3 2 1 3] if considering jobs 1 and 2 to be swapped.

Selection: The selection mechanism for reproduction in
this paper is based on the fitness ranking of the
chromosomes. Two chromosomes are chosen with a
probability proportional to their fitness for crossover among
best individuals (some rate of worst solutions is excluded
from being reproduced). Then deleting the worst member of
the population.
4 Fitness Function: Solutions in both phases are evaluated
according to their fitness. In this study, we use the
makespan value of schedules as the fitness function.

B. Second phase

In this phase a local search procedure is applied to the
best solutions among final offspring solutions generated by
genetic operations. Essentially, local search consists in
moving from a solution to another one in its neighborhood.
So, we implant a simple taboo search method in order to
avoid recycling. For this, two elements are necessary to
define: the neighborhood structure and the memory (taboo
list). The basic role of the taboo list is to prevent the search
process from turning back to solutions visited in previous
steps. The taboo list stores the arcs that have recently been
reversed rather than the whole solutions. The length of the
taboo list is usually of critical importance. Thus, we have
used a dynamic taboo list that varying between two values
[min, max] as it is proposed in [11]. Its length is decreased
by one unit when the current solution is better than the
previous one; otherwise it is increased in same amount.

For the neighborhood structure, in our taboo search, we
adopt the technique used by Nowocki and Smutnicki [11],
In this neighborhood, a critical path composed of b blocks
is generated. A critical block of operations is defined as a
set with the maximum successive operations that belong to
the critical path and that are processed on a same machine.
If 1 < l < b (l: block order), then swap the first two
operations on the last block and the last two operations on
the first block. However, if l = 1 swap only the last two
operations in this block, on the other hand if l = b swap the
first two operations [11].

Algorithm 2 shows the taboo search algorithm we have
considered here. This algorithm is a simple one, in the first
step, the initial solution is taken from the set given by the
first phase. Then, it iterates over a number of steps. In each
iteration, the neighborhood of the current solution is built
and one of the neighbors is selected for the next iteration.

7

The tabu search finishes after a fixed number of iterations that is no so much high. Then it passes to the following
solution of the elite set to begin with it again.

Algorithm 2: The local search algorithm
Input A set of best schedules C and a problem instance P;
Output A schedule for instance P;
for all set of best solutions i do

1. Evaluate schedule C(i);
2. Generate the NS neighborhood of the current solution;
If there is a better solution then

3. replace the current solution with and return to 1;
4. update the tabu list;

else
5. replace the current solution with best solution among the examined;
6. update the tabu list;

If iterations threshold is not reached then go to 2;
return the best schedule evaluated so far;

II. NUMERICAL EXPERIMENTS

The presented above genetic local search algorithm was
programmed in Pascal Object (Delphi environment) and
was run on a PC computer with a processor Intel P Dual 2.2

GHz for all the experiments. Fig. 3 shows a screenshot of
this program solving the famous FT10 proposed in Muth &
Thompson [10].

Fig.3. A screenshot of the program showing optimal solution of FT10.

The performance of the algorithm is analyzed on a set of
benchmarks on the job-shop scheduling problem instances
from literature. The size of the benchmark instances varies
from 10 to 20 jobs and from 5 to 20 machines. We consider
(FT10, FT20) proposed by Fisher and Thompson [10];

three problems (ABZ5-7) generated by Adams, Balas &
Zawack [1]; ten 10 × 10 problems (ORB01-10) generated
by Applegate and Cook [2] and 15 problems of different
sizes (LA01-15) generated by Lawrence [8].

8

Table II shows the makespan performance statistics of
the proposed GLS algorithm for the selected benchmark
problems comparatively with a simple genetic algorithm
that constitute the first phase of the whole GLS algorithm. It
lists problem name, problem size (number of jobs, number

of operations), the best-known solution, the best solution
obtained by simple genetic algorithm in five attempts (i.e
after first phase processing only), and the best solution
obtained by our GLS algorithm in five attempts.

TABLE II

Computational results obtained by the proposed algorithm on benchmark problems

Instance Size (n,m) Best known
solution

Best generated
solution with GA
in 5 attempts

Best generated
solution with GLS in
5 attempts

FT10
FT20
ABZ5
ABZ6
ABZ7
ORB01
ORB02
ORB03
ORB04
ORB05
ORB06
ORB07
ORB08
ORB09
ORB10
LA01
LA02
LA03
LA04
LA05
LA06
LA07
LA08
LA09
LA10
LA11
LA12
LA13
LA14
LA15

(10,10)
(20,5)
(10,10)
(10,10)
(15,20)
(10,10)
(10,10)
(10,10)
(10,10)
(10,10)
(10,10)
(10,10)
(10,10)
(10,10)
(10,10)
(10,5)
(10,5)
(10,5)
(10,5)
(10,5)
(15,5)
(15,5)
(15,5)
(15,5)
(15,5)
(20,5)
(20,5)
(20,5)
(20,5)
(20,5)

930
1165
1234
943
656
1059
888
1005
1005
887
1010
397
899
934
944
666
655
597
590
593
926
890
863
951
958
1222
1039
1150
1292
1207

938
1173
1238
944
680
1068
897
1011
1032
890
1010
397
899
934
944
666
665
597
590
593
926
890
863
951
958
1222
1039
1150
1292
1207

930
1165
1234
943
667
1059
889
1008
1012
887
1010
397
899
934
944
666
665
597
590
593
926
890
863
951
958
1222
1039
1150
1292
1207

From the computational results of the table 1, it could be
concluded that the proposed algorithm produced good
solutions on all instances tested. In most of cases, it returns
optimal solutions. In the few other cases the solutions are
very near of the optimal. It could be concluded also, that the
GLS algorithm returns best solutions or at least equal
solutions to those returned by the simple genetic algorithm
that constitute the first phase of the proposed algorithm.
This means that the second phase improves really the
research process.

CONCLUSION

Due to the stubborn nature of job-shop scheduling, much
effort shown in the literature has focused on hybrid
methods, since most single techniques cannot solve this
problem efficiently [7]. In this paper, we have considered a
general job-shop problem, and we have proposed a genetic
local search algorithm. The proposed algorithm acts in two
steps. Firstly, a genetic algorithm with operation-based
encoding, GOX crossover, JBM mutation and elitist
strategy selection is applied to get a set of best solutions. In

9

a second step, a tabu search procedure is applied to each
solution of the elite set generated by genetic operations
hopefully to improve some of them.

An empirical study is carried out to test the proposed
strategies on a set of standard JSP instances taken from the
literature. The results show that the proposed algorithm is
an efficient mean in solving the problem considered. This
algorithm gives better results than the two algorithms
separately. It's concluded that combination of local search
and genetic algorithms is a promising approach for
improving resolution of job-shop scheduling problems.

REFERENCES

[1] Adams, J., E. Balas, and D. Zawack. "The Shifting
Bottleneck Procedure for Job Shop Scheduling",
Management Science, vol.34 (1988), pp. 391–401.

[2] Applegate, D. & Cook, W., "A Computational Study of
Job-shop Scheduling". ORSA J. Computing. vol. 2
(1991), pp. 149-156.

[3] Bierwirth C., "A generalized permutation approach to
job shop scheduling with genetic algorithms", OR
Spektrum, vol. 17 (1995), pp. 87-92.

[4] French, S., Sequencing and Scheduling: An
introduction to the Mathematics of the Job-Shop, John
Wiley & Sons, Inc., New York (1982).

[5] Garey M.R., Johnson D.S., Sethi R., "The Complexity
of Flow-Shop and Job-Shop Scheduling",
Mathematics of Operations Research, vol. 1 (1976),
pp. 117-129.

[6] Ishibuchi H. & Tadahiko M., "Multi-Objective Genetic
Local Search Algorithm", Proceedings of IEEE
International Conference on Evolutionary
Computation, 1996, pp. 119-124.

[7] Jain A.S. & Meeran S., "Deterministic job shop
scheduling: Past, present, Future", European Journal
of Operation Research, vol. 113, pp. 390-434, 1999.

[8] Lawrence S., "Resource constrained project
scheduling: an experimental investigation of heuristic
scheduling techniques", Technical Report, Graduate
School of Industrial Administration, Pittsburgh,
Carnegie Mellon University, 1984.

[9] Mati Y. & Xie X., "The complexity of two-job shop
problems with multi-purpose unrelated machines",
European Journal of Operational Research, vol. 152
(2004), pp. 159–169.

[10] Muth J. F. & Thompson G., Industrial scheduling,
Prentice Hall, Englewood Cliffs, NJ, 1963.

[11] Nowicki E. and Smutnicki C., "A fast taboo search
algorithm for the job shop scheduling problem"
Management Science, vol. 42, pp. 797-813, 1996.

[12] Ombuki B. M. & Ventresca M., "Local Search Genetic
Algorithms for the Job Shop Scheduling Problem",
Applied Intelligence, vol. 21, pp. 99-109, 2004.

[13] Ponnambalam S. G., Aravindan P. and Rajesh S. V., "A
Tabu Search Algorithm for Job Shop Scheduling", Int.
J. Adv. Manuf. Technol., vol. 16, pp. 765-771, 2000.

[14] Vazquez M. & Whitley D., "A Comparison of Genetic
Algorithms for the Static Job Shop Scheduling
Problem", Proceedings of the 6th International
Conference on Parallel Problem Solving from Nature,
pp.303-312, Sept.2000.

[15] Waiman C. and Hong Z., "Using Genetic Algorithms
and Heuristics for Job Shop, Scheduling with
Sequence-Dependent Setup Times" Annals of
Operations Research, vol. 107, pp. 65-81, 2001.

10

