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ABSTRACT 
The contract furnishing sector –stores, hotels and 
public facilities– is characterized for working under a 
MTO philosophy, having worldwide clients, a flexible 
and highly manual process and a high mix of products. 
In the presence of these sources of variability, the lack 
of a proactive planning drives to outsourcing and cost 
overruns. This paper presents a case study of capacity 
assessment in a Spanish SME of manufacturing, 
distribution and assembly of contract furnishing. To do 
so, a Monte Carlo simulation approach was adopted, 
with stochastic values for demand, process and product 
parameters. Based on historical data and expert 
interviews a spreadsheet-based model was proposed in 
order to represent the variability. As a result, capacity 
anticipation under different scenarios was provided: (i) 
at present conditions, (ii) with an increased demand 
and, (iii) in case of a change in the type of production 
orders. 
 
Keywords: Capacity Planning, Monte Carlo 
Simulation, Demand Forecasting, Contract Sector, 
SME 
 
1. INTRODUCTION 
Contract furnishing sector is made up by companies 
that offer a complete furnishing service to hotels, 
stores, offices and public buildings, including design, 
manufacturing, distribution and final on-site assembly. 
These companies typically work under a Make to 
Order (MTO) philosophy, meaning that the 
manufacturing starts only after a customer's order is 
received. 
 The case study is a family-owned Spanish medium 
enterprise. Its main client is one of the world’s largest 
fashion distributors representing circa 60% of the 
company’s production and sales. Being a SME and 
having powerful worldwide clients is a complex 
balance; failing or even delaying an order is not an 
option. However, projects’ planning is usually carried 
out in a reactive manner making subcontracting 
necessary in order to meet the tight deadlines. 

 Uncertainty is a well-known characteristic of 
make-to-order (MTO) philosophy based companies. It 
is difficult (if not impossible) to predict the time at 
which a customer will place an order, the order due 
date, its quantity and nature and accordingly, the 
process and material requirements to fulfil it. 
Generally, orders’ uncertainty affects more to SMEs 
because of their weaker negotiation position (Achanga, 
2006). Usually, diversifying is a way to reduce the 
impact of such condition. For instance, civil 
engineering companies try to combine projects for 
public clients with other works for private ones. Also 
shipyards do the same by offering both ship repairing 
and maintenance activities and new shipbuilding. 
However, this product variability and simultaneous 
production with shared resources make the planning 
and scheduling problem even more complicated. The 
available effective capacity to be used during the 
execution depends on the operational dynamics, which 
in turn depends on planning decisions. This circularity 
in planning is more complex in unsynchronised shops 
where the variety of products follows diverse routings 
(Albey and Bilge 2011). All these factors - uncertainty 
in demand, product variability, simultaneous conditions 
and diverse routings- are present in the normal activity 
of this case study. 
 As said before, the short period of time between 
the effective confirmation of an order and the moment 
the manufacturing process actually starts does not 
allow a proactive planning. The impact on the 
production levels may lead to bottleneck formations, 
subcontracting, difficulties to meet the due dates and 
expensive raw material acquisition. In other words, 
competitiveness relies on efficient production and 
capacity planning. 
 Clearly, deterministic processing times and 
deterministic demand rates based models are 
inappropriate to consider uncertainty in models. Mula 
et al. (2006) have carried out a literature review of the 
uncertainty treatment on production planning models. 
The use of simulation in production planning has been 
considered for several authors in the literature. For 
instance, Albey and Bilge (2011) state that simulation 
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is a “natural solution” to represent the complex 
dynamic operational behaviour of unsynchronised 
shops. Several works propose simulation production 
planning. Hung and Leachman (1996) collect flow time 
statistics instead of machine capacities while 
simulating a production plan. Byrne and Bakir (1999) 
solve a multi-period multi-product production planning 
problem by using a hybrid simulation-analytical 
approach. Kim and Kim (2001) update both machine 
capacities and flow times by collecting relevant 
statistics during simulation.  
 However, Buxey (2005) points out three reasons 
why business has ignored researcher’s efforts so far. 
Those are basically related to (i) their huge need of data 
–impossible, difficult or expensive–, (ii) to the model 
underlying assumptions which make them 
inappropriate for the process or (iii) because they are 
too complex and they are seen as worthless by the 
managers. Moreover, empirical evidence shows that 
practitioners using advanced planning methods are on 
average less satisfied with their plans than those who 
use simpler and less accurate methods (Jonhson and 
Mattson 2003). In that sense, Tenhiälä (2011) links 
appropriate capacity planning techniques with process 
types, set-up and nature. He also highlights the wide 
use of non-systematic planning methods and claims 
that optimization is not always desirable in complex 
real-world planning situations so more pragmatic 
research in operations management is needed. 
 Considering these circumstances, the main goal of 
the study was obtaining an estimate for the fitted 
allocation of production resources (both in time and 
quantity) for the following year under two plausible 
demand scenarios: 

 
1. The next year presents the same tendency than 

the previous ones. 
2. Changes in the type of orders may occur: 

a. There is the possibility of establishing 
an important contract with a chain of 
resort hotels, increasing the workload 
around a 20%. 

b. Their main client may change the type 
of order, from the complete interior 
store manufacturing one to the partial 
refurbishing of actual stores, which 
would mean smaller orders (-25%) 

 
 To do so, we decided to build a spreadsheet-based 
simulation model aiming at representing how demand 
implied workload on the different work centres. 
Variability modelling is obtained from historical data-
based probability distributions for demand, process and 
product parameters. Monte Carlo simulation is then 
used for the risk assessment of the solutions provided. 
 
2. CASE STUDY 
Demand is composed of several components. On the 
one hand, 60 % of production is dedicated to their main 
client. Although time deadlines are strict, at least 

orders are given with a certain level of anticipation. On 
the other hand, 40 % of production serves a variety of 
hotels, stores and business with more flexibility in due 
dates, but with much more uncertainty both in its 
amount and nature and in its occurrence. After a failed 
statistical attempt of characterizing this sort of demand, 
it was decided not to include it within the scope of the 
study. Besides, due to the possibility of delay in these 
type of order deliveries, it has been considered that the 
company’s capacity estimation is mainly influenced by 
the rest of the “predictable” orders workload. From 
now on, demand and orders will refer to the main 
client’s one. 
 The normal company’s operating scheme is now 
briefly described. The whole process starts when the 
fashion distributor provides the furnishing company 
with its own interior designs catalogue for all the stores 
of the year. This catalogue allows a basic preliminary 
estimate of materials as well as an early and conceptual 
technical design of the furnishing elements. From that 
moment on, specific orders may be placed in the form 
of a store plan, between 10 weeks -normal order- and 5 
weeks -urgent order- before the opening date, where all 
the furnishings should be assembled and ready to be 
used. 
 Once the order arrives, the number of pieces of 
furniture and the amount and type of materials is 
calculated by the Technical Department. Then, the 
material supplying and the generation of production 
orders (in term of parts’ groups that are manufactured 
together) may start. From that time, the manufacturing 
process takes place sequentially through four 
manufacturing sections. Each of them, with different 
machines, operators and responsible, is now described. 
Also a fifth section is included, although it does not 
take place within the production plant. 

 
1. Machining, comprising cutting and machining 

operations (drills, shapers, CNC machining centre, 
etc.). 

2. Finishing, consisting of sanding, varnishing and 
automatic and manual painting operations.  

3. Cabinet making, where carving operations, 
assembly and subassembly take place. They are the 
most qualified and experienced workers. 

4. Packing, that can be either automatic or manual 
packing. All the finished packages are placed on the 
storage area until the whole order is ready so it can 
be dispatched. 

5. Assembly. Finally, the pieces of furniture and the 
assembly workers are sent to the final location. 
Currently, the cabinetmakers are also in charge of 
these operations. 
 

 Some of the reasons for the complexity when 
applying a planning method are described now: 

 
- There is a high uncertainty on demand, considering 

that orders are different in quantities and due dates. 
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- The manufacturing process is defined in the 
literature as an HMLVS, i.e. High-Mix Low-
Volume Simultaneous production (Prasad, 2011). 
Its main characteristic is that product mix and 
bottlenecks keep changing frequently over time. 

- Distribution and final assembly take place out of 
the manufacturing plant, increasing the uncertainty 
due to unpredictable external events. Besides, 
assembly and cabinet-making compete for the same 
resources. 

 
3. APPROACHING THE PROBLEM 
The followed methodology is shown in Figure 1. From 
historical demand data (2003-2010) we tried to 
determine the number and dates of the orders that could 
be usually expected any year, according to the past 
events. The same information was used for determining 
how project usually developed throughout the process 
operations. From its analysis, probability distributions 
are obtained in order to represent the following events: 

 
- Monthly probability of a particular number of 

order deliveries. 
- For each order: 

- Sizing. Distribution of the global 
amount of hours and its allocation 
among the different main operations. 

- Timing. Distribution of the 
operations durations and their 
respective delays. 
 

 Probability distributions are the input data of the 
model. Regarding the system modelling, time and 
process considerations have to be regarded. On the one 
hand, a marketing medium term approach (one year) 
has been proposed as a useful way of linking the 
managerial issues with the production requirements. 
Intermediate-range planning is facilitated by 
aggregating the many products of a company into a 
single unit of output (Aggregate Production Unit). In 
our case, each order will be translated into working 
hours. Also, we have considered as the planning period 
time the working week, because it is the usual unit in 
which production activities are referred within the 
company. On the other hand, the process has been 
divided in their main operations, that is to say, 
Machining, Finishing, Cabinetmakers, Packing and 
Assembly. A backward scheduling has been adopted, 
starting from the assembly tasks and finishing in the 
machining. 
 The resulting workload -the output data- is then 
analysed both in its quantity (maximum and average) 
and attending to its distribution along the year. The 
workload sizing and timing will be the basis of the 
capacity planning. Decisions regarding capacity 
planning have different risk implications. For the 
assessment of capacity planning, three different 
parameters will be used: 

 

1. Number of operators, related to the direct 
manufacturing costs. 

2. Failure probability, related to the risk of a 
plan. It is calculated as the number of weeks 
where the required workload exceeds the 
available workload (given a certain capacity 
level). 

3. Occupation level. The average occupation 
level is related with the efficiency of the plan. 

 

 
Figure 1: Model Development 

 
4. MODEL DEVELOPMENT 
Attending to the eight years record, when 
characterizing the occurrence of demand in terms of 
how likely is to have a fixed due date, a set of five 
month’s behaviours within a year was identified. 
Autocorrelation tests were performed without leading 
to the identification of any significant pattern. By 
means of Maximum Likelihood Estimation five 
Poisson distributions were found to model the orders 
fulfilment process. When one or more orders are 
initially expected to be fulfilled in the same month, we 
have considered that they all will have to be ready for 
the first week (so assuming a worst case). As a result of 
the demand estimation, at each simulation N-orders 
arrive at a certain delivery week (DW)  
 The amount of manufacturing and assembly hours 
(H) is composed of two terms. First, the average value 
was obtained from historical data and verified with the 
responsible of the Production Department. Then, a 
variable noise was modelled. The distribution of total 
hours in each process sector was quite regular 
(distribution of orders in work centres is shown in 
Figure 2). In order to simplify the model it was 
considered fixed (p1, p2, p3, p4 y p5). 

 

 
Figure 2: Monthly Distribution for the 2006 Year 
Orders Attending to the Defined Process Sectors 

 
 Given a certain delivery week, (DW), the process 
scheduling is established backwards. Accordingly, the 
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variety on operations lengths was modelled. For 
example, most times (63% of frequency) an order 
machining takes place in four weeks. During these four 
weeks, 32% of the machining hours happen the first 
week, 41% the second, 15% the third and 13% the 
fourth. However, 37% of times it takes place in three 
weeks. This has been done for all the work centres of 
the process.  
 In addition, production orders have to go through 
the whole process in a certain order attending to 
technological constraints. The sequential progress of 
the order is characterized by the following parameters: 

 
- x: End of packing – start of assembly delay. 
- r1: Start of cabinetmaker work – start of packing 

delay. 
- r2: Start of finishing – start of cabinet maker work 

delay. 
- r3: Start of machining – start of finishing delay  

 
 The variety on delays between operations has been 
modelled in the same way as the variety on lengths. 
Graphically, the evolution of an production order is 
depicted in Figure 3. 
 

 
Figure 3. Process Evolution (for the Centres, including 
the Assembly). 
 
 Each order has to progress along the different 
operations according to the evolution parameters (x, 
d1, r1, d2, r2, d3, r3 and d4). Those different 
operations take a fixed rate of the global H, (p1, p2, p3, 
p4 and p5), so the amount of hours of each process (din) 
can be obtained as a vector: 
 
din= HT (p1, p2, p3, p4, p5)   (1) 

 
 All the production sequence is included in a 5xD 
matrix (M), where the dimension depends on the final 
duration of the manufacturing and assembly process, as 
it follows: 
 
D= d0 + x+d1+ r1 + r2 + r3   (2) 

 
 Each element on M is the fraction of the 
corresponding production department dedicated hours 
(in columns) for a particular week (in rows). This way, 
M shows the evolution of the different operations for a 
single order. 

As a result, the number of hours per operation, week 
and order (K)i can be obtained: 
 
(K)i=din . M      (3) 
 
 The global amount of work, Kt is the composition 
of each Ki in a common time axis. The workload (Q), a 
52x5 matrix, is obtained by adding the same operations 
each week.  
 

 
Figure 4: Workload Matrix Composition 

 
 In the same execution, there is a variation in terms 
of amount of hours, operations lengths and delays. 
Between two successive runs there is variation in terms 
of different number of incoming orders and their 
corresponding delivery date. So, we can talk of an inter 
and intra- year variation.  
 
5. RESULTS 

 
5.1. Workload sizing 
The average workload, in hours per week, is the 
average of the average workload of each operation. The 
maximum workload is the average of the maximum 
values. The obtained distributions for average and 
maximum cabinet makers workload after 1000 
simulations are shown in Figure 5. The results for the 
rest of departments are described on Table 1.  
 

 
 

Figure 5. Average (left) and Maximum (right) 
Distribution of Workload for the Cabinet Department.  

 
Table 1. Average and maximum workload per year 

Workload Mac Fin Cab Pac Asse 
Average (h/week) 120.2 145.4 216.8 110.6 294,52 
Max (h/week) 548.7 616.6 1597.0 449.3 3268.9 

 
 However, as a result of (i) the variability in 
number of hours and time evolution for every order, 
and (ii) the seasonable behaviour of the demand, one 
single value is not accurate enough to describe the 
expected workload. Therefore, results will be presented 
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dividing in quarters of year (Q1, Q2, Q3 and Q4) and a 
range of more likely values (range of 50% confidence 
level) are presented together with a boxplot. In Table 2, 
for instance, machining workload in the first thirteen 
weeks has been between 643 hours and 1636 hours in 
500 of the 1000 simulations.  
 As it can be noticed, second and third quarters of 
the year show the greater values of both workload and 
variability in all the departments except in assembly. 
More details in the year distribution of the workload 
will be found in section 5.2.  
 

Table 2. Workload’s Departments by Quarter  
D. Range 

M. 

Q1 
643-1636 

 

Q2 
977- 2148 

Q3 
1618-3027 

Q4 
493-1340 

F 

Q1 
782-1942 

 

Q2 
1148-2530 

Q3 
2005-3687 

Q4 
645-1611 

C 

Q1 
1054-2891 

 

Q2 
1644-3868 

Q3 
2912-5682 

Q4 
776-2374 

P 

Q1 
1054-2891 

 

Q2 
1644-3868 

Q3 
2912-5682 

Q4 
776-2374 

A 

Q1 
2192-4680 

 

Q2 
1466-3859 

Q3 
4611-8471 

Q4 
1027-2949 

 

5.2. Workload timing 
Yearly workload distribution (along 52 weeks) is now 
showed for the different departments on Figure 6. On 
Table 3 all operations workload distribution is 
described in terms of shape and Coefficient of 
Variation (CV), and maximum and minimum level of 
occupations. 

 

 
Figure 6: Year Workload Distribution for the different 
Departments  

 
Table 3: Operation Workload Distribution: CV, Shape, 
Maximum and Minimum Occupation 

Op. CV Shape Maximum 
Occupation. 

Minimum 
Occupation 

Mac 1,20 Smooth August-
September 
May-June 

December 

Fin 1,14 Smooth  
May –July 

December-
January and 
April 

Cab 1,64 Concentrated 
in short 
periods 

One or two 
weeks in 
June, July and 
August 

March and 
December 

Pac 1,07 Smooth End of July, 
beginning of 
August 

End of 
October, 
beginning 
November 

Asse 2,29 Concentrated 
in very short 
periods 

One week in 
August and 
one in 
September 

March-April 

 
 The different shapes of the workload are related to 
the tasks nature. For instance, cabinet makers and 
assembly respective workload appear in a more 
concentrated way. Besides, these end stages of the 
process strongly influence the product quality. 
According to both factors, these work centres are 
considered the most critical in the process. 
 Currently, assembly and cabinetmakers share the 
same labours. This condition aims at reducing the 
impact of the concentrated assembly works. However, 
it also implies that sometimes the end of the process is 
almost unfilled. As a result the work flow is sometimes 
interrupted. It has been advised to the managers to 
separate these work centres and to try to negotiate a 
resource pool (variable number of working hours that 
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can be compensated with longer holiday days) with the 
workers. 
 The plant total workload can be obtained by 
adding the different operations (machining, finishing, 
cabinet makers and packing) each quarter. Results are 
shown on Figure 7. 
 

 
  

 
Figure 7: Plant Workload 

 
 First and fourth quarter of the year usually present 
the lowest level of work while the third quarter reaches 
its top. This information is useful for setting prices and 
hiring policies. 
 
5.3. Capacity Estimation 
According to the workload on each operation, different 
levels of capacity can be established. In a first 
approach, a constant annual level of capacity will be 
studied. Those levels have implications in terms of 
probability of risk, efficiency and of course, cost 
(parameters introduced on section 3). Capacity range 
for each department will be studied between a 
minimum and maximum level. The adopted criteria are 
that the minimum/maximum level for each department 
corresponds with covering the average/maximum 
workload values (Table 1).  
 The results are shown in Figure 8 (only for one 
operation). As it could be expected, the higher the 
number of operators is, the less the failure probability 
(lower blue line) and the occupation level are (red line). 

 

 
Figure 8: Operators in Machining as a Function of 
Failure Probability (lower bars) and Occupation Level 
(upper bars).  

 
 These graphs could be used for aiding in the 
decision process of establishing the capacity level. For 
example, the managers might decide that a 20% failure 
probability for the Finishing section is acceptable (one 
of five weeks the expected amount of work exceeds the 
Finishing capacity), which would imply that seven 
labours would be enough. 
 As it has been stated, each department workload 
reaches different levels and presents different 
behaviours. So, different capacity levels would be 
needed for meeting the same requirements (in terms of 
failure probability). However, experience shows that it 
is not necessary the same confidence level in all 
departments. For instance, a delay in machining would 
be much less severe than a delay in assembly. Being 
machining the first department, the excess of workload 
would probably be transferred to the following week 
without more consequences, while an excess of 
workload in assembly would probably lead to an 
eventual delay in the order. Accordingly, an operation 
cost indicator for each department can be built as 
follows: 

 
𝐶 = 𝑛 + 52 ∙ 𝐶𝐹

𝐶𝐻
∙ 𝑃(𝑓𝑎𝑖𝑙𝑢𝑟𝑒)  (1) 

 
 Being C an indicator of the cost of operating with 
n workers in a certain department, 𝐶𝐹

𝐶𝐻
 the relation 

between the cost of a failure and the cost of hiring an 
extra worker. This cost increases with the number of 
workers and decreases with the failure probability. We 
could say, for instance, that a single failure in 
Assembly would cost 3 times more than hiring an extra 
worker, while a failure in Machining would only cost 
0.5 times more (these values have been chosen for 
illustration purposes, and do not have to be close to 
reality). When representing these expressions, in 
Figure 9, the optimum number of workers (7 for 
machining and 16 for assembly) is obtained. 
 

 
 

 
Figure 9. Machining and Assembly Cost Indicator 
depending on the Number of Workers. 
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5.4. Increased demand  
According to the commercial department’s 
expectations, a new contract with an important 
international hotel client would imply a 20% increase 
in the number of orders. As a result, the average 
workload is a 20 % higher compared to the previous 
situation. The maximum workload is 12-16 % higher 
(Figure 10), depending on the work centre. Assembly 
is the department that shows the higher increase of 
maximum workload. Referring to the CV, a smoothing 
effect in every task is observed. However, the lowest 
decrease in CV corresponds to the Assembly. It 
appears to be the strictest in its concentrated nature.  
 

 
Figure 10: Workload Distribution when Demand 
increases 20% 
 
5.5. Changes in the “order type” 
Before a plausible change in the main client’s type of 
works, from “complete new stores” to refurbishing 
existing ones, the Sales Department forecasts smaller 
projects (25% less, in average) but an increase in the 
number of orders (20%). Were this demand scenario, 
the workload would change as showed in Figure 11. 
The average workload decreases around a 10% per 
work centre. A similar smoothing effect in every task 
takes place. However, it is remarkable that the 
maximum workload decreases a 17% for the cabinet 
centers whilst the assembly only decreases a 14%. In 
fact, assembly has the lower decrease in maximum 
workload. It can be concluded that assembly 
department is more sensitive to changes in the number 
of orders than it is in the orders’ size. 

 

 
Figure 11: Workload Distribution when the Type of 
Order Changes. 
 

6. VERIFICATION AND VALIDATION 
For verification and validation purposes, the observed 
sample distribution (historical data) was compared with 
the modelled distributions in terms of four variables. 
The first is the number of orders, which accounts for 
demand level. The second is the total amount of 
workload hours per year. Yet the number of hour per 
quarter of year, week or department would have been a 
more accurate indicator for comparing results, this 
information was not available within the company’s 
historical data. The third parameter accounts for the 
time gap between the start of the manufacturing and the 
final delivery. This value is obtained from the 
simulation as the addition of each operation estimate 
represented by different probability distributions. Then, 
it is compared to the historical time interval between 
the order incoming and the final delivery. Finally, the 
number of hours of each order is compared with the 
actual values from the database. The p-values for the 
null hypothesis of the averages being the same and the 
standard deviations being different are shown in Table 
4 and Table 5. Model values for the average and 
standard deviations come from 1000 simulations so 
they were considered with a negligible error. They 
were then compared to the available number of 
observations (n) in the real data. 
 
Table 4. Test T for Differences in Variable Means  

Factors Average 
Model 

Average 
Data N p-value 

Orders / year 15,1 15,28 7 0,956 

Hours / year 46764,6 47867,1 7 0,903 

Weeks / order 11,4 9,6 106 0,001 

Hours / order 3094,6 3109,8 106 0,903 
 

 
Table 5. Test χ for Differences in Variables Standard 
Deviations 

Factors Std. Dev. 
Model 

Std. Dev. 
Data n p-value 

Orders / year 3,8 6,9 7 0,003 

Hours / year 12719,9 22976,2 7 0,003 

Weeks / order 5,3 5,8 106 0,103 

Hours / order 835,6 1275,0 106 0,001 

 
 It can be concluded that the estimations of demand 
per year, workload per year and workload per order 
averages do not significantly differ from those 
observed in the historical data (Table 4). On the other 
hand, significant differences were found in weeks per 
order average. This might be explained by the 
aforementioned differences in time durations, but 
further research should be conducted in order to assess 
the practical relevance of such a difference.  
 Significant differences in estimated standard 
deviations were found for all the tested variables (Table 
5). This suggests that the model systematically 
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underestimates variability levels in workload rates and, 
consequently, the forecasted failure probabilities. A 
plausible explanation is given by the way that the 
annual demand is generated. Although standard 
autocorrelation tests did not show any autocorrelation 
patterns in monthly orders, this is not a sufficient proof 
for independence. Only under actual independence 
among monthly demands, annual demand variability 
would be accurately estimated from monthly 
variability. Available data were not enough to conduct 
a more profound autocorrelation analysis. This 
shortcoming of the model can be corrected by adopting 
a more risk-averse position in the decision making 
process. 
 
7. CONCLUSIONS 
A workload and capacity planning based on historical 
data in a Spanish SME of manufacturing, distribution 
and assembly of contract furnishing has been 
presented. A simulation approach has been adopted in 
order to represent the high variability associated to 
their MTO philosophy and job-shop production 
schema. The spreadsheet-based model within a Monte 
Carlo simulation approach allows introducing 
stochastic values for demand, process and product 
parameters. As a result, workload estimation under 
different scenarios was provided. Also, by means of a 
set of three general performance parameters – labour 
costs, failure probability and occupation level- the 
assessment of the production resources necessary to 
cope with the corresponding workload is achieved. 
When complemented with overall cost information, 
this planning methodology can be the basis for 
optimised capacity estimation according to the nature 
of each department. This work aims at connecting the 
operational level with strategic considerations by 
means of a simple but comprehensive and precise tool 
for decision making.  
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