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ABSTRACT 

Data mining, simulation, heuristic optimisation and 

monitoring techniques are applied to improve complex 

planning decisions at tactical and operational levels. 

The paper presents an integrated approach to product 

delivery planning and scheduling built on integration of 

these technologies. A business case in tactical and 

operational planning of deliveries is given in the paper. 

Cluster analysis of dynamic demand is described. The 

region clustering of customers is performed through 

multi-objective optimisation. Vehicle scheduling is 

introduced and performed for the routed solution. 

 

Keywords: clustering, simulation, metaheuristics, 

optimisation, tactical planning, vehicle routing, 

scheduling 

 

1. INTRODUCTION 

To ensure the competitiveness, a modern business 

management requires application of a number of 

methods in the field of information technologies and 

operations research. To get the best solution of the 

problem, these methods must be highly integrated to 

complement each other. 

In the paper, a business case for a logistics 

department of a distribution centre (DC) for a retail 

store network is discussed. Four core technologies, such 

as data mining, computer simulation, optimization and 

monitoring, applied for an integrated planning and 

control of deliveries are discussed (see Fig. 1). 

 

 
Figure 1: Technologies Integration 

 

Here, data mining techniques are used to perform a 

cluster analysis in order to define natural grouping of 

input data, e.g., geographical locations of customers and 

their demand data in order to define various types of 

tactical delivery plans. Simulation provides evaluating 

of specific operational decisions in advance, e.g., while 

comparing vehicle routes and schedules. Simulation 

enhanced with metaheuristic optimization allows 

searching for the optimal solutions at an operational 

planning level. In particular, an integrated use of data 

mining, simulation and metaheuristic optimization 

techniques are described in Merkuryeva et al. 2011. 

Here, the scheme of integrated planning and control of 

deliveries is extended by including monitoring tasks.   

Despite the fact that the main field of monitoring 

application is maintenance of already existing business 

processes, the monitoring may be also applied at the 

different stages of the business planning process. 

 

2. MONITORING IN SIMULATION 

OPTIMISATION 

Applications of monitoring at tactical and operational 

planning levels are illustrated in Figure 2. Here, a 

simulation model is interpreted as a representation of a 

real system, which input data is based on the data 

obtained from the real system. 

 

 
Figure 2: Role of Monitoring 

 

Monitoring can be used already during the 

modeling phase or even before a simulation model is 

developed, in order to create a set of historical data. In 

the delivery planning problem, these data could be 

observations of customer demand, or data received from 

vehicles tracking in order to define more realistic 

simulation model for vehicle routing and scheduling 

tasks. 

If a simulation model is already built and verified, 

monitoring is a key technique for its complete 
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validation. In this case, monitoring data provides a good 

basis for the black-box validation and especially for the 

solution validation of the model. Here, solution 

validation means determining that the results obtained 

from the model of the proposed solution are sufficiently 

accurate for the purpose at hand (Robinson 2004). 

Continuous collection of observation data via 

monitoring provides adjustments for the existing model, 

and makes it adaptive for the changing and developing 

environment. 

Within the optimisation stage of an integrated 

planning approach, a simulation model provides a 

feedback link to a parametric optimisation tool in order 

to test the proposed parameters of the investigated 

system (Fig. 2). Also, due to a relatively short-time 

response of the model, the meta-heuristic optimisation 

tool is effectively exploring system behaviour on the 

model. It is also worth considering that if the best found 

decision is applied for the real system, due to different 

simplifications and aggregations in a simulation model 

the behaviour of the system with this proposed solution 

may differ from expected. 

Moreover, real-time monitoring in integrated 

planning and control is used in practice. Modern 

advantages in information and communication 

technologies allow managing a vehicle fleet in real-

time. Vehicle tracking with GPS, information on the 

route and customer requirements can be applied for the 

rerouting and rescheduling of vehicles. 

 

3. BUSINESS CASE 

In real-life applications the delivery planning and 

scheduling problem has different stochastic 

performance criteria and conditions. Optimisation of 

transportation schedules itself is computationally time-

consuming task which is based on the data from tactical 

planning of weekly deliveries. This research focuses on 

the methodology that will allow reducing the affect of 

the demand variation on the product delivery planning 

and scheduling, and avoid numerous time-consuming 

planning adjustments and high computational costs. 

In the distribution centres, this problem is related 

to deliveries of various types of goods to a net of stores, 

in predefined time windows, taking into account 

transportation costs and product demand variability. 

The problem has also a high number of decision 

variables, which complicates the problem solution 

process. Heuristic methods and commercial software 

that are usually applied could lead to non-effective 

solutions, high computational costs and high time 

consumption.  

In practice, product demand from stores is variable 

and not deterministic. As a result, the product delivery 

tactical plan that is further used for vehicle routing and 

scheduling has to be adjusted to real demand data, and 

product delivery re-planning supervised by a planner is 

often required. This task is time-consuming and 

requires specific knowledge and experience of planning 

staff in this domain. Moreover, in practice a cluster 

analysis of the product demand data and potential 

tactical plans is not performed. But the most suitable 

delivery plan could be defined as a result of such an 

analysis that would ensure high quality solutions to 

schedule an optimisation problem and reduce 

computational costs of the problem solution.   

The paper presents an integrated approach to 

product delivery planning and scheduling built on a 

cluster analysis, simulation optimisation and monitoring 

techniques. 

 

4. INPUT DATA CLUSTERING 

First, a cluster analysis is applied to process input data 

and select an effective product delivery tactical plan for 

the upcoming week. Then, it is used to group customers 

into groups, based on their geographical location and 

average weekly demand. 

 

4.1. Cluster Analysis of Dynamic Demand Data 

Here, a cluster analysis (Seber 1984) is aimed 

(Merkuryeva, Bolshakov, Kornevs 2011): 1) to find a 

number of typical dynamic demand patterns and 

corresponding clusters of planning weeks; and 2) to 

construct a classification model that for any week 

allows determining an appropriate demand pattern, 

allocating a specific week to one of previously defined 

clusters and determining the correspondent product 

delivery plan. In the business case, the historical data on 

daily number of delivered products for 52 weeks are 

used and specified by weekly demand time-series each 

representing a sequence of points – daily numbers of 

product deliveries for a specific week. 

The K-means clustering algorithm (MacQueen 

1967) is used. It aims to divide n observations into a 

user-specified number k of clusters, in which each 

observation belongs to a cluster with the nearest mean 

representing a cluster centroid. The result is a set of 

clusters that are as compact and well-separated as 

possible. An appropriate number of k clusters, or typical 

demand patterns is defined by using silhouette plots 

(Kaufman and Rousseeuw 1990). Higher mean values 

of silhouettes show better clustering results that 

determine better clusters giving the best choice for a 

number of clusters. In this method, a numerical measure 

of how close each point is to other points in its own 

cluster compared to points in the neighbouring cluster is 

defined as follows: 
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where si is a silhouette value for point i, ai  is an average 

dissimilarity of point i with the other points in its 

cluster, and bi is the lowest average dissimilarity 

between point i and other points in another cluster. 

K-means clustering experiments have been 

performed for the number of clusters from 2 to 8. Then 

for each clustering experiment, silhouette plots have 

been built, and mean values of silhouettes per cluster 

have been calculated. Analysis of silhouettes mean 
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values leads to the conclusion that the best cluster 

separation could be done at k=4 with a silhouette mean 

value equal to 0.558. Clusters 1 to 3 seem to be 

appropriately clustered. Dynamic patterns received for 

clusters from 1 to 3 are presented in Fig. 3.  

 

  

  
 

Figure 3: Silhouette Plot for the Number of Clusters k=4 

and Demands Patterns with a Mean Value Greater 

than 0.5 (Merkuryeva et al. 2011) 

 

A classification model (Merkuryeva, Bolshakov, 

Kornevs 2011) that assigns an appropriate demand 

cluster is presented by an NBTree, which induces a 

hybrid of decision-tree and Naive-Bayes classifiers. 

This algorithm is similar to classical recursive 

partitioning schemes, except that leaf nodes created are 

Naive-Bayes categorizers instead of nodes predicting a 

single class (Seber 1984). For a specific week, an 

NBTree allows identifying an appropriate cluster and 

then choosing weekly tactical delivery base plan 

corresponding to this cluster. Then, selected weekly 

delivery plan is used for optimisation of parameters of 

vehicle schedules. 

 

4.2. Region Clustering Through Multi-Objective 

Optimisation 

In practice, weekly delivery planning is done based on 

data about store allocations to geographical regions. In 

the business case, all stores are grouped into 12 regions. 

However, this grouping has been made manually and 

seems not to be effective. Additionally, rearranging of 

regions is required when a new store is opened. Also, it 

is desirable to get regions with a uniform total weekly 

demand. 

Here, the region clustering task is formalised as a 

multi-objective optimisation problem. Input data 

contains the number of stores n, the number of regions 

k, two geographical coordinates xi and yi for each store 

i, i = 1,..., n defined in the Cartesian coordinate system 

and the total weekly demand di for each store i. 

Decision variables are defined that for each store i 

assign a region (or cluster), i.e. 

 

  kai ,...,2,1 ; ni ...1 . (2) 

Two objective functions are introduced in the 

problem. The first one determines how good generated 

regions from the geographical location point of view 

are, while the second objective function defines if the 

total demand is equally distributed among these regions. 

Both objective functions are minimized as follows: 
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where f1 defines the sum of distances r(i, j) between 

centroids i of the regions and stores j assigned to them, 

and f2 is the sum of variances of the total demand for 

each region and the average demand per region. No 

additional constraints are defined in the optimisation 

problem. 

To solve the problem, a multi objective 

optimisation Nondominated Sorting Genetic Algorithm 

II (NSGA-II) (Deb 2002) implemented in HeuristicLab 

optimisation framework (Wagner 2009) is applied. The 

optimization problem itself is implemented as a multi-

objective optimisation problem plug-in of HeuristicLab 

with integer encoding of solutions and their evaluation 

by two mathematical functions (3) and (4). 

In experiments with NSGA-II, the following 

operators were applied: a discrete crossover operator for 

integer vectors (Gwiazda 2006); an uniform one 

position manipulator (mutation operator) (Michalewicz 

1999); and a crowded tournament selector (Deb 2002). 

A termination criterion is defined by a number of 

generations, i.e. 10000 generations in this case. 

Selected solution in the middle of the Pareto front 

(see Fig. 4) obtained with the NSGA-II algorithm has 

compact clusters or regions. Moreover, these results 

show that only two regions demands are much lower 

than others. Further leveraging of the region demand 

could make worse the geographical location of regions 

with higher priority. 

 

 
Figure 4: Solution in the Middle of the Pareto Front 

 

5. VEHICLE ROUTING AND SCHEDULING 

Within the proposed integrated delivery planning and 

scheduling approach, vehicle routing and scheduling 

tasks are solved at the operational planning level. Data 

from a delivery tactical plan, which description is out of 

the paper scope, are transferred. For each planning day, 
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vehicle routes and schedules are defined to minimize 

their transportation costs. 

 

5.1. Vehicle Routing with Time Windows 

Classical statement of the vehicle routing problem with 

time windows (VRPTW) is applied (Cordeau et al. 

2001). Input data includes a set of customers, and data 

about their geographical locations and demand. Each 

customer has to be served by one vehicle and only once 

within a planning horizon. For each customer time 

window when it has to be served is defined. Vehicles 

routes start and end in DC. Shortest routes for a fleet of 

homogenous vehicles with limited capacity have to be 

found.   

To solve the problem, a coarse-grained island 

genetic algorithm with offspring selection (IOSGA) 

(Affenzeller et al. 2009) was applied. IOSGA 

parameters are defined as follows: a proportional 

selector; 5 islands; 200 individuals in population; ring 

mutation each 20 generations with 15% rate: random 

individuals are replaced with best from the 

neighbouring island. Maximal selection pressure was 

set to 200, and mutation was applied with 5% rate. 

Mutation operators provided in HeuristicLab framework 

were involved. 

A set of optimisation experiments were performed 

in order to define which of crossover operators provides 

most relevant results (see Fig. 5). These results were 

obtained with GVR crossover (Pereira et al. 2002) and 

with edge recombination (ERX) and maximal 

preservative (MPX) crossovers for solutions encoded in 

Alba encoding (Alba and Doronso 2004). Application 

of the ERX crossover provided the best results in terms 

of the total distance and preserved the defined number 

of available vehicles. However, the results obtained for 

Alba encoded solutions were worse in terms of the 

capacity constraints violation. In turn, application of 

GVR crossover although provides solutions with an 

overflow of number of vehicles, nevertheless the 

capacity constraints are satisfied in most cases. 

 

 
Figure 5: Performance of Crossover Operators in VRP 

 

Finally, a crossover operator which works with an 

unlimited number of vehicles, but provides best results 

in terms of keeping routes not overloaded such as GVR 

crossover was selected. To minimize a number of 

required vehicles later, the vehicle scheduling problem 

is introduced in the next paragraph. 

 

5.2. Vehicle Scheduling for the Routed Solution 

While solving the classical VRPTW it is assumed that 

any vehicle may perform only one route in the planning 

horizon. Each route starts and ends in the depot of the 

distribution centre, and defines the sequence of the 

customers served.  

In the business case, all routes are shortened by the 

capacity of vehicles. Both routing and scheduling tasks 

are performed each day, and planning horizon is defined 

by 24h. This leads to ineffective solutions, where each 

vehicle generally performs only one short task of a few 

hours long and most of the day this vehicle is idle. 

This problem can be formulated as Vehicle 

Scheduling Problem with Time Windows (VSPTW) 

and solved with methods and tools developed in 

(Merkuryeva and Bolshakov 2012). Here, the routes 

correspond to the trips in the VSPTW task and are 

assumed to be independent from vehicles; and vehicles 

may perform any fair number of routes during the day.  

As far as the final solution of the VRPTW task is 

feasible for the capacity and time window constraints, it 

could be optimised by combining and compacting 

routes to increase vehicle utilization. As a result, during 

the day each vehicle can perform a sequence of the 

predetermined routes. Application of the vehicle 

scheduling for the solution of vehicle routing problem 

allows reducing a number of required vehicles. 

Here, the problem statement described in 

(Merkuryeva and Bolshakov 2012) has been modified. 

Routing was performed for each group of delivered 

goods. Furthermore, for all customers time windows 

and service times were introduced, which made the 

problem definition more flexible. Input data used in the 

vehicle routing task is transferred to the vehicle 

scheduling one. The vehicle loading time is replaced by 

a service time in DC. 

Let note that for the unification with a VRPTW, a 

sequence of stores in trips in a new statement was 

defined as route. Correspondingly, moving times in a 

trip were interpreted as transportation times in a route. 

Finally, a vehicle capacity is not involved in the 

problem, as in the VRP all vehicles have same capacity, 

and no route of feasible VRP solution will exceed this 

value. 

 

5.3. Route Scheduling 

To implement a solution for vehicle scheduling 

problem, a problem plug-in in HeuristicLab 

optimisation framework was developed. Input data are 

defined as follows: 

 Ready time for each customer, in minutes; 

 Due time for each customer; 

 Service time for each customer; 

 List of routes (obtained in VRP solution); 

 List of route transportation times, which 

includes times for vehicles to move between 
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sequential points of routes (obtained in VRP 

solution); 

 Estimated number of vehicles. 

Solution fitness evaluator in the plug-in simulates a 

schedule of a solution candidate and identifies time 

windows mismatches, evaluates idle times and the total 

usage time for each vehicle. Two types of soft 

constraints are introduced: 

1. Number of times when a vehicle arrives to a 

customer after due time defined by Nad; 

2. Number of vehicles with working hours more 

than 24 h defined by Not. 

Fitness function f summarizes vehicle idle times, 

when a vehicle waits to fit the time window, and a 

number of constraint violations are multiplied by 

penalty values:  

 

 min


ototadad

Vi

i NkNktf ,   (5) 

 

where ti is the total idle time of vehicle I; V defines a set 

of available vehicles; kad and kot are the penalty 

coefficients for late arrivals and overtimes, 

correspondingly, and kad, kot are assumed to be 

significantly greater than 1. 

A chromosome for solution candidates is encoded 

as the permutation which consists of integer values. 

Integers that are larger than the number of routes 

encode gaps in the chromosome, where for a vehicle a 

new sequence of routes starts. Other integers define 

corresponding routes in sequences. The encoding used 

is similar to one described in Alba and Dorronsoro 

(2004) for a vehicle routing problem. Application of 

permutation based encoding allows easy usage of 

different recombination and mutation operators. 

For the schedule optimisation purpose, an 

Evolution Strategies algorithm implemented in 

HeuristicLab (Wagner 2009) is applied.  

 

5.4. Experimental Results 

Various series of optimisation experiments were 

performed to determine a suitable algorithm for the 

VSPTW. Following algorithms were examined: 

evolution strategies (ES), genetic algorithm (GA), 

island genetic algorithm with 5 islands (IGA) and 

offspring selection genetic algorithm (OSGA) 

(Affenzeller et al. 2009). Maximal preservative 

crossover and insertion manipulator were defined as 

genetic operators for all algorithms. To determine a 

suitable algorithm, numbers of solution evaluations 

performed to obtain candidate solutions of the equal 

fitness were compared on hard instances, with a low 

number of vehicles and short time windows. Results of 

optimisation experiments for a single instance are 

shown in Figure 6. 

The results of comparisons show that same 

instance is solved with ES and OSGA in shortest time, 

while GA without modifications demonstrated the worst 

results. This behaviour of optimisation algorithms can 

be explained with potentially small effectiveness of the 

crossover operator against a mutation operator. The 

evolution strategy was chosen as most suitable as it has 

ability to provide globally optimal results of VSP with 

fewer evaluations. 

 

 
Figure 6: Productivity of Different Optimisation 

Algorithms for VSPTW 

 

Following, a sample experiment based on one day 

plan and specific demand data for 53 stores is described. 

Time windows for most stores are defined from 6:00 

a.m. to 9:00 p.m. Some stores can be served in any 

time. 

Application of IOSGA for VRP has given 34 

routes in the best found solution (see Figure 7). Most of 

the vehicles in the solution have very short routes due to 

a small vehicle capacity. But, due to long time windows 

of customers it is possible to combine these routes. 

 

 
Figure 7: VRP Solution of the Case Instance 

 

 
Figure 8: VSP Solution of the Case Instance 

 

Finally, evolution strategies (100+20) were applied 

for the data obtained in VRP. A number of available 

vehicles in input data were varied. As a result, it was 

concluded that the problem instance had globally 

optimal solutions with all constraints satisfied if at least 
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6 vehicles are available. The correspondent Gantt chart 

is shown in the Figure 8. Green lines in the figure 

correspond to the loading times in DC and define 

beginning of routes from the VRP solution, blue ones to 

transportation times, and yellow lines define unloading 

times at stores.  

Similar experimental results were obtained also for 

another problem instances. Better vehicle utilization 

was achieved for the instances with larger time 

windows. 

 

5.5. Monitoring 

Here, monitoring provides a long feedback link to an 

optimization tool at the operational and tactical levels of 

planning (Fig. 2). After the best solution found in the 

optimisation is applied in a real life, a new state of the 

system observed in monitoring is used to adjust 

parameters of the simulation model. In turn, an adjusted 

model is applied in further simulation optimisation 

experiments. And, despite the increasing a time factor, a 

simulation optimiser is applied to find benefits of a real-

life system, and more realistic solutions will be 

received. 

 

6. CONCLUSIONS 

Combination of data mining, simulation, optimisation 

and monitoring techniques provides the powerful 

integrated planning approach that ensures effective 

decisions on various stages and levels of the delivery 

planning process. A cluster analysis of the input data 

reasonably reduces the dimensions of the tactical 

planning tasks and complexity of planning tasks at the 

operational level. The proposed vehicle scheduling 

method that complements vehicle routing ensures 

effective route and schedule solutions for a short-term 

delivery planning. This method can be applied for 

vehicle routing and scheduling tasks, where routes are 

very short in comparison with a planning horizon. 
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