
SIMULATING INNOVATION ADOPTION BEHAVIOR:
LESSONS LEARNED FOR MODELERS AND PROGRAMMERS

Christian Stummer(a), Elmar Kiesling(b)

(a)Department of Business Administration and Economics, Bielefeld University, Germany
(b)Institute of Software Technology and Interactive Systems, Vienna University of Technology, Austria

(a)christian.stummer@uni-bielefeld.de, (b)elmar.kiesling@tuwien.ac.at

ABSTRACT
To adopt or not to adopt an innovation is a question that
is ultimately answered by individual (prospective)
customers. Their behavior is of practical relevance
because it drives the market success of new products or
services and it also constitutes an interesting area for
academic research. In the course of a research project at
the University of Vienna we have developed an agent-
based simulation to investigate this topic. During the
initial months, we reviewed numerous tools (i.e., frame-
works and modeling environments) for this purpose. In
this paper we share experiences we made in this respect
as well as later on when implementing the simulation
tool.

Keywords: agent-based modeling, innovation adoption
behavior, frameworks and modeling environments,
lessons learned

1. INTRODUCTION
The prosperity and long-term survival of many firms
hinge on their ability to systematically develop new
products and introduce them into market successfully.
Both challenges require considerable amounts of
resources, which is why practitioners have a strong
interest in the projection of an innovation’s potential
market diffusion. Agent-based simulation can capture
the complex diffusion process of an innovation on the
macro-level as a result of relatively simple micro-level
interactions between heterogeneous individuals (who,
for example, exchange information within their social
network through word-of-mouth); for a recent review of
agent-based diffusion models confer Kiesling et al.
(2012). This notion was the starting point for a research
project on quantitatively simulating and modeling the
diffusion of innovations (“QuaSiMoDI”). The endeavor
was financed by the Austrian Research Fund and ran
from 2008 to 2011.

The simulation model that resulted from the project
contributes to innovation diffusion research in that it
covers all phases of the purchasing process (ranging
from receiving initial information to post-purchase
product experiences), takes into account initial adoption
as well as repeat purchases, allows for several suppliers,
accounts for temporal as well as spatial aspects, and

considers heterogeneous consumer preferences with
respect to multiple product attributes.

Furthermore, emphasis has been placed on illus-
trating the applicability of our work by referring to a
real product (i.e., a second generation biofuel that is
currently under development at the Vienna University
of Technology) for a particular market (i.e., Austria).
Results therefore may also be useful for practitioners
interested in this particular technology, because simu-
lation experiments for several scenarios (each with its
own strategy for price, communication, and roll-out)
were based on real data. Also policy-makers could
benefit from such simulations that enable them to assess
the impact of diverse (e.g., fiscal) measures to further
the diffusion of biofuels and contribute to environ-
mental objectives. For descriptions of previous versions
of the simulation confer Kiesling et al. (2009), Kiesling
et al. (2010), and Günther et al. (2011).

In addition to researchers and practitioners, a third
group of stakeholders may benefit from experiences
gained in the QuaSiMoDI project, namely modelers and
programmers who are about to embark on a similar
project. It is particularly them this paper is targeted.

In the remainder we will therefore elaborate on
modeling and implementation issues. First, we provide
an overview of alternative frameworks that we con-
sidered as a basis for the implementation of our agent-
based simulation model (Section 2). Next, we describe
the platform and tools actually used (Section 3). Then,
we outline the architecture of our software implemen-
tation (Section 4). Finally, we mention some general
lessons learned from the research project that may be of
value for modelers and programmers starting a similar
endeavor (Section 5).

2. SURVEY OF AGENT-BASED SIMULATION

TOOLS
In recent years, the incursion of agent-based approaches
in many scientific disciplines has entailed the develop-
ment of increasingly sophisticated software-platforms
for agent-based modeling and simulation. Today, a
modeler selecting a platform for the implementation of
an agent-based model is therefore faced with an
abundant range of programming languages, libraries,
frameworks, and modeling environments to choose

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 90

mailto:christian.stummer@uni-bielefeld.de
mailto:elmar.kiesling@tuwien.ac.at

from. In the following, we outline the basic types of
available options.

2.1. Programming languages
A basic but viable approach is to implement agent-
based models with “plain” general purpose program-
ming languages rather than relying on specialized
software tools. Early agent-based models were typically
implemented independently following this approach
(Gilbert 2002). Today, programming the whole simu-
lation software “from scratch” still appears to be a
relatively common approach, even though it leads to
duplication of efforts and forces modelers working on
different models to repeatedly implement the same
basic functionality and algorithms. This process is
error-prone, may lead to code that is not easily acces-
sible, and impedes verification of the implementation.
Object-oriented languages such as Java or C++ are
typically used because core concepts like encapsulation,
inheritance, and abstraction fit the agent-based mod-
eling paradigm well. Types of agents are implemented
as classes; particular agents are instances (i.e., objects)
of these classes that have an internal state: agents’
interactions with one another and their environment are
implemented as methods of the agent classes.

Somewhat less common approaches build agent-
based simulations on top of computational mathematics
systems such as Mathematica (Wolfram Inc. 2012) or
Matlab (Math-Works 2012), procedural languages (e.g.,
StarLogo, cf. Resnick 1996), functional languages
(Legéndi et al. 2009), or spreadsheet software (Macal
and North 2007).

2.2. Libraries and toolkits
Specialized libraries and toolkits that provide dedicated
facilities for agent-based simulation offer modelers a
number of significant advantages over implementing a
model from scratch. First, they provide standard
mechanisms that are frequently required in agent-based
modeling, such as scheduling, event handling, random
number generation, network modeling, logging, visuali-
zation, and analysis. As a consequence, the resulting
code can be more compact, accessible and easier to
verify than custom implementations that involve large
amounts of “boilerplate” code. By providing ready-
made building blocks, standardized libraries can assist
modelers and ideally save them time, effort, and energy.

2.3. Modeling environments
While libraries may assist modelers with only limited
programming skills, they still require sufficient fluency
in the underlying programming language. Modeling
environments, by contrast, provide an entire graphical
model building interface and allow modelers to
assemble building blocks visually or with very limited
syntax. They may therefore alleviate this limitation or
require no programming at all. Such environments in-
clude, for example, Repast S (repast.sourceforge.net),
StarLogo (education.mit.edu/starlogo), Eclipse Agent
Modeling Framework (www.eclipse.org/amp), NetLogo

(ccl.northwestern.edu/netlogo), and Anylogic (www.
xjtek.com/anylogic). The main disadvantage of all-
encompassing modeling environments is that they may
impose assumptions upon the model and limit the
modeler’s ability to control detailed aspects of the
simulation.

2.4. Prior Reviews
Several authors have reviewed available libraries and
environments for agent-based simulation in the past. In
an early survey, Gilbert (2002) provide a brief overview
of the toolkits available at that time and compare the
state of development of software tools for agent-based
simulation to the early stages of development of statis-
tical software. Tobias and Hofmann (2004) evaluate
free Java-libraries for social agent-based simulation,
comparing nineteen different characteristics across the
four platforms taken into account, and conclude that the
Repast environment (North, Collier, and Vos 2006) was
the most advanced of the libraries at the time of the
review. Railsback et al. (2006) review four main plat-
forms (NetLogo, Mason, Repast, Swarm) and compare
them by implementing a template “StupidModel” at
various levels of sophistication in each of them. In total,
they discuss sixteen intentionally simplified template
models, and provide full specifications for all of them.
Isaac (2011) refines these template models and provides
implementations in Python, which the authors deem
highly readable and more compact than implementa-
tions in other languages. Castle and Crooks (2006)
examine eight simulation platforms, focusing particu-
larly on evaluating geospatial capabilities. The most
extensive survey to date was conducted by Nikolai and
Madey (2009). The authors compare five characteristics
of 53 toolkits, viz. programming language, operating
system support, type of license, primary domain for
which the toolkit is intended, and types of support
available to the user.

We can conclude this section by asserting that

several powerful tools are available to the model builder
today. Table 1 summarizes the main contenders con-
sidered for the implementation of our innovation
diffusion model.

3. PLATFORM AND TOOLS IN QUASIMODI
Several criteria were considered in the selection of tools
for the implementation of QuaSiMoDI. First, because
the simulation was deployed on a high-performance
computing cluster, a platform-independent solution that
could be run on various operating systems (Windows,
Mac OS X, Linux) was required. Java-based frame-
works offer significant advantages in this respect,
because the resulting simulation program is portable
and can easily be deployed on any computing platform
without recompiling the code. Furthermore, the
simulation returns consistent results irrespective of the
underlying computing architecture, which is not guar-
anteed when natively compiled code is used. Moreover,
almost all available Java-based frameworks can be

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 91

easily complemented with any of the wide array of
software libraries available for the Java programming
language. As Java is the main programming language
for many frameworks (e.g., 42% of the frameworks
reviewed by Nikolai and Madey 2009), the number of
available options fulfilling the first criterion is large.

Second, the continuous time approach we chose for
QuaSiMoDI requires appropriate discrete event mecha-
nisms, i.e., means for maintaining and processing a list
of scheduled events. (Note that in such an approach new
events can be scheduled for any future point on a
continuous timeline, which is why scheduling mech-
anisms for events within the same “time period” as in
discrete time approaches become dispensable.) Because
most frameworks are based on a discrete time approach
and unfold their full potential only in a discrete time
setting, the number of candidate platforms was signifi-
cantly reduced when this requirement was taken into
account.

From the remaining options, we finally chose
MASON (Luke et al. 2004), a fast discrete-event multi-
agent simulation core written in Java that also provides
a fast Mersenne Twister (Matsumoto and Nishimura
1998) implementation for pseudo-random number
generation. MASON is open source, lightweight, and
can be run without a graphical user interface or
visualization on a headless server. It also provides

checkpointing capabilities and allows for simulation
runs to be dynamically migrated across platforms.

The simulation was implemented in Java SE6 using
several additional libraries and tools as summarized in
Table 2. The list includes a number of standard tools,
specialized Java libraries that provide functionality
required in the simulation, and common tools for
statistical analysis of results and automation of the
simulation process as outlined in the following sections.

3.1. Basic Java tools
The first group of tools used in the implementation
consists of Apache Maven, Apache Commons and
Apache Log4j, XStream and jUnit. We used Apache
Maven to manage builds and dependencies of the
various Java libraries.

Verification of micro-level mechanisms is crucial
in agent-based simulations, because implementation
errors cannot easily be detected and traced in the
simulation’s emergent macro-level output. We therefore
conducted extensive unit tests of all major model
components and mechanisms on the micro-level with
jUnit.

The recording of detailed information results in the
generation of a considerable amount of data. Therefore,
a flexible logging facility that provides mechanisms to
selectively activate or deactivate output at runtime and

Framework Website Language(s) License Reviewed in
AnyLogic (Garifullin,
Borshchev, and Popkov 2007)

www.xjtek.com/ UML-RT,
Java

Proprietary Castle and Crooks
(2006); Nikolai and
Madey (2009)

Ascape (Parker, 2001; Inchiosa,
2002)

ascape.sourceforge.net Java BSD Gilbert (2002); Nikolai
and Madey (2009)

MASON (Luke et al., 2004) www.cs.gmu.edu/~eclab/
projects/mason/

Java Academic
free, open
source

Castle and Crooks
(2006); Railsback et al.
(2006); Nikolai and
Madey (2009)

NetLogo (Tisue and Wilensky,
2004)

ccl.northwestern.edu/
netlogo/

NetLogo
language

Freeware,
not open
source

Castle and Crooks
(2006); Railsback et al.
(2006); Nikolai and
Madey (2009)

RePast (v 1-3) (North, Collier,
and Vos, 2006)

repast.sourceforge.net/
repast_3/index.html

Java
(RepastJ),
Python
(RepastPy),
C++, .net
(Repast.net)

BSD Gilbert (2002); Tobias
and Hofmann (2004);
Castle and Crooks
(2006); Railsback et al.
(2006); Nikolai and
Madey (2009)

Repast S (North et al., 2005) repast.sourceforge.net/
repast_simphony.html

Java,
Groovy

BSD Nikolai and Madey
(2009)

StarLogo education.mit.edu/
starlogo

StarLogo
language

Freeware,
not open
source

Gilbert (2002); Castle
and Crooks (2006)

Swarm (Minar et al., 1996) www.swarm.org Objective C,
Java

GPL Gilbert (2002); Tobias
and Hofmann (2004);
Castle and Crooks
(2006); Nikolai and
Madey (2009)

Table 1: Selected agent-based simulation frameworks

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 92

that is executed in a separate thread that is independent
of the main simulation program can provide significant
performance benefits (particularly on multi-core com-
puters). Apache Log4j fulfills these requirements and
was used to produce both comma separated output for
analysis and optional human readable textual log files.

Finally, we aimed for a highly generic and versatile
simulation that is fully configurable at runtime. To this
end, all model inputs as well as the configuration of
parameters can be performed through human-readable
XML files. XStream, a fast XML serializer and de-
serializer, was used to read these XML files and import
parameters into the simulation.

Table 2: Platform, libraries, and tools used
Component Website Purpose
Java SE6 java.sun.com Implementation

of the simulation
MASON www.cs.gmu.edu/

~eclab/projects/
mason

Agent-based
simulation core

Apache
Maven

maven.apache.org Build
management

jUnit www.junit.org/ Unit and
integration
testing

CERN Colt
library

acs.lbl.gov/software
/colt

Probability
distributions,
statistics

JUNG jung.sourceforge.net social network
generation and
visualization

GeoTools
GIS toolkit

geotools.codehaus.
org

Geospatial
model, shapefile
reading, distance
calculations

Apache
Commons,
Log4j

www.apache.org Utility classes,
logging of output
and simulation
results

XStream xstream.codehaus.
org

XML deseriali-
zation for para-
meter and confi-
guration files

Perl www.perl.org Automation of
parameter
sweeps and
analysis process

Gnu R www.r-project.org Analysis of
results; graphs

3.2. Specialized libraries
A number of specialized libraries were required to
implement various aspects of the model. First, the

model incorporates probability distributions in many
places. The CERN Colt library (more precisely, func-
tionality provided in the cern.jet package) was therefore
a valuable resource that allowed for a very generic
implementation without “hardcoding” any distributions
into the code. The resulting simulation tool allows
modelers to select from various types of distributions
for specific simulation scenarios at runtime through
configuration of XML parameter files.

Next, the Java Universal Network/Graph Frame-
work (JUNG) was used for visualizing, reading,
writing, and analyzing the social networks. This library
also provides implementations of some of the genera-
tive network algorithms.

Finally, we used GeoTools GIS toolkit to imple-
ment the geospatial model and read population density
data in ESRI shapefile format.

3.3. Tools for analysis and automation
Gnu R was used extensively to analyze and plot data.
Bash and Perl scripts came into play for automating the
simulation process, the discretization of data, and the
analysis as well as plotting of results.

4. IMPLEMENTATION
Major design objectives for the implementation of the
simulation included (i) reproducible results, (ii) pro-
vision of a flexible parameterization mechanism, (iii) no
“hardcoding” of parameter values in the program code,
and (iv) scalability and support for parallelization.

The first objective was achieved by initializing the
random number generators in the simulation with
random seeds from a configuration file. Integration tests
were performed regularly during the implementation
process to ensure that simulation runs with the same
parameter sets and seeds always yield identical results.

The second and third objectives were achieved by
means of a convenient parameterization mechanism
based on a number of separate XML files, each of
which configures particular aspects of the model. Major
advantages of this method are that the parameter files
are human-readable, can be easily edited, and that they
can be validated against XML Schemas (XSD). The
partitioning into separate files allows for their reuse in
multiple scenarios and avoids redundancy. In order to
simulate the diffusion of an innovation at varying price
levels, for example, the same set of parameter files can
be used for all price levels, with the sole exception of
the pricing policy file. A single line that points to the
pricing policy to use in the simulation has to be edited
in a configuration file that binds the parameter set
together (run.xml). The left-hand side of Figure 1
illustrates the configuration files and their relations.

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 93

The fourth objective was achieved by dividing the
steps in the simulation process into distinct program
modules. Rather than optimizing for parallelization
within individual replications (i.e., use of multiple
processing cores to process events in a simulation run),
we designed the simulation tool in a way that a set of
runs with varying random seeds can be performed in
parallel on multiple cores or computing nodes and
results can then easily be collected, aggregated, and
analyzed in a separate step. In particular, the following
four distinct steps are performed for each simulation
scenario, as illustrated in Figure 1: (i) Modeling of the
scenario to simulate in a number of configuration files,
(ii) simulation of the scenario for the number of repli-
cations specified, (iii) discretization and aggregation of
results of individual simulation runs, and (iv) plotting
and analysis of results.

5. GENERAL LESSONS LEARNED
General lessons learned in the course of the QuaSiMoDI
project that go beyond the selection of suitable frame-
works and modeling environments can be roughly
divided in four groups. Firstly, there is a need for a
sound empirical foundation; “just” setting up an agent-
based model and to implement the corresponding
simulation tool is no longer sufficient in order to make
some valuable contribution to the field. Instead it is
essential (and strongly demanded by many reviewers) to
mirror micro-level factors and processes from real
markets. In the QuaSiMoDI application case we there-
fore organized a focus group for criteria identification,
performed a conjoint analysis for consumers’ preference
elicitation, and did additional empirical social research
with a standardized questionnaire in order to secure
additional information on the structure of the underlying
social network and the communication behavior of
(potential) customers. All in all, these activities have
cost several months of work (and also financial
resources for the market research institution that

provided us access to their representative panel), but, in
retrospective, it was worth the effort.

Secondly, it turned out that both the structure of
the social (communication) network and corresponding
parameters (e.g., concerning communication frequency)
have considerable impact on simulation results. This
raises a number of promising topics for further research,
e.g., investigating stylized social network characteristics
that are prevalent in different types of (consumer)
markets. Unless sufficient evidence is available in
literature, we strongly recommend placing particular
emphasis on empirical data acquisition in this respect.

Validation of simulation results forms a third
challenge that has to be mastered. For QuaSiMoDI we
performed (i) a conceptual validation for which, as an
example, we grounded our innovation decision-process
on Roger’s (1962) well-established framework, (ii) an
internal validation with extensive unit and integration
testing, (iii) a micro-level external validation for cali-
bration (e.g., with a check for implausible values or
inconsistent preference values from the conjoint analy-
sis) as well as for verification (e.g., whether the micro-
level output concerning choice of gas station is
consistent with reported behavior or whether agents’
communication behavior reflects assumptions), (iv) a
macro-level external validation for which we performed
a face validation with experts and also compared simu-
lation results with data for market diffusion of premium
(fossil) fuels from Germany, and (v) a cross-model
validation for which we replicated stylized facts forma-
lized in the model by Bass (1969).

Finally, it was essential to gather a team of experts
with complementary competences. For the QuaSiMoDI
project they came from the fields of innovation manage-
ment, marketing, organization studies, sociology, opera-
tions research, and IT. On a personal note, working in
such an interdisciplinary team made “tons of fun” (as a
former colleague from the University of Texas would
have phrased it) and certainly has been among the most
appealing aspects in pursuing this endeavor.

Figure 1: Architecture and simulation workflow

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 94

ACKNOWLEDGMENTS
In the course of the QuaSiMoDI project we obviously
did not just review platforms and implement the
simulation tool, but also perform many more tasks (such
as properly modeling the purchase decision or informa-
tion transfer, setting up the social network, or testing the
tool with data from a real-world application). This has
been joint work together with several others, most
prominently with Markus Günther, Rudolf Vetschera,
and Lea Wakolbinger who have considerably contri-
buted to the QuaSiMoDI research endeavor for which
we are just grateful. Finally, we thank the Austrian
Science Fund (FWF) for financial support by grant No.
P20136-G14.

REFERENCES
Bass, F., 1969. A new product growth model for

consumer durables. Management Science, 15 (5),
215-227.

Castle, C.J., Crooks, A.T., 2006. Principles and
concepts of agent-based modelling for developing
geospatial simulations. Working paper 110. Centre
for Advanced Spatial Analysis, University College
London.

Garifullin, M., Borshchev, A., Popkov, T., 2007. Using
AnyLogic and agent-based approach to model
consumer market. Proceedings of the 6th
EUROSIM Congress on Modelling and Simulation,
pp. 1-5. Sept. 9-13, Ljubljana (Slovenia).

Gilbert, N., 2002. Platforms and methods for agent-
based modeling. Proceedings of the National
Academy of Sciences, 99, 7197-7198.

Günther, M., Stummer, C., Wakolbinger, L.M.,
Wildpaner, M., 2011. An agent-based simulation
approach for the new product diffusion of a novel
biomass fuel. Journal of the Operational Research
Society, 62 (1), 12-20.

Inchiosa, M.E., 2002. Overcoming design and develop-
ment challenges in agent-based modeling using
ASCAPE. Proceedings of the National Academy of
Sciences, 99 (90003), 7304-7308.

Isaac, A.G., 2011. The ABM template models: a
reformulation with reference implementations.
Journal of Artificial Societies and Social Simula-
tion, 14 (2), 5.

Kiesling, E., Günther, M., Stummer, C., Wakolbinger,
L.M. (2012) Agent-based simulation of innovation
diffusion: A review. Central European Journal of
Operations Research, 20 (2), 183-230.

Kiesling, E., Günther, M., Stummer, C., Wakolbinger,
L.M., 2009. An agent-based simulation model for
the market diffusion of a second generation biofuel.
In: M.D. Rossetti M.D., R.R. Hill, B. Johansson, A.
Dunkin, R.G. Ingalls R.G., eds. Proceedings of the
Winter Simulation Conference (WSC 2009), pp.
1474-1481. Dec. 13-16, Austin (Texas, USA).

Kiesling, E., Günther, M., Stummer, C., Vetschera, R.,
Wakolbinger, L.M., 2010. A spatial simulation
model for the diffusion of a novel biofuel on the
Austrian market. In: A. Bargiela, S.A. Ali, D.

Crowley, E.J.H. Kerckhoffs, eds. Proceedings of
the 24th European Conference on Modelling and
Simulation (ECMS 2010), pp. 41-49. June 1-4,
Kuala Lumpur (Malaysia).

Legéndi, R., Gulyás, L., Bocsi, R., Máhr, T., 2009.
Modeling autonomous adaptive agents with
functional language for simulations. In: L. Seabra
Lopes, N. Lau, P. Mariano, L.M. Rocha, eds.
Progress in Artificial Intelligence, Lecture Notes in
Computer Science 5816. Berlin: Springer, 449-460.

Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K.,
2004. MASON: a new multi-agent simulation tool-
kit. Proceedings of the 2004 SwarmFest Workshop,
pp. 1-8. May 9-11, Ann Arbor (Michigan, USA).

Macal, C., North, M., 2007. Agent-based modeling and
simulation: desktop ABMS. In: S.G. Henderson, B.
Biller, M.-H. Hsieh, J. Shortle, J.D. Tew, R.R.
Barton, eds. Proceedings of the Winter Simulation
Conference (WSC 2007), pp. 95-106. Dec. 9-12,
Washington D.C. (USA).

MathWorks, 2012. Matlab. Available from: http://
www.mathworks.com [accessed 5 July 2012].

Matsumoto, M., Nishimura, T., 1998. Mersenne twister:
a 623-dimensionally equidistributed uniform
pseudorandom number generator. ACM Trans-
actions on Modeling and Computer Simulation, 8
(1), 3-30.

Minar, N., Burkhart, R., Langton, C., Askenazi, M.,
1996. The Swarm simulation system: a toolkit for
building multi-agent simulations. Working paper
96-06-042. Santa Fe Institute, Santa Fe.

Nikolai, C., Madey, G., 2009. Tools of the trade: a
survey of various agent based modeling platforms.
Journal of Artificial Societies and Social Simula-
tion, 12 (2), 2.

North, M.J., Collier, N.T., Vos, J.R., 2006. Experiences
creating three implementations of the Repast agent
modeling toolkit. ACM Transactions on Modeling
and Computer Simulation, 16 (1), 11-25.

North, M.J., Howe, T.R., Collier, N.T., Vos, J.R., 2005.
The Repast Simphony runtime system. In: C.M.
Macal, M.J. North, and D. Sallach, eds. Pro-
ceedings of the Agent 2005 Conference on Genera-
tive Social Processes, Models, and Mechanisms,
pp. 151-158. Oct. 13-15, Argonne (Illinois, USA).

Parker, M.T., 2001. What is Ascape and why should
you care? Journal of Artificial Societies and Social
Simulation, 4 (1), 5.

Railsback, S.F., Lytinen, S.L., Jackson, S.K., 2006.
Agent-based simulation platforms: review and
development recommendations. Simulation, 82 (9),
609-623.

Resnick, M., 1996. StarLogo: an environment for de-
centralized modeling and decentralized thinking.
In: Conference companion on Human factors in
computing systems: common ground. New York,
NY: ACM Press, 11-12.

Rogers, E.M., 1962. Diffusion of innovations. New
York, NY: The Free Press.

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 95

Tisue, S., Wilensky, U., 2004. NetLogo: a simple envi-
ronment for modeling complexity. Proceedings of
the International Conference on Complex Systems
(ICCS 2004), pp. 1-10. May 16-21, Boston (Massa-
chusetts, USA).

Tobias, R., Hofmann, C., 2004. Evaluation of free Java-
libraries for social-scientific agent based simula-
tion. Journal of Artificial Societies and Social
Simulation, 7 (1), 6.

Wolfram Inc., 2012. Mathematica. Available from:
http://www.wolfram.com [accessed 5 July 2012].

AUTHORS’ BIOGRAPHY
Christian Stummer currently holds the Chair of
Innovation and Technology Management at the
Department of Business Administration and Economics
at Bielefeld University, Germany. Before, he has served
as an associate professor at the University of Vienna,
Austria, as the head of a research group at the
Electronic Commerce Competence Center (EC3) at
Vienna, and as a visiting professor at the University of
Texas at San Antonio, United States. His research
interests focus on (quantitative) modeling and providing
proper decision support particularly so with respect to
new product diffusion and project portfolio selection.
Prof. Stummer has published two books, more than
thirty papers in reviewed journals, and numerous other
works. He is a member of several societies such as
INFORMS, the German Operations Research Society,
or the MCDM Society, acts as a reviewer for many
journals, and recently has become member of the
editorial board of the EURO Journal on Decision
Processes.
Elmar Kiesling is a postdoctoral researcher at the
Institute of Software Technology and Interactive
Systems at Vienna University of Technology, Austria.
He holds a master's degree in international business
administration and a PhD in management, both from the
University of Vienna. His research interests include
agent-based modeling and simulation, multi-criteria
decision analysis and decision support systems,
visualization of multivariate data, and information
security management.

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 96

