
MODELING A WRONG MAINTENANCE POLICY 
 

Diego D’Urso 
 

Università degli Studi di Catania - Dipartimento di Ingegneria industriale 
ddurso@diim.unict.it 

 
ABSTRACT 
The behavior of a single unit system, which is 
maintained according to the preventive policy, despite it 
fails with a constant failure rate, is focused. 
A discrete event simulation (DES) enables to compare 
the expected number of failures that belong to 
alternative maintenance scenarios: the corrective and 
the preventive one. 
The results comparison shows, at a first glance, that the 
preventive maintenance has to be preferred. 
A deeper analysis, based on the information content 
registered at each step of a simulation process, on the 
Skellam function properties and on the Small Number 
Law, helps to clarify this strange behavior. 
The real aim of modeling such a system would be to 
refuse the constant failure rate as an operations 
statement but only as a missing-information 
maintenance state. The simulation model enables to find 
more comprehensive information content about the 
behavior of stochastic single unit maintenance. 
 
Keywords: Single item maintenance, discrete event 
simulation, Skellam function, small number Law, 
learning by simulation. 

 
1. INTRODUCTION 

Maintenance has ever been a critical issue for 
management of industrial processes. Since early sixties, 
for military purposes, maintenance literature was 
already extensive and rapidly growing. Barlow and 
Hunter (1960) and Barlow and Proschan (1967) started 
to evaluate the state probabilities of a complex system. 
Few years later, Jorgenson et al. (1966) edited a 
comprehensive report about optimal maintenance 
policies for stochastically failing equipment: the 
corrective, preventive and preparedness maintenance 
policies were defined as well the uselessness of use the 
preventive maintenance to items which fail according to 
constant failure rate if compared with the application of 
the corrective one. They also unified the principle 
optimal preventive models both for preventive and 
preparedness maintenance.  

Henceforth preventive maintenance policy gained 
growing attention: economic models of optimization 
were performed over a horizon of thirty years and as a 
consequence new comprehensive focusing review about 
specific maintenance techniques have tried to make a 
picture of the state of the art (Sheut and Krajewski, 
1994, Dekker 1996). 

Due to the constant improvement of technology, 
processes have become more complex while service 
levels and most of all higher reliability performances 
are required. As a consequence the cost of preventive 

maintenance became the most important for industrial 
companies (Jardine et al. 2006).  

Therefore, Researchers focused analysis on more 
efficient maintenance approaches such as condition-
based maintenance (CBM) which are being 
implemented to handle the situation.  

The state of art confirms the early structure of 
maintenance policies and their suggested applications: 
preventive policy is to be dedicated to monotone failure 
rate items; corrective maintenance is the only answer to 
random failure occurrence.  

Relatively little has been written about the limits of 
corrective maintenance. 

Inspired by this literature background, I was trying 
to compare the results of maintenance policies applied 
to a system during a simulation exercise designed for 
students in logistics course of master degree. 

Because of the educational nature of the 
experiment, the application of above mentioned 
maintenance policies was applied to a simple case study 
such as that is represented by a single item system; just 
to make clear the contribution of proper maintenance 
policy to economic outcomes, it was simulated the 
application of corrective and preventive maintenance 
although the single item fails according to a constant 
failure rate. 

The experiment was designed, however, so as to 
change the failure mode of the component so as to 
determine which strategy is better suited to the 
conditions change scenario. 

The study below reported describes how the 
simulation modeling of a system can led to gain a better 
understanding of the focused problem and to overcome 
critical issues and maths tricks. 

The study subtends the importance of learning by 
simulating. 

The paper is structured as follows: a case study is 
described in order to define the problem; it regards the 
modelling of a single unit system; the model belongs to 
the discrete event simulation type: it is at the same time 
the creator and the solver of an apparent paradox. A 
brief discussion of the features of the model enables to 
solve the counter current behaviour and shows how is 
deep the information content of a simulation model. 
 
2. THE CASE STUDY 
25.01.2013 – Department of Industrial Engineering, 
University of Catania – During a maintenance lecture –  

The topic of items reliability has just been 
introduced as the probability that an item could work 
without failing until a fixed time of mission is reached 
and under working conditions which are similar to that 
are declared by the supplier. 
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The general reliability equation, dedicated to 
constant failure rate items, was presented: 

 
R(t)=e-λTm       

 
where λ is the constant failure rate and Tm is the 

time of mission. 
In order to discuss the principle maintenance 

policies, the memory-less property was defined as a 
special feature of constant failure rate items. 

The elegant application of the Bayesian theorem 
was introduced to consider the constant failure rate as 
the joint probability that the single item fails during the 
next elementary time interval, dt, if a failure didn’t yet 
occur. 

Given a number of items, N0,  which are subjected 
to a reliability test, at each control step the following 
equations can be written: 

 
N0 = NF(t)+NS(t) 
 
R(t) = NS(t)/N0 
 
λ = dNF(t)/dt l/NS(t) = cost 
 
λ dt = dNF(t)/(dt N0) N0/NS(t) = f(t) dt/R(t) = cost 

 
where NF(t) and NS(t) are respectively the number 

of failed and save units at each time t. 
The memory-less property enables to understand 

how is fallacy to replace a constant failure rate item 
before it fails because, after the replacement, the failure 
rate doesn’t change as the above mentioned joint 
probability suggests; so the corrective maintenance 
policy is the only one model which is to be taken in to 
account (Jorgenson et al. 1966). 

A brief mathematics procedure was performed in 
order to compare the corrective and preventive 
maintenance results when they are applied to a constant 
failure rate single unit system. 

So a single unit system was considered in order to 
define the conceptual maintenance model; it fails 
according to a constant failure rate, λ. 

The corrective maintenance horizon can be 
evaluated by the following equation: 

 
H = NFCM MTTF    
 (1) 

 
where MTTF=λ-1 is the mean time to failure and 

NFCM is the expected number of failures. 
On the other hand, the preventive maintenance 

horizon leads to replace the single unit if it doesn’t fail 
before the end of a fixed preventive maintenance 
period; the preventive maintenance horizon can be 
written as follows: 

 
H = NFPMMTTF’+ NPMTPM = NIPM MTTI  (2) 

 
where: 

NFPM  is the number of failures which anyway are 
registered during the preventive scenario; 

MTTF’ is the mean time to failure of items which 
fail before the end of the preventive maintenance period 
TPM; 

NPM is the number of preventive maintenance 
replacements; 

NIPM is the expected number of interventions 
whether they belong to preventive or corrective type; 

MTTI is the mean time to intervention along the 
preventive maintenance horizon. 

The preventive maintenance features, as the mean 
time to failure, MTTF’, the expected numbers of 
failures, NFPM, and the expected number of preventive 
interventions, NPM, can be evaluated by using the 
following further equations: 

 
MTTF’=  dt 
 
MTTF’= MTTF-TPMR(TPM)/(1-R(TPM)) (3) 
 
NFPM = NIPM(1- R(TPM))  (4) 
 
NPM = NIPM R(TPM)   (5) 

 
The substitution of equations (3), (4) and (5) in the 

equation (2) allows finding the equivalence between the 
above mentioned NFCM and NFPM numbers of failures: 

 
H = NFCM MTTF = 
 
= NIPM (1- R(TPM)) [MTTF-TPMR(TPM)/(1-R(TPM))]+  
 
+NIPM R(TPM) TPM  = NIPM [(1- R(TPM)) MTTF+  
 
-TPM R(TPM)+ R(TPM) TPM] = NIPM (1- R(TPM)) MTTF 
= 
 
= NFPM MTTF. 

 
To carve the latter equivalence on the stone, a little 

exercise was designed and showed to the students. 
Figure 1 shows the scheme of corrective 

maintenance model which was presented to the students 
and its space state representation; the single unit can 
assume only a working or a failure state; the item fails 
with a constant failure rate λ=0,01 h-1, the defined 
maintenance horizon is H= 400 h. 

The time to replace the failed item is considered 
deterministic and null (µ=∞). 

The single item system was then modeled by 
sampling a sequence of items which simulate the 
system according to the Monte Carlo method; let i 
denote the i-th working item and Ti the time to failure 
which is randomly sampled by using the inverse 
function of the cumulated exponential probability 
density: 

 
Ti = -ln(1-Ri)/λ 
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where Ri is the i-th random number belonging to 
]0..1[ range. 

The model was coded by using an Excel 
Microsoft® spreadsheet during the lesson; the well 
known WYSIWYG property enables to show each step 
of the coding process and to display it on the dashboard: 
every student can see what is modeled and how. 

So the corrective maintenance policy is modeled, 
by iteration, evaluating the series of sampled times to 
failure, Ti, until Σk

i=1Ti<H; when Σk
i=1Ti>H the 

corrective maintenance scenario is fully simulated and 
the number of failures can be counted as NFCM = k-1. 

Table 1 shows the spreadsheet model which was 
coded. 

 

 
Figure 1: Single item corrective maintenance scheme 

 
Table 1: Model of the corrective maintenance policy  

Pos Ri Ti=-ln(1-
Ri)/λ Σk

i=1Ti NFCM 

 [-] [h] [h] [-] 
1 0,93368139 271,33 271,33 1 
2 0,49454915 68,23 339,56 2 
3 0,54793473 79,39 418,95 3 
4 0,46229076 62,04 418,95 3 
5 0,00106236 0,11 418,95 3 
6 0,14932840 16,17 418,95 3 
7 0,23915160 27,33 418,95 3 
8 0,95918196 319,86 418,95 3 
 
The preventive maintenance scenario was 

simulated according to the age-dependent policy; the 
single unit is replaced at its age t or failure, whichever 
occurs first, where t=TPM is the preventive maintenance 
period. 

Figure 2 shows the scheme of the preventive 
maintenance model which was presented to the 
classroom and its space state representation. 

Each simulated unit operates as follows: 
 

Ti’ = Ti if Ti < TPM, otherwise Ti’ = TP (6) 
 
TPM was also set equal to the item mean time to 

failure, MTTF = 1/λ. 
The time to the preventive replacement is yet 

consider deterministic and null. 
The preventive maintenance policy is modeled, by 

iteration, evaluating a series of random sampled time to 

failure items, Ti’, which respects the equations set (6), 
until Σk

i=1Ti’<H; when Σk
i=1Ti’>H the preventive 

maintenance scenario is fully simulated and the number 
of failures, NFPM, can be counted among items for 
which both the following equation are respected: 

 
Tj’<TPM and Σj

i=1Ti’<H. 
 

 
Figure 2: Single item preventive maintenance scheme 

 
Table 2 shows the spreadsheet model which was 

coded. 
 

Table 2: Preventive maintenance policy model 
Pos Ri Ti Ti' Σk

i=1Ti
’ NFPM 

  [h] [h] [h]  

1 0,93368139 271,33 100,00 100,00 0 
2 0,49454915 68,23 68,23 168,23 1 
3 0,54793473 79,39 79,39 247,62 2 
4 0,46229076 62,04 62,04 309,67 3 
5 0,00106236 0,11 0,11 309,77 4 
6 0,14932840 16,17 16,17 325,95 5 
7 0,23915160 27,33 27,33 353,28 6 
8 0,95918196 319,86 100,00 453,28 6 
 
To make more interesting the experiment it was 

evaluated the scenario in which the corrective cost was 
much more expensive than the preventive one; as a 
consequence, the maintenance cost function, both for 
corrective and preventive scenarios, depends only on 
the number of failures. 

So the comparison of the two maintenance policies 
is based on the number of failures NFCM and NFPM in 
terms of average value and standard deviation. 

The difference between NFCM and NFPM was also 
registered, for each simulation step, in order to calculate 
the relative distribution of frequency. 

After few hundreds of replications the following 
results were discovered: 

 
f(NFPM  < NFCM) ≈ 40%; 
 
f(NFPM = NFCM) ≈ 30%; 
 
f(NFPM = NFCM) ≈ 30%. 
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These results didn’t agree with the theoretical 
managerial implications. 

It was late so students were asked to bright their 
doubts again the next time. 
 
3. RESULTS 
The model of the single unit was checked and a 
simulation process of 106 iterations was performed. 

In order to verify the simulation process and the 
data input integrity, a comparison between theoretical 
and simulated results was calculated as regards to the 
following variables: mean value and standard deviation 
of random numbers which were generated in order to 
perform the Monte Carlo simulation process; mean 
value and standard deviation of times to failure (Ti, 
Ti’). 

A good agreement among theoretical and 
simulated results was found. 

Figure 3, 4 and 5 depict further results which were 
obtained. 

The simulation process enabled to verify the 
substantial identity between the distribution of number 
of failures f(NFPM) and f(NFCM) and how they fit very 
well the Poisson distribution (see figure 3); this 
behavior agrees to the Law of small number by which 
the number of rare event, along a fixed horizon, follows 
the Poisson distribution of the average expected number 
of events (in the focused case study the expected 
number of failures is H/MTTF=4,0) (Crathorne 1928). 
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Figure 3: Failures distribution per maintenance policy  

 
On the contrary, the difference between NFPM and 

NFCM follows an asymmetric distribution; furthermore 
the comparison between number of failures which are 
registered step by step of simulation process shows that 
the preventive maintenance scenarios has a more 
frequently number of failures which is lower than the 
one is registered by simulating the corrective one (see 
figures 4 and 5): 

 
F(NFPM-NFCM <=0) =70%; 
 
F(NFPM-NFCM >0) =30%. 

 
Figure 4 reveals also a pseudo-Skellam behaviour; 

the Skellam distribution is the discrete probability 
distribution of the difference NFPM - NFCM of two 
statistically independent random variables NFPM and 

NFCM each having Poisson distributions with the same 
expected values (Skellam 1946).  

The distribution is also applicable to a special case 
of the difference of dependent Poisson random 
variables, when the two variables have a common 
additive random contribution which is cancelled by the 
differencing (Karlis and Ntzoufras 2006). 

The simulation process results are counter 
revolutionary: because they don’t agree with the 
consolidate literature knowledge (the preventive 
maintenance appears to be preferred with respect to the 
corrective one) and because the difference between two 
Poisson distribution doesn’t follow a Skellam function. 
This issue requires a deeper discussion in order to be 
solved. The simulation process can register data which 
can solve the rising issue. 
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Figure 4: NFPM  - NFCM simulated frequency 
distribution 
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Figure 5: NFPM - NFCM cumulative frequency 
distribution 
 
4. DISCUSSION 

Figure 3 shows that the distribution frequency of 
failures, for both policies, seems to follow a Poisson 
distribution; the shape of this function is asymmetric: 
the probability of a number of failures which is higher 
than the expected one is F(NF>H/MTTF)=0,3712. 

The Law of small number is respected and at the 
same time one can argue that the overall probability of 
Ti > MTTF is higher than the vice versa. 

On the other hands, a high number of failures can 
happen with a lower overall probability, but they 
happen. 

As regard to the difference between NFPM and 
NFCM it is to be noted that the time to failure which are 
random sampled for the above mentioned maintenance 
scenarios, Ti and Ti’, are not independent: 
 
Ti’ = Ti if Ti  < TPM, otherwise Ti’ = TPM 
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Tables 1 and 2 allow showing the dependency of 
the two set of variables.  

A new simulation process was performed and the 
two maintenance models were provided with two 
different set of random numbers. 

Figure 6 shows that when Ti and Ti’ are 
independent variables, because they are sampled from 
different set of random numbers, the difference NFCM -
NFPM follows a Skellam function. 

This behaviour can be assumed as a validation of 
the simulation model which confirms the theoretical 
results when the theoretical condition of independency 
of input variables is established. 

Although we found the reason of the pseudo-
Skellam behaviour, the sequence by which items are 
procured and replaced in the single unit system is 
unique and the dependency between Ti and Ti’ can not 
be overtaken; we can only register that a Skellam 
distribution doesn’t occur. 

In order to find the solution of the problem from a 
more holistic point of view was appointed. 
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Figure 6: the Skellam NFCM-NFPM distribution. 
 

Maintenance management should be defined as a 
risk management task: a maintenance policy is to be 
selected when it minimizes the risk of failures and not 
only the frequency of failures which belongs to a certain 
maintenance policy. 

Let’s define the risk of a maintenance policy, 
RoM, as: 
 
RoM=f ⋅I 
 

where f is the frequency according to which the 
scenario happens and I is the impact that can be 
calculated by counting the number of failures. 

A final simulation process was performed; this 
time the model enables to register, at each step of 
Monte Carlo simulation, the number of failures for each 
kind of maintenance policy. 

As regard to the preventive policy scenario, it’s 
now possible to compute the average number of failure 
NFPM(NFPM<NFCM) exclusively for those step of 
Monte Carlo simulation to which the number of failure 
NFPM is lower than the number of failure NFCM; the 
same calculation is performed for the opposite 
condition. 

The comparison of the risks of maintenance policy 
was evaluated as follows: 
 
RoMPM = E(NFPM(NFPM < NFCM)) f(NFPM < NFCM) 
RoMPM’ = E(NFPM(NFPM > NFCM)) f(NFPM > NFCM)  

 
Figure 7 shows the evolution of the simulated risk 

of maintenance, RoMPM and RoMPM’, and allows 
finding again that preventive and corrective 
maintenance policies have the same risk of maintenance 
when items fail according to a constant failure rate. 
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Figure7: progressive risk of maintenance RoM and 
RoM’ (104 replications) 
 

The simulation process allows discovering 
stochastic behaviours sometimes hidden in to the 
system’s dynamics. 

Further information could be pointed out from 
another high point of view: the problem was only 
failures dependent due the particularly relation between 
preventive replacement costs and failure costs; when 
preventive maintenance costs can be neglected if 
compare with the failures one, item redundancy must be 
considered. 

When I came back to the student I was able with 
the same case study and the same model to make the 
previous doubts a new little knowledge. 
 
CONCLUSIONS 

The simulation model of maintenance policies, 
which was applied to a conceptual case study, allowed 
learning a comprehensive lesson about the behavior of 
the entire system. 

The simulation model enabled to change point of 
view focusing before on the details of modeling and 
after on the general meaning of the process: the strident 
initial inconsistency of results, which appears 
considering from a too close point of view the problem, 
is overtaken trough a more general approach. This order 
of event seems to better lead students to learn the 
lesson; we would call it learning by simulating. 

The nature of model and the software environment 
which enables to see what is get during each step of 
coding (Microsoft Excel®) help to capture attention 
from students and increases the learning empathy. 

The original aim of the exercise was to point out 
the equivalence between the corrective and preventive 
maintenance of constant failure rate items. 
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The attempt to model and simulate the reliability 
system allowed pointing out some further information: 

1. corrective and preventive maintenance follow 
equivalent risk of failure when those policies 
are applied to constant failure items; 

2. borderline conditions, as in the case study 
presented which shows great failure costs, 
need a system assessment and not only a 
maintenance policy decision making; 

3. the memory less property of items is rather a 
state of information missing than an antecedent 
of an elegant reliability calculation; 

4. differencing two dependent Poisson distributed 
variables led to an asymmetric Skellam 
function with expected value equal to de 
difference of the expected values of the 
dependent functions. 

A further analysis is requested in order to estimate 
which kind of failure distributions, for example the 
constant probability distribution, meet the small number 
law as the exponential one. 
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