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ABSTRACT 

This paper is devoted to study ways to determine 
the possible states of a production system, modeled by 
Petri nets (PN), making use of techniques for solving 
systems of linear Diophantine equations. For this 
porpoise, PNs have been divided into three possible 
types, and each provides a specific method so as to 
exploit its characteristics to optimize the computation 
time. These types are conservative systems, 
nonconservative systems with conservative 
components, and nonconservative systems without 
conservative components. These proposal methods have 
been compared with the determination of states from 
marking evolution, being clearly advantageous in 
computation time. 

 
Keywords: Petri Net, Discrete Event Systems, 
Diophantine Equations, State equation 

 
1. INTRODUCTION 
Petri Nets constitutes a family of formalisms with 
mathematical-graph duality, which allows to efficiently 
representing discrete event systems, especially when 
they presents concurrency and shared resources. The 
study of the states of the systems being modeled is 
needed to understand its behavior and properties, so that 
knowing all states of the PN (the marking) is a critical 
task. 

This paper aims to explore ways to determine the 
possible states of a production system (Jimenez et al., 
2006, 2009, 2012), modeled by PN (Latorre et al., 2009, 
2013a) and analyzing its states using resolution 
techniques (Latorre et al., 2013b, 2013c) of linear 
Diophantine equations systems. PNs are classified into 
3 types, and each provides a specific method so as to 
exploit its characteristics to optimize the computation 
time. These types are: conservative systems, but 
nonconservative systems with conservative 
components, and nonconservative systems without 
conservative components. These proposal methods have 

been compared with the determination of states from 
marking evolution, being clearly advantageous in 
computation time. 
 
2. PETRI NETS 
Petri nets are formed by a set of places (P), another of 
transitions (T), and arcs (F), each with a given weight 
(W), connecting places transitions and vice versa. The 
set of places, transitions, arcs and weights defines the 
structure of the system (Murata, 1989; Silva, 1993; 
Girault and Valk, 2001). 
Graphically, places are represented by circles, 
transitions by bars or rectangles, and arcs with arrows. 
To indicate the weight of the arcs, when greater than 
one, numbers are typically placed beside the arrows. 
The marking of the net is represented by tokens (points) 
in the places, or with numbers if the number of tokens is 
high. 

The PN structure is represented by the incidence 
matrix, where rows represent different places and 
transitions columns. The elements of the matrix indicate 
the number of tokens that appear (if positive) or 
disappear (if negative) in each place -row- when a 
transition-column- is fired. The PN marking is 
represented by a column vector that has so many 
components as places in the PN. 

The state equation of a PN determines which is the 
marking (state) reached after firing a number of 
transitions from an initial marking. 

 
 m = mo + C · σ                        (1) 

 
Being: 

m: Final marking vector 
mo: Initial marking vector 
C: Incidence Matrix 
σ: Firing verctor. Column vector with as many 

rows as transitions in the system. Their values represent 
the number of times that each transition is fired. 
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The state equation does not take into account 
whether the firing vector is really applicable, since it is 
not considered the order in the firings (possible states 
could be reached from the point of view of that 
equation, which could not be reached by a sequence 
firing of transitions). 

The properties of the PN can be of two types: 
structural and dynamic. The main difference is that the 
first ones depend only on the structure of the system, 
while the latter also depends on the initial marking. 

Structural properties, being only dependent on the 
structure, can be determined mathematically. Among 
these we highlight 2, which are important for this 
analysis: 

Conservativeness: a PN is conservative if, for any 
marking, the sum of all their marking in the places, each 
multiplied by a factor, remains constant. 
Mathematically, if the vector of factors or weights: 
W · m = W · (mo + C · σ) = W · mo + W · C · σ         (2) 

To satisfy the condition W · m = W · mo, it is neces-
sary that W · C · σ = 0, and since the firing vector is 
indifferent because it is a structural property, observe 
that: 

W · C = 0     (3) 
The vector or vectors W that satisfy the equation 

(3) are left cancellers of the incidence matrix, or labeled 
invariant or conservative components. 
For the PN is conservative, all sites must be contained 
in (or "covered" by) any marking invariant component 
or conservative component. If there are places not 
covered, the PN is not conservative, although the 
covered places do present conservation propertires. 
 Repeatability: A PN is repetitive if there exists a 
sequence of firings of all transitions that returns the 
system to an initial marking. Mathematically, if   is 
the firing vector that returns the PN to the initial 
marking: 

m = mo + C · σr          (4) 
To satisfy the condition  m = mo, it is necessary that: 

C · σr = 0     (5) 
The vector or vectors σr satisfy the equation (5) are 

right cancellers of the incidence matrix, or firing 
invariant, or or repetitive components. 

So that the PN be repetitive, all transitions must be 
contained in (or “covered” by) any firing invariant or 
repetitive component. If there are uncovered transitions, 
the PN is not repetitive, although the covered transitions 
are. 

The repeatability property is not used as such in 
this work, although it has been considered for its close 
relationship with conservativeness (they are the same 
for the dual PN). 

 
3. DIOPHANTINE EQUATIONS 
 
3.1. Definition 
A Diophantine equation is one that admits only as 
solution an integer. Specifically, diophantine linear 
equations have the form: 

a1 · x1 + a2 · x2+ … + an · xn = b  (6) 

Where a1,a2,…,an, and b  are known integers and x1, 
x2,…, and xn are unknown integers. If b = 0, it is said 
that the Diophantine equation is homogeneous. A 
Diophantine equations linear system is a system in 
which equations are of the form (6). 
 
3.2. Euclidean algorithm and Bezout identity 
The resolution of a linear Diophantine equation is based 
on the Euclidean algorithm, which is used to calculate 
the greatest common divisor of two integers (Ajili and 
Contejean, 1995, Bradley, 1971; Havas et al., 1998; 
Hemmecke, 2011; Lazebnik, 1996). There is the 
property that, if d is the greatest common divisor of a  
and b, then there are two integers x and y such that the 

reste of the division 
d

ybxa ··   is zero. 

Bézout's identity says that there are two integers, m 
and n such that: 

d = a · m + b · n    (7) 
That is, the greatest common divisor of a and b can 

be represented as a linear combination of these two 
integers a and b. 
 
3.3. Algorithms for solving Diophantine equations 
There are, at present, several algorithms for solving 
systems of Diophantine equations. Some of them use 
the so-called Hermite normal form, and others are based 
on repeatedly test possible solutions. The algorithm 
used in this work to solve systems of equations is of the 
second type, because they do not want to find all 
solutions, but only those who are between zero and a 
limit (Clausen and Fortenbacher, 1989; Contejean and 
Devie, 1994), either because the system is conservative 
(and if so inherently limited), or because it is not but  
our intention is to determine progressively the states, by 
including limits in the not limited places and increasing 
these limits prograsively to build the reachability tree in 
an structured and organized way. 
 
3.4. Application of Diophantine equations to PN 
Diophantine equations appear many times in the 
mathematical resolution of PN. Both the firing vector as 
the marking vector are composed always by non-
negative integers, and therefore any equation or system 
of equations in which one of the two vectors is the 
unknown is a diophantic equation. 

 
4. PROPOSED METHODS  
Following they are presented a series of methods that 
aim to solve the problem of identifying all possible state 
in a Petri net from an initial marking, depending on the 
type of PN concerned. 
 
4.1. General methods 
This case can be used in all types of PN, and is the 
system used to non-conservative systems without 
marking invariants; for those who do have conservative 
componentsn other methods will be proposed in the 
following sections. 
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4.1.1. Resolution of the state equation 
This method is valid for conservative Petri nets and for 
non conservative. It consists of applying the state 
equation to all possible marking and selecting those for 
which there are non-negative integer solutions for the 
firing vector. 

Let be a PN with n places, all of them with the 
marking limited between 0 and a maximum (lim) 
number of tokens. Therefore, there appear (lim + 1)n  
possible markings. This is equivalent to having a word 
of n letters, where each letter can take the values 
{0,1,…,lim}, what is known in combinatorics as 
variations with repetition of lim + 1 elements taken 
from n to n or VR(lim + 1, n). 

For each of the possible markings, it is necessary 
to verify the existence of a firing vector between the 
initial marking and studied marking. A number of (lim 
+ 1)n linear Diophantine equations systems should be 
solved, with the form: 

m = mo + C · σ => C · σ = mo – m  (8) 
In all of them, C and mo are similar. The analysed 

marking m belongs to the system iff there exists a 
vector σ, whose components are non-negative integer 
and such that satisfies the equation (8). 

The advantage of this method is that all checked 
possible markings within the limits are obtained, 
including those that are not achievable by evolution 
from the initial marking by firing successive transitions 
(spurious states). The main drawback is the time spent, 
because (lim+1)n different systems of linear 
Diophantine equations should solved. This makes it 
infeasible in many cases the use of this method. 
 
4.1.2. Evolution of successive shots marked by 

transitions 
This method is also applicable to conservative and non-
conservative PN. It consists on firing every transition 
from the initial marking to determine the following 
markings. A marked with a negative number of marks 
somewhere means that bthe state is not possible. 

Let be a PN with n places where each marking can 
be between 0 and a maximum (lim) of tokens, and m 
transitions; using the state equation: 

m = mo + C · σ  =>   (9) 
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Applying only one firing from an only transition tj, the 
firing vector presents this form:       
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Then, equation (9) is equivalent to (11): 
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I.e., firing only once the transition tj is equivalent to to 
adding the column j of the incidence matrix. 
A firing of a new transition is applied to the markins so 
obtained, in order to obtain a new set of markings. 
Naming m1 the set of valid markings obtained after 
firing once every transition from mo; m2 the set of valid 
markings obtained after firing once every transition 
from m1, etc.: 

m1 = m0 + C · σ 
m2 = m1 + C · σ 
…                  (12) 
mn = mn-1 + C · σ 

The process stops when no new markings are obtained. 
This situation is caused by any of the following reasons: 
1) Because it is not possible to fire any transition (there 

are deadlocks). 
2) Because it is possible to fire any transition but would 

exceed the limit marks (valid states but not desired). 
3) Because it is possible to fire any transition but this 

would already drive to previous markings. 

It is possible, however, did not obtain all valid markings 
(with a number of tokens between 0 and lim). For 
example, you can reach invalid marking as follows: 

0;
lim
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There may be a column in the incidence matrix C such 
that: 
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When firing the transition j from mn, the following 
marking would be obtained: 
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is clearly valid, as the number of tokens in all 
places is between 0 and, lim and there is no reason for 
having being reached previously. 

A tolerance to accept provisionally markings with 
a number of tokens bigger than the limit can be allowed, 
then removing them from the final results. 
The advantage of this method is that it is remarkably 
fast: it is only necessary to sum column vectors and 

Proceedings of the European Modeling and Simulation Symposium, 2013 
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds. 

484



discard the result if an element is negative; there is no 
need to solve any equation. 

The main drawback is that it is impossible to 
determine spurious states, since they, by definition, are 
not achievable by successive firing of transitions from 
the initial marking. 
 
4.1.3. Identification of spurious markings  
The application of the two methods shown so far, 
permits us to identify which marked are spurious and 
which are not. 
Calling M the set of marked obtained by solving the 
equation of state in the (lim + 1)n  possible markings (or 
by other means, as discussed later), and Mt the set of 
marked not spurious (obtained by initial developments 
by firing transitions) is clear that: 

Mt   M                (16) 
 Furthermore, if Ms is the set of labeled spurious: 

Mt ∩ Ms = Ø; M = Mt U Ms  →  
Ms = { M \ Mt}                    (17) 

That is, all the markings obtained by solving the state 
equation that have not been obtained by evolution by 
firing transitions are spurious markings. 

 
4.2. Conservative PN 
Conservative Petri Nets have marking invariants 
covering all places. So there are mathematical laws that 
apply to all possible markings, spurious or not. The 
conservative PN are also limited. It is convenient to take 
advantage of this fact to determine all possible 
markings. 
 Let be a conservative PN with n places, whose q 
conservative components or marking invariants are the 
rows of a matrix W. By definition: 
W · C · σ = 0   W · m = W · mo              (18) 
Then:        
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 The only unknown in (19) is the vector m = [x1,… 
xi,…,xn]

T. It has to meet that 0 ≤ xi ≤ lim  i{1,…,n}. 
Then, (19) is a system of linear Diophantine equations 
whose solutions are the possible markings of the 
system, including the spurious ones. 

The advantages of this method are clear: after 
obtaining the conservative components, a system of 
linear Diophantine equations must be solved to 
determine all markings, including spurious. 

The main disadvantage is precisely that it only ap-
plies to conservative systems. A modification of the me-
thod may, however, greatly simplify determining mar-
kings in nonconservative PN with marking invariants. 

4.3. Nonconservative PN with  marking invariants  
A Petri net with marking invariants is not 

conservative if there are places "not covered", ie if the 
vectors indicating the conservative components have 
one or more columns whose value is null in all the 
elements. It can be taken advantage of the fact that the 
places are covered in the conservative components (and 
therefore the PN itself is limited in those places) to 
greatly simplify the search for markings. 

Let be a Petri net with n places and m transitions, 
whose q conservative components or marking invariants 
are the rows of a matrix W. Let p be the number of 
locations covered by the conservative components, and 
n-p  the number of places not covered. Then, the set P 
of index of places can be divided into two subsets: Pn-p 
the set of indexes of places covered, and Pn-p with 
indexes of the places not covered. So: 

Pn ∩ Pn-p = Ø; Pp U Pn-p = P              (20) 
Then eliminating the places not covered by the 
conservative components (or what is the same, 
eliminating the columns of zeros):                          
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The only unknown in (21) is the vector m = [x1,… 
xi,…,xn]

T iPp. That must be met 0 ≤ xi ≤ lim 
 iPp . Then (21) is a system of linear diophantine 
equations whose solutions are the set of possible 
markings of the places covered by the conservative 
components. 
Let be Mp the set of possible markings of places covered 
by the conservative components. For each of them there 
is a firing vector such that, applied to the initial marking 
in the  covered places, brings the system to a final 
marking mMp. 
To apply the state equation to the places of Pp, it is 
necessary to eliminate from the incidence matrix the 
rows corresponding to the places not covered by 
conservative components (22).  

The only unknown in (22) is the firing vector σ = 
[t1,…,tm]T, whose values must be non-negative integers. 
Then (22) is a linear system of Diophantine equations to 
be applied to each marking obtained in (21). 

Let be J the set of vectors σ = [t1,…,tm]T that 
satisfy (22) for all mMp , ie all possible firing vectors 
that, applied to the initial marking, lead to a marking 
mMp .  

It is necessary to check that the various firing 
vectors J are also applicable to places of the set  Pn-p , 
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ie, the n-p places not covered by the conservative 
components. 
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 Simply apply the state equation, this time to all 
places: 
m = mo + C · σ    σ   J   =>                (23) 
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Let Mt be the set of markings obtained after applying 
(23). So marked as many vectors are obtained from the 
above equation as firing vectors has been tested: 

| Mt | = | J |               24) 
It is necessary to verify that these markings are 

invalid. Clearly covered places will have a valid 
marking because the firing vectors σ   J were obtained 
from them. However, it is possible that the places not 
covered do not have a valid marking. It should be 
checked for all markings mMt such that 0 ≤ xi ≤ lim 
 iPn-p , and discard markings that does not fulfill 
this condition, as well as the firing vectors that have led 
the system that led to them. 

The non-rejected firing vectors must be applied 
again to the not discarded markings until any one 
exceeds the defined limit. 

The proposed method is summarized in the 
following steps: 
1) Regardless of the places not covered by the 
conservative components, find all possible markings 
solving the system of linear Diophantine equations (21). 
2) By applying the state equation for each possible 
marking, again disregarding the places not covered, 
draw the firing vector (22). 
3) Taking into account all places, apply firing vectors 
obtained in the previous section to the initial marking. 
4) Discard the markings obtained in (23) that are not 
possible for having a negative number somewhere or 
exceeding the bound, as well as the firing vectors that 
led to them. 
5) Continue implementing the non rejected firing 
vectors to the valid markings and to those obtained from 
them, up to reach the limits defined or even not be 
possible to continue applying them. 

The advantages of this method with respect to the 
general methods is that it considerably reduces the 
number of equations to be solved, since it takes 
advantage of the conservative components (taking into 
account the limitation of marking locations covered). 
Another advantage is that it allows obtaining the 
spurious markings. 
 
4.4. Recommendations on the proposed methods 
In view of the described methods, the mode of operation 
to determine the states of a PN may be as follows: 
 First, you must determine the type of PN in question: 

Conservative, non conservative but with marking 
invariants, or non conservative without marking 
invariants. 

 In case there are invariant markings, determine all 
possible markings by the specific methods proposed. 
Apply the method of "evolution of markings by 
successive firing of transitions" to determine which 
markings are achievable. The possible markings that 
are not achievable, are spurious. 

 In the case that the PN has no marking invariants, 
there is a "fast" method to determine all possible 
markings. It may be a reasonable option to search 
only those that are achievable by firing transitions. 
However, in PN with a limit of small tokens and few 
places, and always depending on the time and 
resources available, it may be applicable the general 
method of "Solving the state equation". 

5. EXAMPLE OF APPLICATION 
To exemplify the approach consider a production 
system with a robot, which takes pieces from two 
conveyor belts, each with a part type, and fed to two 
machines which make two types of products with those 
pieces (Fig.1). 
 The PN that models that process is presented in 
Fig2. The numbering of places and transitions, not 
included to simplify the drawing, is in both from top to 
bottom and from left to right. Thus the incidence matrix 
is as shown in Table 1, and the initial marking is: 
 mo=[1,1,1,0,0,2,1,1,2,0,0,0,0,0,0]T 

 

Conveyor belt B

Conveyor belt A

Parts type B

Parts type A

Robot

A A

A

B

BB

Machine 1

Machine 2

Pieces

type 2

Pieces

type 1

 
Figure 1: Sample of production system 

  

Proceedings of the European Modeling and Simulation Symposium, 2013 
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds. 

486



Table 1: Incidence matrix of Pn in Fig. 2 

 
 

2 2

2 2

 
Figure 2: PN modeling system in Fig.1 

 
From the graphic of the PN, or from the state 

equation, alternatively, we can study the reachability 
tree of the system, resulting in 147 states, simply using 
the method of successive firings. 

Furthermore, calculating the marking invariant 
gives us the following seven solutions for the 
conservative components (table2): 

 
Table 2: Conservative components (rows) of PN in Fig. 2 

 
 
No column is zero, what implies that the network 

is conservative, and can be applied the proposed 
methodology for conservative PN. Therefore, the 
Diophantine equations are solved following the 
Contejean-Devie algorithm, and the 147 possible 
solutions are obtained, but with less computational time 

and effort (a summary of the states is presented in 
Table3, reduced to just 10 states for space cuestions). 

 
Table 3: Summary of the 147 states of the system in 
Fig. 1 provided by the Contejean-Devie algorithm 

 
 
6. CONCLUSIONS 
The paper has presented a study on the different 
techniques to determine the states of a production 
system by analyzing the Petri net that models it. Two 
general methods have been discussed, one slower and 
depth that allows obtaining "spurious marked" and 
another one considerably faster but not allowing 
obtaining them. 

The structure of Petri Nets may have different 
characteristics, so as to be classified into three types for 
those propouses: conservative to all places, 
nonconservative globally but for conservative for some 
places, and non-conservative to any place. The 
existence of conservation laws for all or some places 
considerably reduces the search for possible PN 
markings (ie, possible states of the system), thanks to 
new Diophantine equations systems that appear whose 
solutions are directly the potential markings. 
Accordingly, two methods have been described 
specifically for those Petri nets with these 
characteristics. 

For the resolution of systems of Diophantine 
equations, the most common today algorithms have 
been examined, and the one which best fits the type of 
solutions expected in Petri Nets has been chosen. 
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