
ANALYSIS OF STATES IN PRODUCTION SYSTEMS MODELED BY PETRI NETS
USING DIOPHANTINE EQUATIONS

Julián Gómez-Munilla(a), Emilio Jiménez-Macías (b), Juan-Ignacio Latorre-Biel (c),
Mercedes Pérez de la Parte(a) , Jorge Luis García-Alcaraz(d)

(a) University of La Rioja. Industrial Engineering Technical School.

Department of Mechanical Engineering. Logroño, Spain
 (b) University of La Rioja. Industrial Engineering Technical School.

Department of Electrical Engineering. Logroño, Spain
 (c) Public University of Navarre. Department of Mechanical Engineering, Energetics and Materials.

Campus of Tudela, Spain
(d) Technology and Engineering Institute, Universidad Autónoma de Ciudad Juárez, Chihuahua (Mexico)

(a) julian.gomez@unirioja.es , mercedes.perez@unirioja.es , (b) emilio.jimenez@unirioja.es ,

(c) juanignacio.latorre@unavarra.es , (d) jorge.garcia@uacj.mx

ABSTRACT

This paper is devoted to study ways to determine
the possible states of a production system, modeled by
Petri nets (PN), making use of techniques for solving
systems of linear Diophantine equations. For this
porpoise, PNs have been divided into three possible
types, and each provides a specific method so as to
exploit its characteristics to optimize the computation
time. These types are conservative systems,
nonconservative systems with conservative
components, and nonconservative systems without
conservative components. These proposal methods have
been compared with the determination of states from
marking evolution, being clearly advantageous in
computation time.

Keywords: Petri Net, Discrete Event Systems,
Diophantine Equations, State equation

1. INTRODUCTION
Petri Nets constitutes a family of formalisms with
mathematical-graph duality, which allows to efficiently
representing discrete event systems, especially when
they presents concurrency and shared resources. The
study of the states of the systems being modeled is
needed to understand its behavior and properties, so that
knowing all states of the PN (the marking) is a critical
task.

This paper aims to explore ways to determine the
possible states of a production system (Jimenez et al.,
2006, 2009, 2012), modeled by PN (Latorre et al., 2009,
2013a) and analyzing its states using resolution
techniques (Latorre et al., 2013b, 2013c) of linear
Diophantine equations systems. PNs are classified into
3 types, and each provides a specific method so as to
exploit its characteristics to optimize the computation
time. These types are: conservative systems, but
nonconservative systems with conservative
components, and nonconservative systems without
conservative components. These proposal methods have

been compared with the determination of states from
marking evolution, being clearly advantageous in
computation time.

2. PETRI NETS
Petri nets are formed by a set of places (P), another of
transitions (T), and arcs (F), each with a given weight
(W), connecting places transitions and vice versa. The
set of places, transitions, arcs and weights defines the
structure of the system (Murata, 1989; Silva, 1993;
Girault and Valk, 2001).
Graphically, places are represented by circles,
transitions by bars or rectangles, and arcs with arrows.
To indicate the weight of the arcs, when greater than
one, numbers are typically placed beside the arrows.
The marking of the net is represented by tokens (points)
in the places, or with numbers if the number of tokens is
high.

The PN structure is represented by the incidence
matrix, where rows represent different places and
transitions columns. The elements of the matrix indicate
the number of tokens that appear (if positive) or
disappear (if negative) in each place -row- when a
transition-column- is fired. The PN marking is
represented by a column vector that has so many
components as places in the PN.

The state equation of a PN determines which is the
marking (state) reached after firing a number of
transitions from an initial marking.

 m = mo + C · σ (1)

Being:

m: Final marking vector
mo: Initial marking vector
C: Incidence Matrix
σ: Firing verctor. Column vector with as many

rows as transitions in the system. Their values represent
the number of times that each transition is fired.

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

482

The state equation does not take into account
whether the firing vector is really applicable, since it is
not considered the order in the firings (possible states
could be reached from the point of view of that
equation, which could not be reached by a sequence
firing of transitions).

The properties of the PN can be of two types:
structural and dynamic. The main difference is that the
first ones depend only on the structure of the system,
while the latter also depends on the initial marking.

Structural properties, being only dependent on the
structure, can be determined mathematically. Among
these we highlight 2, which are important for this
analysis:

Conservativeness: a PN is conservative if, for any
marking, the sum of all their marking in the places, each
multiplied by a factor, remains constant.
Mathematically, if the vector of factors or weights:
W · m = W · (mo + C · σ) = W · mo + W · C · σ (2)

To satisfy the condition W · m = W · mo, it is neces-
sary that W · C · σ = 0, and since the firing vector is
indifferent because it is a structural property, observe
that:

W · C = 0 (3)
The vector or vectors W that satisfy the equation

(3) are left cancellers of the incidence matrix, or labeled
invariant or conservative components.
For the PN is conservative, all sites must be contained
in (or "covered" by) any marking invariant component
or conservative component. If there are places not
covered, the PN is not conservative, although the
covered places do present conservation propertires.
 Repeatability: A PN is repetitive if there exists a
sequence of firings of all transitions that returns the
system to an initial marking. Mathematically, if is
the firing vector that returns the PN to the initial
marking:

m = mo + C · σr (4)
To satisfy the condition m = mo, it is necessary that:

C · σr = 0 (5)
The vector or vectors σr satisfy the equation (5) are

right cancellers of the incidence matrix, or firing
invariant, or or repetitive components.

So that the PN be repetitive, all transitions must be
contained in (or “covered” by) any firing invariant or
repetitive component. If there are uncovered transitions,
the PN is not repetitive, although the covered transitions
are.

The repeatability property is not used as such in
this work, although it has been considered for its close
relationship with conservativeness (they are the same
for the dual PN).

3. DIOPHANTINE EQUATIONS

3.1. Definition
A Diophantine equation is one that admits only as
solution an integer. Specifically, diophantine linear
equations have the form:

a1 · x1 + a2 · x2+ … + an · xn = b (6)

Where a1,a2,…,an, and b are known integers and x1,
x2,…, and xn are unknown integers. If b = 0, it is said
that the Diophantine equation is homogeneous. A
Diophantine equations linear system is a system in
which equations are of the form (6).

3.2. Euclidean algorithm and Bezout identity
The resolution of a linear Diophantine equation is based
on the Euclidean algorithm, which is used to calculate
the greatest common divisor of two integers (Ajili and
Contejean, 1995, Bradley, 1971; Havas et al., 1998;
Hemmecke, 2011; Lazebnik, 1996). There is the
property that, if d is the greatest common divisor of a
and b, then there are two integers x and y such that the

reste of the division
d

ybxa ··  is zero.

Bézout's identity says that there are two integers, m
and n such that:

d = a · m + b · n (7)
That is, the greatest common divisor of a and b can

be represented as a linear combination of these two
integers a and b.

3.3. Algorithms for solving Diophantine equations
There are, at present, several algorithms for solving
systems of Diophantine equations. Some of them use
the so-called Hermite normal form, and others are based
on repeatedly test possible solutions. The algorithm
used in this work to solve systems of equations is of the
second type, because they do not want to find all
solutions, but only those who are between zero and a
limit (Clausen and Fortenbacher, 1989; Contejean and
Devie, 1994), either because the system is conservative
(and if so inherently limited), or because it is not but
our intention is to determine progressively the states, by
including limits in the not limited places and increasing
these limits prograsively to build the reachability tree in
an structured and organized way.

3.4. Application of Diophantine equations to PN
Diophantine equations appear many times in the
mathematical resolution of PN. Both the firing vector as
the marking vector are composed always by non-
negative integers, and therefore any equation or system
of equations in which one of the two vectors is the
unknown is a diophantic equation.

4. PROPOSED METHODS
Following they are presented a series of methods that
aim to solve the problem of identifying all possible state
in a Petri net from an initial marking, depending on the
type of PN concerned.

4.1. General methods
This case can be used in all types of PN, and is the
system used to non-conservative systems without
marking invariants; for those who do have conservative
componentsn other methods will be proposed in the
following sections.

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

483

4.1.1. Resolution of the state equation
This method is valid for conservative Petri nets and for
non conservative. It consists of applying the state
equation to all possible marking and selecting those for
which there are non-negative integer solutions for the
firing vector.

Let be a PN with n places, all of them with the
marking limited between 0 and a maximum (lim)
number of tokens. Therefore, there appear (lim + 1)n
possible markings. This is equivalent to having a word
of n letters, where each letter can take the values
{0,1,…,lim}, what is known in combinatorics as
variations with repetition of lim + 1 elements taken
from n to n or VR(lim + 1, n).

For each of the possible markings, it is necessary
to verify the existence of a firing vector between the
initial marking and studied marking. A number of (lim
+ 1)n linear Diophantine equations systems should be
solved, with the form:

m = mo + C · σ => C · σ = mo – m (8)
In all of them, C and mo are similar. The analysed

marking m belongs to the system iff there exists a
vector σ, whose components are non-negative integer
and such that satisfies the equation (8).

The advantage of this method is that all checked
possible markings within the limits are obtained,
including those that are not achievable by evolution
from the initial marking by firing successive transitions
(spurious states). The main drawback is the time spent,
because (lim+1)n different systems of linear
Diophantine equations should solved. This makes it
infeasible in many cases the use of this method.

4.1.2. Evolution of successive shots marked by

transitions
This method is also applicable to conservative and non-
conservative PN. It consists on firing every transition
from the initial marking to determine the following
markings. A marked with a negative number of marks
somewhere means that bthe state is not possible.

Let be a PN with n places where each marking can
be between 0 and a maximum (lim) of tokens, and m
transitions; using the state equation:

m = mo + C · σ => (9)



































































mnmn

m

nn t

t

cc

cc

x

x

x

x










1

1

111

0,

0,11

·

Applying only one firing from an only transition tj, the
firing vector presents this form:















































0

1

01









m

j

t

t

t

 (10)

Then, equation (9) is equivalent to (11):











































































































jn

j

nnmn

m

nn x

c

x

x

cc

cc

x

x

x

x














1

0,

0,1

1

111

0,

0,11

0

1

0

·
 (11)

I.e., firing only once the transition tj is equivalent to to
adding the column j of the incidence matrix.
A firing of a new transition is applied to the markins so
obtained, in order to obtain a new set of markings.
Naming m1 the set of valid markings obtained after
firing once every transition from mo; m2 the set of valid
markings obtained after firing once every transition
from m1, etc.:

m1 = m0 + C · σ
m2 = m1 + C · σ
… (12)
mn = mn-1 + C · σ

The process stops when no new markings are obtained.
This situation is caused by any of the following reasons:
1) Because it is not possible to fire any transition (there

are deadlocks).
2) Because it is possible to fire any transition but would

exceed the limit marks (valid states but not desired).
3) Because it is possible to fire any transition but this

would already drive to previous markings.

It is possible, however, did not obtain all valid markings
(with a number of tokens between 0 and lim). For
example, you can reach invalid marking as follows:

0;
lim






















 k

c

k

b

a

mn
 (13)

There may be a column in the incidence matrix C such
that:

cfbead

f

k

e

d

c jn 




















 ,,;,:1

 (14)

When firing the transition j from mn, the following
marking would be obtained:


























fc

eb

da

mn lim1
 (15)

is clearly valid, as the number of tokens in all
places is between 0 and, lim and there is no reason for
having being reached previously.

A tolerance to accept provisionally markings with
a number of tokens bigger than the limit can be allowed,
then removing them from the final results.
The advantage of this method is that it is remarkably
fast: it is only necessary to sum column vectors and

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

484

discard the result if an element is negative; there is no
need to solve any equation.

The main drawback is that it is impossible to
determine spurious states, since they, by definition, are
not achievable by successive firing of transitions from
the initial marking.

4.1.3. Identification of spurious markings
The application of the two methods shown so far,
permits us to identify which marked are spurious and
which are not.
Calling M the set of marked obtained by solving the
equation of state in the (lim + 1)n possible markings (or
by other means, as discussed later), and Mt the set of
marked not spurious (obtained by initial developments
by firing transitions) is clear that:

Mt  M (16)
 Furthermore, if Ms is the set of labeled spurious:

Mt ∩ Ms = Ø; M = Mt U Ms →
Ms = { M \ Mt} (17)

That is, all the markings obtained by solving the state
equation that have not been obtained by evolution by
firing transitions are spurious markings.

4.2. Conservative PN
Conservative Petri Nets have marking invariants
covering all places. So there are mathematical laws that
apply to all possible markings, spurious or not. The
conservative PN are also limited. It is convenient to take
advantage of this fact to determine all possible
markings.
 Let be a conservative PN with n places, whose q
conservative components or marking invariants are the
rows of a matrix W. By definition:
W · C · σ = 0  W · m = W · mo (18)
Then:



































































0,

0,1

1

1111

1

111

··

nqnq

n

nqnq

n

x

x

ww

ww

x

x

ww

ww






































nnqnq

nnn

ww

ww

0,::1,

0,:1:1,1

 (19)

 The only unknown in (19) is the vector m = [x1,…
xi,…,xn]

T. It has to meet that 0 ≤ xi ≤ lim  i{1,…,n}.
Then, (19) is a system of linear Diophantine equations
whose solutions are the possible markings of the
system, including the spurious ones.

The advantages of this method are clear: after
obtaining the conservative components, a system of
linear Diophantine equations must be solved to
determine all markings, including spurious.

The main disadvantage is precisely that it only ap-
plies to conservative systems. A modification of the me-
thod may, however, greatly simplify determining mar-
kings in nonconservative PN with marking invariants.

4.3. Nonconservative PN with marking invariants
A Petri net with marking invariants is not

conservative if there are places "not covered", ie if the
vectors indicating the conservative components have
one or more columns whose value is null in all the
elements. It can be taken advantage of the fact that the
places are covered in the conservative components (and
therefore the PN itself is limited in those places) to
greatly simplify the search for markings.

Let be a Petri net with n places and m transitions,
whose q conservative components or marking invariants
are the rows of a matrix W. Let p be the number of
locations covered by the conservative components, and
n-p the number of places not covered. Then, the set P
of index of places can be divided into two subsets: Pn-p
the set of indexes of places covered, and Pn-p with
indexes of the places not covered. So:

Pn ∩ Pn-p = Ø; Pp U Pn-p = P (20)
Then eliminating the places not covered by the
conservative components (or what is the same,
eliminating the columns of zeros):









































n

i

nqiqq

ni

x

x

x

www

www











1

,,1,

,1,11,1

·

p

n

i

nqiqq

ni

Pi

x

x

x

www

www











































0,

0,

0,1

,,1,

,1,11,1

·










 (21)

The only unknown in (21) is the vector m = [x1,…
xi,…,xn]

T iPp. That must be met 0 ≤ xi ≤ lim
 iPp . Then (21) is a system of linear diophantine
equations whose solutions are the set of possible
markings of the places covered by the conservative
components.
Let be Mp the set of possible markings of places covered
by the conservative components. For each of them there
is a firing vector such that, applied to the initial marking
in the covered places, brings the system to a final
marking mMp.
To apply the state equation to the places of Pp, it is
necessary to eliminate from the incidence matrix the
rows corresponding to the places not covered by
conservative components (22).

The only unknown in (22) is the firing vector σ =
[t1,…,tm]T, whose values must be non-negative integers.
Then (22) is a linear system of Diophantine equations to
be applied to each marking obtained in (21).

Let be J the set of vectors σ = [t1,…,tm]T that
satisfy (22) for all mMp , ie all possible firing vectors
that, applied to the initial marking, lead to a marking
mMp .

It is necessary to check that the various firing
vectors J are also applicable to places of the set Pn-p ,

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

485

ie, the n-p places not covered by the conservative
components.























































































m

mnn

mii

m

n

i

n

i

t

t

cc

cc

cc

x

x

x

x

x

x



















 1

,1,

,1,

,11,1

0,

0,

0,11

·

pp

n

i PiM

x

x

x

m 























 ,

1




 (22)

 Simply apply the state equation, this time to all
places:
m = mo + C · σ  σ  J => (23)

PiJ

t

t

t

t

cc

cc

cc

x

x

x

x

x

x

mm

mnn

mii

m

n

i

n

i 







































































































,;·
11

,1,

,1,

,11,1

0,

0,

0,11























Let Mt be the set of markings obtained after applying
(23). So marked as many vectors are obtained from the
above equation as firing vectors has been tested:

| Mt | = | J | 24)
It is necessary to verify that these markings are

invalid. Clearly covered places will have a valid
marking because the firing vectors σ  J were obtained
from them. However, it is possible that the places not
covered do not have a valid marking. It should be
checked for all markings mMt such that 0 ≤ xi ≤ lim
 iPn-p , and discard markings that does not fulfill
this condition, as well as the firing vectors that have led
the system that led to them.

The non-rejected firing vectors must be applied
again to the not discarded markings until any one
exceeds the defined limit.

The proposed method is summarized in the
following steps:
1) Regardless of the places not covered by the
conservative components, find all possible markings
solving the system of linear Diophantine equations (21).
2) By applying the state equation for each possible
marking, again disregarding the places not covered,
draw the firing vector (22).
3) Taking into account all places, apply firing vectors
obtained in the previous section to the initial marking.
4) Discard the markings obtained in (23) that are not
possible for having a negative number somewhere or
exceeding the bound, as well as the firing vectors that
led to them.
5) Continue implementing the non rejected firing
vectors to the valid markings and to those obtained from
them, up to reach the limits defined or even not be
possible to continue applying them.

The advantages of this method with respect to the
general methods is that it considerably reduces the
number of equations to be solved, since it takes
advantage of the conservative components (taking into
account the limitation of marking locations covered).
Another advantage is that it allows obtaining the
spurious markings.

4.4. Recommendations on the proposed methods
In view of the described methods, the mode of operation
to determine the states of a PN may be as follows:
 First, you must determine the type of PN in question:

Conservative, non conservative but with marking
invariants, or non conservative without marking
invariants.

 In case there are invariant markings, determine all
possible markings by the specific methods proposed.
Apply the method of "evolution of markings by
successive firing of transitions" to determine which
markings are achievable. The possible markings that
are not achievable, are spurious.

 In the case that the PN has no marking invariants,
there is a "fast" method to determine all possible
markings. It may be a reasonable option to search
only those that are achievable by firing transitions.
However, in PN with a limit of small tokens and few
places, and always depending on the time and
resources available, it may be applicable the general
method of "Solving the state equation".

5. EXAMPLE OF APPLICATION
To exemplify the approach consider a production
system with a robot, which takes pieces from two
conveyor belts, each with a part type, and fed to two
machines which make two types of products with those
pieces (Fig.1).
 The PN that models that process is presented in
Fig2. The numbering of places and transitions, not
included to simplify the drawing, is in both from top to
bottom and from left to right. Thus the incidence matrix
is as shown in Table 1, and the initial marking is:
 mo=[1,1,1,0,0,2,1,1,2,0,0,0,0,0,0]T

Conveyor belt B

Conveyor belt A

Parts type B

Parts type A

Robot

A A

A

B

BB

Machine 1

Machine 2

Pieces

type 2

Pieces

type 1

Figure 1: Sample of production system

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

486

Table 1: Incidence matrix of Pn in Fig. 2

2 2

2 2

Figure 2: PN modeling system in Fig.1

From the graphic of the PN, or from the state

equation, alternatively, we can study the reachability
tree of the system, resulting in 147 states, simply using
the method of successive firings.

Furthermore, calculating the marking invariant
gives us the following seven solutions for the
conservative components (table2):

Table 2: Conservative components (rows) of PN in Fig. 2

No column is zero, what implies that the network

is conservative, and can be applied the proposed
methodology for conservative PN. Therefore, the
Diophantine equations are solved following the
Contejean-Devie algorithm, and the 147 possible
solutions are obtained, but with less computational time

and effort (a summary of the states is presented in
Table3, reduced to just 10 states for space cuestions).

Table 3: Summary of the 147 states of the system in
Fig. 1 provided by the Contejean-Devie algorithm

6. CONCLUSIONS
The paper has presented a study on the different
techniques to determine the states of a production
system by analyzing the Petri net that models it. Two
general methods have been discussed, one slower and
depth that allows obtaining "spurious marked" and
another one considerably faster but not allowing
obtaining them.

The structure of Petri Nets may have different
characteristics, so as to be classified into three types for
those propouses: conservative to all places,
nonconservative globally but for conservative for some
places, and non-conservative to any place. The
existence of conservation laws for all or some places
considerably reduces the search for possible PN
markings (ie, possible states of the system), thanks to
new Diophantine equations systems that appear whose
solutions are directly the potential markings.
Accordingly, two methods have been described
specifically for those Petri nets with these
characteristics.

For the resolution of systems of Diophantine
equations, the most common today algorithms have
been examined, and the one which best fits the type of
solutions expected in Petri Nets has been chosen.

ACKNOWLEDGMENTS
This paper has been partially supported by a grant of the
University of La Rioja and Banco Santander.

REFERENCES
Ajili, F., Contejean, E., 1995. Complete solving of

linear Diophantine equational and inequational
systems without adding variables. Unité de
recherche INRIA Lorraine, Metz.

Bradley, G. H. 1971. Algorithms for Hermite and Smith
Normal Matrices and Linear Diophantine
Equations. Mathematics of computation 25 (116).

Clausen, M., Fortenbacher, A., 1989. Efficient solution
of linear Diophantine equations. Journal of
symbolic computation 8, 201-216.

Contejean, E., Devie, H., 1994. An efficient incremental
algorithm for solving systems of linear

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

487

Diophantine equations. Information and
computation 113 (1), 143-172.

Girault, C., Valk, R., 2001. Petri Nets for systems
engineering. A guide to modeling, verification and
applications. Springer-Verlag, pp. 9-73.

Havas, G., Majewski, B. S., Matthews, K. R., 1998.
Extended GCD and Hermite Normal form
Algorithms via lattice basis reduction.
Experimental Mathematics 7 (2), 125-136.

Hemmecke, R., 2011. Discrete optimization. Lecture
notes SS 2011, TU Munich.

Jimenez, E., Perez, M., Latorre, J.I., 2006. Industrial
applications of Petri nets: system modelling and
simulation. Proceedings of International
Mediterranean Modelling Multiconference 2006,
pp. 159-164

Jimenez, E., Perez, M., Latorre, J.I., 2009. Modelling
and simulation with discrete and continuous PN:
semantics and delays. Proceedings of 21st
European Modeling and Simulation Symposium,
Vol II, pp. 14-19

Jimenez, E., Tejeda, A., Perez, M., Blanco, J., Martinez,
E., 2012. Applicability of lean production with
VSM to the Rioja wine sector. International
Journal Of Production Research, 50 (7), 1890–
1904

Latorre, J.I., Jimenez, E., Blanco, J., Sáenz-Díez, J.C.,
2013a. Integrated methodology for efficient
decision support in the Rioja wine production
sector. International Journal of Food Engineering,
(In press).

Latorre, J.I., Jimenez, E., Perez, M., 2009. Decision
taking on the production strategy of a
manufacturing facility. An integrated
methodology. Proceedings of 21st European
Modeling and Simulation Symposium, Vol II, pp.
1-7.

Latorre, J.I., Jimenez, E., Perez, M., 2013b.
Simulation-based Optimisation of Discrete Event
Systems by Distributed Computation. Simulation-
Transactions of the Society for Modeling and
Simulation International, (In press).

Latorre, J.I., Jimenez, E., Perez, M., 2013c. The
optimization problem based on alternatives
aggregation Petri nets as models for industrial
discrete event systems. Simulation-Transactions of
the Society for Modeling and Simulation
International, 89 (3), 346–361.

Lazebnik, F., 1996. On systems of linear Diophantine
equations. Mathematics Magazine 69 (4), 261-266.

Murata, T., 1989. Petri Nets: Properties, analysis and
applications. Proceedings of the IEEE 77 (4), pp.
541-580.

Silva, M., 1993. Introducing Petri nets. In Practice of
Petri Nets in Manufacturing, Di Cesare, F.,
(editor), pp. 1-62. Ed. Chapman&Hall.

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

488

