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ABSTRACT
New strategies for controlling the power split in hybrid

electric vehicles (HEV) are described. The strategies focus
in a planetary gear system, where kinematic and dynamic
constraints must be fulfillied. The aim is to satisfy driver
demands and to reduce fuel consumption. Two strategies
are presented, one inspired on optimal control and the
other derived from Pontryagin’s Minimum Principle. It
is shown that, under appropriate choice of weighting
parameters in the cost function of the Hamiltonian, both
strategies are similar. The resultant power flow control is
continuous and uses the internal combustion engine with
the maximum efficiency possible. The main advantages
are the low computational cost, when compared to other
optimization based approaches, and the easiness to tune.
The strategy is tested by simulations using a mathematical
model of a power train of a hybrid diesel-electric bus
subject to the power demands of representative urban
area driving cycles. The main elements of the vehicle,
internal combustion engine (ICE), battery state of charge
(soc), electric machine (EM) and vehicle inertia are
simulated with high order models. Simulation results
indicate that both strategies achieves small speed tracking
errors and attain good fuel consumption reduction levels.

Keywords: Optimal control, Pontryagin’s minimum
principle, simulation, hybrid electric vehicles, internal
combustion engine, electric machine, fuel consumption.

1. INTRODUCTION
Optimal power control on hybrid electric vehicles 
(HEV) is an important topic for power management. 
HEV may have different architectures that require the 
use of diverse energy management strategies. The main 
architectures, as presented in (John. M. Miller 2006), are 
series, parallel or series-parallel. A comparison of the 
architectures is presented in (Ehsani, Gao, and Miller
2007).

Power distribution in HEV can be performed by the use
of different controllers, as described in the comparative
study of supervisory control strategies for HEV presented
in (Pisu and Rizzoni 2007). Rule based approaches can
use heuristic, fuzzy logic, neural networks, etc. Examples

of these techniques are (Xiong, Zhang, and Yin 2009), that
proposes a fuzzy logic control for energy management
and (Xiong and Yin 2009), that presents a fuzzy logic
controller for energy management of a series-parallel
hybrid electric bus with ISG.

There are also power flow control strategies based
on optimization, like those revised in (Pisu and Rizzoni
2007). They are normally not implemented in real time,
only proved in simulation and their off-line optimization
results are used with a look-up table.

(Delprat, Lauber, Guerra, and Rimaux 2004) propose
the control of parallel hybrid power train that splits the
power between the engine and electric motor in order to
minimize the fuel consumption. This strategy optimize the
fuel consumption considering the torque engine and the
gear ratio.

(Musardo, Rizzoni, and Sataccia 2005) present the
Adaptive Equivalent Consumption Minimization Strategy
(A-ECMS), which is an algorithm for hybrid electric
vehicles that attempts to minimize the vehicle fuel con-
sumption using an equivalence between fuel energy and
electric energy. To prove its effectiveness, A-ECMS strat-
egy is compared with Dynamic Programming (DP) and a
non adaptive ECMS (Paganelli, Guerra, Delprat, Santin,
Delhom, and Combes 2000). (Koot, Kessels, de Jager,
Heemels, van den Bosch, and Steinbuch 2005) establish
energy management strategies for HEV using dynamic
programming and quadratic programming with Model
Predictive Control (MPC), to minimize fuel consumption.

(Kim, Cha, and Peng 2011) reported a optimal control
of parallel-HEV based on Pontryagin’s minimum principle
(PMP) that takes into account the state of charge and fuel
consumption.They compare the strategy with dynamic
programming and ECMS. In (Zou, Teng, Fengchun, and
Peng 2013) they compared Pontryagin’s minimum princi-
ple (PMP) with dynamic programming (DP), finding that
the simulation time is significantly lower in PMP than DP.
This is important for real time for implementation.

In this paper new strategies to control the power flow in
a parallel power train HEV are presented. In this config-
uration, shown in Fig. 1, the internal combustion engine
(ICE) and the electric machine (EM) can directly supply
their torque to the driven wheels through a planetary gear
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system1.

Fig. 1. Parallel hybrid electric vehicle power-train.

The design of the strategies recognizes, as is also
pointed out in (Musardo, Rizzoni, and Sataccia 2005), that
optimization based solutions to HEV power flow control
are very difficult to implement in real-time. Moreover,
their results can not be as effective when real driving
conditions differ from those used in the optimization
problem solution. A similar problem occurs when the
uncertainty in the models is considered.

In the first strategy presented this paper, a local criteria
is used based on the kinematic and dynamic constrains
at the planetary gear system, that must be satisfied when
distributing the power demanded by the vehicle between
the ICE and EM, and in maximum efficiency curves for
the ICE. There are only two pairs of parameters to tune
that, as it will be shown later, have a similar behavior for
all driving cycles employed in the simulations.

The second strategy is based on PMP and use the errors
in the state of charge soc, fuel consumption mf and power
demanded by the user Pd, with respect to some reference
values, as system states. Electric power Pbat and engine
power Pmci are system inputs.

To test the developed strategy, simulations of a math-
ematical model of the main components of the hybrid
power-train which includes the ICE and EM, clutch,
planetary gear system and battery were performed. The
strategy was tested using three standard driving cycles for
a bus in Mexico City.

The rest of paper is organized as follows. Section 2
presents the models for simulation of the vehicle sub-
systems, section 3 describes details the strategies for
power flow control. Simulation results are presented in
the section 4 while section 5 presents the conclusions and
directions for future work.

2. HEV MODELING

2.1. Internal combustion engine model
The model is taken from (Outbib, Dovifaaz, Rachid, 
and Ouladsine 2002). It is assumed that the air entering

1More details about HEV architectures can be found, for example, in
(Ehsani, Gao, and Miller 2007)

the intake manifold follows the ideal gas law and that
the manifold temperature varies slowly with respect to
pressure and engine speed. The model is described by

dωice

dt
=

h1
ωice

ṁf + h2pa +
h3
ωice

Pb +
h4
ṁf

(1)

dpa
dt

= h5ṁai − h6ωicepa

and the efficiency is

ηice =
Pice

ṁfpth
(2)

where ωice the engine speed, ṁf the fuel flow rate used
as control signal, pa the intake manifold pressure, ṁai air
flow entering the manifold, Pb the total brake power, Pice

the output power and pth the fuel heating value. Terms
hj are constants determined in the model of (Outbib,
Dovifaaz, Rachid, and Ouladsine 2002).
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Fig. 2. Efficiency curve of the ICE Diesel

Fig. 2 shown an example of maximum efficiency curve
in terms of the engine velocity. One key assumption in
Eq. (2) is that air-fuel ratio can be controlled indepen-
dently of ICE velocity..

2.2. Battery model

Fig. 3. Battery circuit

In the HEV, batteries are used as a temporary energy
storage that helps saving fuel and reducing emissions.
The state of charge of the battery (soc) is defined as a
measure of the amount of electrical energy stored in it. It
is analogous to the fuel gauge in the tank. Its dynamics
is given by

˙soc(t) = − Pb

VbQt
(3)
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where Pb(t) is the power, Vb the voltage and Qt denoting
the total charge the battery can store.

The circuit model shown in Fig. 3, contains elements
for discharging and charging mode.

2.3. Electrical machine model
The EM is an induction motor that can operate as motor or 
generator. When operating as motor, it draws power 
from the battery and the output torque drives the wheels, 
in possible combination with the ICE torque. Functioning 
as generator, it can recover kinetic energy from regen-
erative braking, or take energy from the ICE for battery 
recharging. Although the model obtained from (Peresada, 
Tilli, and Tonielli 2004) and used in simulations is fifth 
order, for the power split strategies it suffices with the 
relation between output power Pem and input power Pbat 
given by

Pem = ηbmPbat (4)

where ηbm is battery and EM efficiency.

2.4. Planetary gear system
The coupling of the power sources to traction is ac-
complished through a planetary gear system (PGS). Fig. 
4 shows a schematic of this mechanical device. The ICE 
is connected through a clutch-brake to the sun gear of the 
PGS, the EM is connected to the ring gear and the wheels 
are connected to the carrier gear (Ambarisha and Parcker 
2007),(Szumanowski, Yuhua, and Pi´orkowski 2005).

Fig. 4. Planetary gear system

The gear ratio is k = ra
rs

, where ra is the ring gear
radius, rs the sun gear radius and the angular velocities
in the PGS satisfy

ωp =
1

(k + 1)
ωs +

k

(k + 1)
ωa (5)

where ωp, ωs and ωa are the angular velocities of the
planet carrier, ICE and EM.

The balance of power in the PGS satisfies

Pp = Tsωs + Taωa (6)

Eqs. (5)-(6) are the kinematic and dynamic constraints,
respectively, that any power flow strategy that employs a
PGS must satisfy at all times.

The PGS is equipped with appropriate brakes to allow
only one power source when convenient.

2.5. Clutch system
To disengage the ICE from the sun gear of the PGS a 
clutch is included (see Fig. 5). Three modes of operation

Fig. 5. Clutch system.

for the clutch are modeled: when the ICE is disengaged,
sliding and engaged (James and Narasimhamurthi 2005).

The clutch is modeled by

(Jice + Jclu)ω̇ice = Tice − Tclu − Tf (7)

where J is the inertia, ω the velocity, T the torque,
subscripts ice, clu and f are for ICE, clutch and friction,
respectively. When the clutch is disengaged, Tclu = 0.
When it is slipping,

Tclu =
[
ke1
∫
(| ωice − ωclu |)dt

]
×

[| (ωice − ωclu) | (−0.0005) + 1]× (8)
f(| ωice − ωclu |)

where, ke1 is the stiffness coefficient of sliding.
Finally, when the clutch is engaged ωice = ωclu and

Tclu = ke2(
∫
(ωice − ωclu)dt)+ (9)

fes(ωice − ωclu)

where ke2 is a stiffness coefficient, fes an absorption
coefficient.

2.6. Vehicle model
Vehicle is modeled like a moving mass subjected to a 
traction force Ftr(t). The forces at the power-train also 
include the aerodynamic drag force Fa(t), the rolling 
resistance Fr(t) of the tires and the gravitational force 
Fg(t) induced by the slope in the road, that are given by 
(Xiong, Zhang, and Yin 2009), (Kessels, Koot, van den 
Bosch, and Kok 2008)

Fa(t) = 0.5ρav(t)
2CdAd

Fr(t) = mgCr cos γ(t) (10)
Fg(t) = mg sin γ(t)

where ρa is the air density, v(t) the vehicle speed, Cd the
aerodynamic drag coefficient, Ad the vehicle frontal area,
m the vehicle mass, g the gravity acceleration constant,
Cr the tire rolling resistance coefficient and γ the road
slope.

The vehicle velocity v(t) dynamics is given by

m
dv(t)

dt
= Ftr − Fa(t)− Fr(t)− Fg(t) (11)
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3. POWER FLOW CONTROL STRATEGIES
It is assumed that the ICE and EM are controlled with 
two independent controllers, whose set points must be 
determined by power flow control strategy.

The approach developed in this paper is based in the
following observations:

1) The most important requirement in HEV power flow
control is the ability to satisfy driver requirements.

2) All optimal solutions to power flow control preserve
the state of charge of batteries, averaged over a long
enough time period.

3) To minimize fuel consumption, ICE must be oper-
ated at high efficiency regions.

Observation 2, key in this paper strategy, is easily
confirmed by noticing that all optimal solutions based on
driving cycles must preserve the initial state of charge on
the batteries at the end of cycle, otherwise the vehicle
can not sustain repetitions of the same cycle. A similar
observation is also made in Musardo et al (Musardo,
Rizzoni, and Sataccia 2005), when discussing the tuning
of A-ECMS. Observation 3 can be verified, for example,
in (John. M. Miller 2006) or (Ehsani, Gao, and Miller
2007), and it is one of the main reasons HEV are overall
more efficient that normal vehicles.

3.1. Optimal strategy
This strategy is based on PMP. The problem is to find an 
admissible control u∗ ∈ U that causes the system

ẋ(t) = a(x(t), u(t), t) (12)

to follow an admissible trajectory x∗ ∈ Xthat minimizes
the performance cost

J(u) = h(x(tf ), tf ) +

∫ tf

t0

g(x(t), u(t), t)dt (13)

Using as system state the errors in the demanded power
ePp

= Pp − Pd, state of charge esoc = soc− socref and
fuel flow emf

= mf −mfref , and the battery power and
engine power uT = [Pbat Pice] as inputs. It follows that

ePp
= ηmePbat + Pice − Pd

ėsoc = − 1

VbatQnom
Pbat − ˙socref (14)

ėmf
=

Pice

ηicepth
− ṁfref

where Pd is the demanded power and Pp the power
supplied by the engines.

The performance cost can be expressed as

min J =

∫
eTG1e+ uTG2u dt (15)

where G1 and G2 are appropriate weighting matrices.
The Hamiltonian is defined as

H = eTG1e+ uTG2u+ pT [a(e, u, t)] (16)

Using this notation, the necessary conditions to find
the optimal control u∗ ∈ U that causes an admissible

trajectory e∗ ∈ X and minimizes the performance cost as
follows:

ePp = ηmeu1 + u2 − Pd

ėsoc = − 1

VbatQnom
u1 (17)

ėmf
=

u2
ηmcipth

where the soc and mf are assumed constant references
with zero time derivatives.

The costate equations are

ṗ1 = g11ePp

ṗ2 = g12esoc (18)
ṗ3 = g13emf

and the restriction for the inputs are as follows

0 = g21u
∗
1 + p1ηme − p2

1

VbatQnom
(19)

0 = g22u
∗
2 + p1 + p3

1

ηmcipth

If Eq. (19) is solved for u∗ and substituted into the state
Eqs. (17), three equations for the state and three for the
costates are obtained

e∗1 = ηmeu
∗
1(p1, p2) + u∗2(p1, p3)− Pd

ė∗2 = − 1

VbatQnom
u∗1(p1, p2)

ė∗3 =
1

ηmcipth
u∗2(p1, p3) (20)

ṗ∗1 = g11e
∗
1

ṗ∗2 = g12e
∗
2

ṗ∗3 = g13e
∗
3

Eqs. (20), the state and costate equations, are a set
of linear first order, homogeneous algebraic-differential
equations, that distribute power optimally between EM
and ICE, given parameters Gi.

3.2. PGS Strategy
The second strategy, named PGS strategy, is inspired in 
optimal control and tries to reduce fuel consumption by 
using the EM as much as possible, that is, by maximizing 
electrical energy use. Assuming that the state of charge 
in the batteries must be kept at a reference value, for the 
traction case, Pp > 0,

J1 =max(

∫ Tc

0

(sign(Pp)sign(soc− socref ))Pmedt

(21)

where Tc is the duration of the driving cycle, socref is a
reference value for soc. This expression is useful for the
cases of traction and traction-recharging batteries.

For the braking case, Pp < 0, the criteria is

J2 = max

∫ Tc

0

(sign(Pp)Pem) dt (22)
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The value of Eqs. (21)-(22) is maximized when Pme =
min{sign(Pp)Pp, sign(Pp)P

max
em }, with Pmax

em the max-
imum power attainable by the EM (assumed equal for
the motor and generator cases). To avoid the switching
induced by sign(Pp) a smooth function of the soc is used.
Therefore

Pem = Pem(soc) = αi(soc)P
max
em (23)

where subindex in Eq. (23) is 1 when Pp > 0 and 2 when
Pp < 0, αi ∈ [−1, 1].

Assuming that Pp and ωp are known, the proposed
solution to the power flow control starts by substituting
Eq. (23) in Eq. (6) leads to

Pp = αiP
max
em + Pice (24)
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Fig. 6. α for Pp ≥ 0 and Pp < 0

The shape of αi(soc) determines how much electric
power is taken or delivered at a given point. One possible
choice for αi(soc) is shown in Fig. 6, that is described
by

α1 = tanh(A1(soc− socref )) Pp ≥ 0 (25)
α2 = 0.5− 0.5(tanh(A2(soc− socfull))) Pp < 0 (26)

where socref is a reference value for the batteries if the
EM acts as a motor and socfull is a reference value to
avoid battery overcharging in the generator case.

If α1 is positive the EM operates as motor, otherwise
it operates as generator. Fig. 6 reveals that when Pp ≥ 0,
α1 ∈ [−1, 1] depending on the state charge of the battery.
When Pp < 0, α2 ∈ [0, 1], regenerative braking is
possible and the EM can work only as generator. This
choice allows to make maximum use of electric power
for traction or recharging of the batteries.

With αi chosen, electric power in Ec.(24) is fixed. Pice

is determined as follows:

Pice = min(Pp − Pem, P
max
ice ); Pp ≥ 0

that guarantees that the ICE provides power below its
maximum available power Pmax

ice .

3.3. Assigning speed and torque
Given Pice, the angular velocity at which the ICE must 
operate, ωice, is obtained from the maximum efficiency 
curve in the power vs. angular velocity curve. This curve 
has a shape similar to that shown in Fig. 7 and is 
approximated by a polynomial with Pice as independent 
variable. With this choice, it is assured that the ICE is 
always used with maximum efficiency.
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Fig. 7. Power vs. Speed high efficiency curve of the ICE.

Once ωice is obtained from the maximum efficiency
curve, the required torque is

Tmci =
Pmci

ωmci
for ω > 0 (27)

Tmci = 0 for ω = 0 (28)

The final step is to determine the angular velocity and
torque for the EM. From Eq. (5) ωem is

ωme =
(k + 1)

k
(ωp −

1

(k + 1)
ωmci) (29)

and the torque Tem is derived from

Tme =
Pme

ωme
for ω > 0 (30)

Tme = 0 for ω = 0 (31)

4. SIMULATION RESULTS

Simulations were carried out on SIMULINK MATLAB 
software for a bus with mass of 15,000 [kg], a diesel 
ICE of 205 [kw], a clutch between the ICE and a PGS 
with k = 5. The electric machine is a induction motor of 
93 [kw] and the batteries are 25[Ah] at 288[V ]. ll the 
components were simulated and tested separately. The 
bus is commanded to follow the three standard driving 
cycles: low velocity (1) c1, medium velocity (2) c2 and 
high velocity (3) c3. On example of a driving cycle is 
shown in Fig. 8.
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Fig. 8. High velocity driving cycle, c3

As mentioned before, the most important feature of any
power flow control strategy in HEV is the ability to track
driver power demands. Typical examples of speed tracking
capability are shown in Fig. 9, that illustrate, for driving
cycles 2 and 3, the velocity of the HEV obtained by the
PMP strategy and velocity obtained by the PGS strategy.
Velocity tracking is very good for both strategies. The first
observation that inspired the strategies is satisfied.
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Fig. 9. HEV velocity tracking, high and medium velocity

Fig. 10 and Fig. 11 show simulation results of the
state of charge (soc) for PMP strategy (blue dashed line)
and PGS strategy (red continuous line). Note that the
oscillations are bigger for the PMP strategy and that both
strategies have the same initial and final state of charge.

If the soc initial an final is same for both strategies,
the fuel consumption is considered net spending for the
comparative index and the vehicle can be repeated the
driving cycle as many times as required.

If the battery pack is more small, the oscillations are
bigger for the dynamic soc.
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The resultant ICE power is shown in Fig. 12 and the EM
power Fig. 13 for the high velocity driving cycle (MX3),
(black dashed line) for PMP strategy and (red continuous
line) for the PGS strategy. Power requirements are very
similar.
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Fig. 13. EM power compared for PGS and PMP strategies, cycle c3

To convey an idea of the fuel consumption reduction
provided by the HEV power split strategies, table I
compares the total fuel consumption for two driving cycles
and for a vehicle equipped only with an ICE. Notice the
small difference between the fuel consumption of the two
presented strategies.

Table I
COMPARISON OF STRATEGIES

Strategy Cycle Consumption Consumption
(kg) (%)

Only ICE 3 17.36 100
PMP 3 10.36 59.68
PGS 3 10.5 60.48
Only ICE 2 10.13 100
PMPl 2 7.976 78.74
PGS 2 8.029 79.26

5. CONCLUSIONS

A pair of power split strategies for HEV were presented
and proved by simulations on SIMULINK-MATLAB soft-
ware. The strategy is designed for a parallel configuration
HEV where a planetary gear system is used a power
coupling device. Simulations use a detailed model of a
HEV that includes a diesel internal combustion engine,
an induction electric engine, a planetary gear system, a
clutch, batteries and gear transmission.

The first strategy is based on Pontryagin’s minimum
principle (PMP), while the second is designed around
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a planetary gear system (PGS). Design procedures are
described to obtain power and torque splits. Simulation
were performed in such a way that initial and final state of
charge of batteries is equal for all driving cycles. Results
show that, by appropriate tuning of the weighting matrices
in the Hamiltonian of the PMP strategy, both strategies
achieve very similar results. However, the information re-
quirements and the computational cost of the PGS strategy
are smaller than those of the PMP strategy, making the
first strategy more suitable for real time implementation.

Results also indicate excellent tracking of all driving cy-
cles with limited excursions of the battery state of charge
during the driving cycle. ICE operates at high efficiency,
given the power split determined by both strategies.

An adaptive version and experimental testing of the
strategies is ongoing work.
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UNAM, Mexico in 2010 and he is currently a Ph.
D. candidate in (Control) Electrical Engineering at the
UNAM, Mexico and since 2011 he joined the Depart-

ment of Mechatronics Engineering, UNAM, as an Interim Professor. His
research interests include nonlinear control theory, mechatronics, optimal
control and applications.

Proceedings of the European Modeling and Simulation Symposium, 2013 
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds. 

536



Alfonso Pantoja-Vazquez Recived the B. S. degree
in instrumentation and process control engineering
from the University of Queretaro, Mexico in 2003,
the M. S. degree in electrical engineering from the
Universidad Nacional Autónoma de México, Mexico
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