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ABSTRACT 
Automatic detection and assessment of dirt particles in 
pulp and paper plays a pivotal role in the papermaking 
industry. Traditional visual inspection by human 
operators is giving the way to machine vision, which 
provides many potential advantages in terms of speed, 
accuracy and repeatability. Such systems make use of 
image processing algorithms which aim at separating 
paper and pulp impurities from the background. The 
most common approach is based on image thresholding, 
which consists of determining a set of intensity values 
that split an image into one or more classes, each 
representing either the background (i.e.: an area with no 
defects) or an area with some types of contraries. In this 
paper we present a quantitative experimental evaluation 
of four image thresholding methods (i.e.: Otsu’s, 
Kapur’s, Kittler’s and Yen’s) for dirt analysis in paper. 
The results show that Kittler’s method is the most stable 
and reliable for this task. 

 
Keywords:  machine vision, image thresholding, paper, 
quality assessment 

 
1. INTRODUCTION 
Product and process control through machine vision has 
been receiving increasing attention during the last years. 
Applications in the industry now cover many produts, 
such as textile (Carfagni et al. 2005), wood (Bianconi et 
al. 2013), ceramics (Kukkonen et al. 2001), natural 
stone (Bianconi et al. 2012), food (Furferi et al. 2010) 
and vehicles (Furferi et al. 2013) – to cite some.  

In the papermaking industry, machine vision 
proved effective in a number of problems, including 
printability analysis (Kalviainen et al. 2003); control of 
stripes and holes (Navarrete et al. 2003); assessment of 
the coating layer (Prykary et al. 2010); curl estimation 
(Synnergren et al. 2001), analysis of microstructural 
changes (Sjödahl and Larsson 2004) and automatic 

segregation of waste paper for recycling (Rahman et al. 
2011). Among them, dirt inspection has always played a 
central role, due to the strong effect that such defects 
have on the quality of the final product. An excessive 
presence of contraries and impurities may cause the 
pulp or paper to be off-specification, with negative 
consequences for the producer.  The detection and 
characterization of contraries is also a crucial step to 
track down and remove (or at least reduce) the source of 
impurities in the production process. The potential 
advantages are: a more efficient use of materials and 
energy, and a reduction of chemicals in the bleaching 
phase, with beneficial effects on the environment.  

Various prototypes and systems for automatic dirt 
analysis and counting have been described in the 
literature – for an overview of methods see the works of 
Torniainen et al. (1999); Corscadden and Trepanier 
(2006) and Ricard et al. 2012. From a technical 
standpoint, the detection of whatever type of particles in 
pulp and paper can be viewed as an image segmentation 
process aiming at separating the contraries (foreground) 
from the rest of the product (background). Most 
commonly, defects are dark spots on a bright area; but 
in some types of paper they may well be both brighter 
and darker than the background. In the paper recycling 
process, for instance, we expect to find not only traces 
of toner and wood particles – which tend to be darker 
than the background – but also stickies – which are 
likely to be brighter than the background.  In either case 
the segmentation process requires determining one or 
more intensity values (thresholds) for separating 
whatever type of defects from the background in the 
correct way. In this paper we present a quantitative 
experimental evaluation of four image thresholding 
methods that can be used for this task. Of each method 
we consider both the standard single-threshold version, 
which can be used when defects are all darker or 
brighter than the background, and the more challenging 
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double-threshold version, which is required when 
defects are either darker or brighter than the 
background. To assess the accuracy of the methods in a 
quantitative way, we compare the results of automatic 
segmentation against a ‘ground truth’ of contraries 
manually generated and cross-validated by two human 
experts.  

In the remainder of the paper we first give an 
account of the materials and image acquisition devices 
used in our study, followed by a description of the 
thresholding methods included in the comparison. Then 
we outline the experimental set-up, summarize the main 
results of the study and conclude the paper with some 
final considerations. 
 
2. MATERIALS 
We considered two different classes of recycled paper. 
According to their appearance, we conventionally refer 
to the two classes as ‘White’ and ‘Brown’ (see Fig. 1).  
 

 
(a) Sample of class 

‘White’ 

 
(b) Ground truth 

 

 
(c) Sample of class 

‘Brown’ 

 
(d) Ground truth 
– defects darker 
than background 

 
(e) Ground truth – 

defects brighter 
than background 

Figure 1 (a) Sample of class ‘White’ and (b) the 
corresponding ground truth; (c) sample of class 
‘Brown’, and the corresponding ground truth for defects 
(d) darker and (e) brighter than the background. 
 

Each class includes three sub-classes of different 
density. The characteristics of each class are reported in 
Tab. 1.  

 
Table 1 Summary table of the materials used in the 
experiments. 
 

Class Sub-
class 

Density 
(g/m2) 

No. of 
samples 

Image 
resolution 

White 

W1 137 

20 400 × 400 W2 154 

W3 174 

Brown 

B1 154 

20 400 × 400 B2 137 

B3 137 

  
For each class we obtained a set of 20 specimens 

and acquired them through the imaging system 
described in Sec 2.1. Samples of class White present 
only defects that are darker than the background. We 
therefore used this set of samples to test the single-
threshold version of the algorithms. By contrast, 
samples of class Brown show defects that are either 
brighter or darker than the background (see Fig. 1). 
Their analysis therefore requires the two-threshold 
version. The ‘true’ location and extension of the defects 
of each sample (‘ground truth’) have been manually 
determined and cross-validated by two skilled 
operators. 
 
2.1. Image acquisition 
The imaging system used in the experiments (Fig. 2) is 
composed of the following parts: one dome illuminator 
(Monster Dome Light 18.25”), one industrial CMOS 
camera, one support for the camera, one base and one 
slot to accommodate the paper specimen. The imaging 
apparatus can operate either by transmitted or reflected 
light. The lens can be selected to suit the specific 
application needs. In this activity we used a 12 mm 
fixed focal length objective (Pentax H1214-M). The 
whole imaging system provides a spatial resolution of 
approximately 370 dpi. The acquisition was carried out 
in reflected light mode. 
 

 
 
Figure 2 The image acquisition system: 1) paper 
sample; 2) slot; 3) hemispherical Lambertian surface; 4) 
camera, 5) rotatable support and 6) illumination ring. 

 

3. METHODS 
The problem of segmenting the image of a paper 
specimen through thresholding consists of determining 
a set of intensity values G = {G0,…,GC} that splits the 
image into a set of C classes, each corresponding to 
intensity values i ∈ [Gc-1,Gc[. One of these classes will 
represent the background of the product; the others 
different classes of impurities. The case C = 2 is the 
most common, and occurs whenever we need to detect 
dark/blackish particles on a bright background (but the 
reverse may also occur). The cases C > 2 represent 
more complex scenarios, in which we have to look for 
more than one class of impurities. As we mentioned in 
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the preceding sections, we limit our investigation to the 
cases C = 2 and C = 3. The determination of a proper 
set of thresholds for a given image (thresholding) has 
been studied extensively in literature, and several 
methods exist – for a comprehensive review on the 
subject see the work of Sezgin and Sankur (2004). 
Nonetheless, no quantitative data are available, in the 
literature, as for the effectiveness of the methods for dirt 
analysis in pulp and paper. In this study we considered 
four parameter-free, computationally light and easy to 
implement methods. They are: Kapur’s, Kittler-
Illingworth’s, Otsu’s and Yen’s. Here below we 
summarize the basics of each method. References are 
provided for the benefit of readers interested in the 
technicalities. All methods take as input the first-order 
probability distribution (histogram) of gray-levels; we 
therefore assume that the original images are converted 
to grayscale before processing. In Equations 1-4 we 
preliminarily define the weight, mean, standard 
deviation, entropy and correlation of each c-th class:   
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where pi is the probability of the i-th grey-value. 
 
3.1. Kapur 

In Kapur’s method (Kapur et al. 1985) the set of 
optimal thresholds, indicated as G  in the following 
equations, are the intensity levels that maximize the 
sum of the entropy of each class (Eq. 6). For this reason 
the procedure is also referred to as maximum entropy 
criterion. 
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3.2. Kittler-Illingworth 

This approach assumes that the gray-scale histogram 
of the whole image can be approximated through a 
mixture of N Gaussian distributions, one for each class. 
Optimal thresholds are the values that minimize the 
error between the original histogram and the mixture of 

the approximating distributions (Kittler and Illingworth 
1986). In formulas we have: 
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3.3. Yen 

Yen’s method (Yen et al. 1995) is formally very 
similar to Kapur’s, but instead of maximizing the sum 
of the entropy of each class, it sets the optimal 
thresholds at the values that maximize the sum of the 
correlation of each class (Eq. 8). Therefore the method 
is also known as maximum correlation criterion.  
 














= ∑

=

C

c

cCR
1

Yen
maxarg
G

G  (8) 

 
 
3.4. Otsu 

Otsu’s method determines the set of thresholds that 
maximizes the between-class variance.  Originally 
designed for two level thresholding (Otsu 1979), it has 
been later extended to the multi-class domain (Liao et 
al. 2001). Mathematically, the method can be 
formalized as follows: 
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where M is the average intensity of the whole image. 
 
 
4. EXPERIMENTS AND RESULTS 
We carried out a set of experiments to quantitatively 
evaluate the goodness of the thresholding methods at 
separating paper impurities from the background. To 
assess the effectiveness of each method we considered 
the following parameters: overall accuracy, normalized 
number of false positives and normalized number of 
false negatives.  
 
4.1. Overall accuracy 
The overall accuracy is the sum of the percentage of 
foreground pixels (i.e.: defects) correctly classified as 
foreground and that of background pixels (i.e.: non-
defects) correctly classified as background. This 
parameter gives an overall estimate of the effectiveness 
of the segmentation process. In formulas we have: 
 

I
FF

I
BB

A TT ∩
+

∩
=   (10) 

where A is the overall accuracy; I the whole image; B 
and F the background and foreground produced by the 
thresholding method; BT and FT the ‘true’ background 
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and foreground, which have been manually established 
beforehand. Symbol ‘| |’ stands for ‘the number pixels 
of’. 
 
4.2. False positives 

False positives represent ‘type I errors’: a false 
positive occurs each time a background pixel (i.e.: non-
defect) is incorrectly classified as foreground (i.e.: 
defect). The normalized number of  false positives can 
be expressed as follows: 

 

I
BF

FP T∩
=  (11) 

 

4.3. Fale negatives 
False negatives are also referred to as ‘type II errors’. A 
false negative arises each time a foreground pixel (i.e.: 
defect) is incorrectly classified as background (i.e. non-
defect). In formulas we have: 

 

I
FB

FN T∩
=  (12) 

 
4.4. Results 
Tables 2-4 summarize the performance of the image 
thresholding methods considered in the experiment. 
 

 

Table 2 Overall results of the single-threshold (two-class) experiment. 

 Kapur Kittler-Illingworth Otsu Yen 
Dataset FN FP A FN FP A FN FP A FN FP A 

W1 0,132 0,004 99,864 0,046 0,095 99,860 0,000 42,546 57,453 0,148 0,002 99,850 
W2 0,225 0,003 99,773 0,097 0,128 99,774 0,000 40,619 59,381 0,249 0,001 99,750 
W3 0,284 0,001 99,715 0,163 0,066 99,770 0,000 42,689 57,311 0,297 0,000 99,703 

Avg 0,214 0,003 99,784 0,102 0,096 99,801 0,000 41,951 58,048 0,231 0,001 99,768 
 

Table 3 Overall results of the double-threshold (three-class) experiment – defects brighter than the background. 

 Kapur Kittler-Illingworth Otsu Yen 
Data set FN FP ACC FN FP ACC FN FP ACC FN FP ACC 
B1 (w) 0,053 0,027 99,920 0,052 0,023 99,925 0,150 0,000 99,850 0,073 0,016 99,911 
B2 (w) 0,121 4,980 94,899 0,126 0,001 99,872 0,237 0,000 99,763 0,141 9,935 89,924 
B3 (w) 0,129 0,008 99,863 0,166 0,000 99,833 0,292 0,000 99,708 0,164 0,003 99,833 

Avg 0,101 1,672 98,227 0,115 0,008 99,877 0,226 0,000 99,774 0,126 3,318 96,556 
 

Table 4 Overall results of the double-threshold (three-class) experiment – defects darker than the background. 

 Kapur Kittler-Illingworth Otsu Yen 
Data 
sets FN FP ACC FN FP ACC FN FP ACC FN FP ACC 

B1 (b) 0,069 0,028 99,903 0,073 0,015 99,913 0,000 50,253 49,747 0,078 5,004 94,918 
B2 (b) 0,260 9,947 89,793 0,276 0,016 99,708 0,000 47,171 52,829 0,324 9,937 89,739 
B3 (b) 0,200 0,019 99,781 0,175 0,033 99,791 0,000 45,604 54,396 0,229 0,010 99,761 

Avg 0,176 3,332 96,492 0,175 0,021 99,804 0,00 47,676 52,324 0,210 4,984 94,806 
 
 

In the single-threshold experiment (Tab. 2) Kapur’s, 
Kittler’s and Yen’s methods all showed good accuracy 
with comparable figures. By contrast, the performance 
of Otsu’s algorithm was largely unsatisfactory. Among 
the first three approaches, Yen’s and Kapur’s produced 
less false positives, whereas Kittlers’ produced less 
false negatives.  

In the double-threshold experiment (Tab. 3-4), 
Kittler’s method appreciably outperformed the others in 
terms of overall accuracy. This trend is even more 
evident when it comes to determining defects that are 

darker than the background (Tab. 4). Otsu’s approach 
proved rather unreliable in this case too, with an overall 
accuracy far lower than the other methods. Kittler’s 
method also produced fewer false positives in this 
experiment, whereas the number of false negatives is 
similar to that produced by the other methods.   
 
5. CONCLUSIONS 
Automatic dirt detection and analysis through machine 
vision plays a central role in the papermaking industry. 
A fundamental issue in this process is the problem of 
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separating dirt particles from the background through 
suitable image processing methods. The typical strategy 
consists of determining a set of intensity values 
(thresholds) capable of separating the impurities from 
the background. In this context we have evaluated, 
experimentally, the performance of four thresholding 
methods on a dirt detection experiment. Among the four 
strategies considered here, the method proposed by 
Kittler and Illingworth (Kittler and Illingworth 1986) 
proved the most stable and reliable for dirt analysis. 
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