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ABSTRACT 

When patient controlled analgesia (PCA) was originally 

introduced, the belief was that frequency of analgesic 

demand uniquely reflects the level of patient’s pain. 

However frequency of the demand is a random process 

that has its own distribution with a unique shape and 

parameters. We used this distribution to simulate the 

risk of drug concentration exceeding critical threshold. 

We used quantized state system model to create hybrid 

aggregate model of PCA. We investigated two 

randomly selected, real data based, unidentified 

morphine and fentanyl PCA logs. Based on this data we 

generated model of the random process that 

approximated real demand data and created 500 virtual 

PCA logs. These logs allowed pharmacokinetic 

simulation of the effect compartment concentration.  

The proposed methodology allows an estimation of 

frequency and duration of critical episodes, when target 

concentration exceeds critical threshold.  These 

estimations might be used to evaluate patient specific 

risk of postoperative opiate overdose. 

Keywords: patient controlled analgesia, hybrid 

aggregate model, time series, probabilistic distribution. 

1. INTRODUCTION

Research suggests (Grass, 2005), that different

persons show different demand pattern when using PCA 

(Dahan, Aarts and Smith, 2010). This behavioral pattern 

varies depending on the variety of simultaneously 

occurring factors (Boom et al. 2013), including the level 

of pain, drug concentration in plasma and the effect site, 

various side effects (e.g., nausea, sedation, respiratory 

depression), or even the psychological state of the 

patient, such as anxiety or cognitive impairment. All 

these simultaneous factors (Woodhouse and Mather, 

2000) introduce randomness in the behavioral dose 

demand pattern and therefore demand sequence could 

be thought of as a random process what allows utilizing 

autoregression moving average model ARMA(p,q), 

commonly used in time series forecasting (Makridakis 

and Hibon, 1997). 

However, for the analysis of random process with 

arbitrary degree of precision, there must also be 

available time series of random process of arbitrary 

length. In our publication here we describe one of the 

ways of how to generate and analyze time series of PCA 

demand of arbitrary length. 

2. HYBRID AGGREGATE MODEL OF 

PATIENT CONTROLED ANALGESIA

2.1. Hybrid aggregate model 

For simulation of patient controlled analgesia we 

used hybrid systems simulation method based on PLA 

formalism (Pranevicius et al. 2011). 

PLA is a special case of automaton models. In the 

application of the PLA approach for system 

specification, the system is represented as a set of 

interacting piece-linear aggregates. The PLA is taken as 

an object defined by a set of states Z, input signals X, 

and output signals Y. Behaviour of an aggregate is 

considered in a set of time moments 𝑡 ∈ 𝑇. States 𝑧 ∈ 𝑍, 

input signals 𝑥 ∈ 𝑋, and output signals 𝑦 ∈ 𝑌 are 

considered to be time functions. Transition and output 

operators, H and G correspondingly, must be known as 

well. 

The state 𝑧 ∈ 𝑍 of the piece-linear aggregate is 

𝑧(𝑡) = (𝜐(𝑡), 𝑧𝜐(𝑡)), where 𝜐(𝑡) is a discrete state

component taking values on a countable set of values; 

and 𝑧𝜐(𝑡) is a continuous component comprising of

𝑧1(𝑡), 𝑧2(𝑡), … , 𝑧𝜐𝑘(𝑡) coordinates.

When there are no inputs, an aggregate state 

changes as follows: 𝜐(𝑡) = 𝑐𝑜𝑛𝑠𝑡, 
𝑑𝑧𝜐(𝑡)

𝑑𝑡
= −𝑎𝜐, where

𝑎𝜐 = (𝑎𝜐1 , 𝑎𝜐2 , … , 𝑎𝜐𝑘) is a constant vector.

For hybrid aggregate model (Pranevicius et al. 

2011) continuous coordinate’s model is described by 

the ordinary differential equations (ODE): 

To solve ODEs system we’ll adopt Quantized State 

System (QSS) method, which was defined by Ernesto 

Kofman (Kofman 2004). 

Considering ODE system: 
𝑑𝑥(𝑡)

𝑑𝑡
= 𝑓[𝑥(𝑡), 𝑢(𝑡)], 

where 𝑥(𝑡) ∈ 𝑅𝑛 is the static vector, 𝑢(𝑡) ∈ 𝑅𝑛 is

an input vector, which is a known piecewise constant 

function. 

The QSS method simulates an approximate 

system, which is called quantized state system: 
𝑑𝑥(𝑡)

𝑑𝑡
= 𝑓[𝑞(𝑡), 𝑢(𝑡)], 
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where 𝑞(𝑡) is a vector of quantized variables 

which are quantized versions of the state variables 𝑥(𝑡). 
Each component of 𝑞(𝑡) is related to the corresponding 

component of 𝑥(𝑡) by a hysteretic quantization 

function. A generic Quantized State System can be 

represented by the block diagram of Figure 1. 

 

 
Figure 1: Block diagram representation of a QSS 

(Kofman 2004) 

 

QSS method was implemented using PLASim 

simulation library created in our department 

(Pranevicius , Pilkauskas and Guginis, 2006). The 

PLASim is an object-oriented library for discrete-event 

simulation of models created using aggregate 

formalism. The PLASim’s current version written in C# 

for NET Framework 4.0 and has packages that support 

random number generation, statistical collection, basic 

reporting with data visualization and discrete-event 

simulation. The development of a simulation model is 

based on sub-classing the SimlationModel class that 

provides the primary recurring actions within a 

simulation and event scheduling and handling. 

We upgraded module of this library 

PLASimInternalEvents which implements internal 

event classes: 

InternalWEvent– class of the internal event; 

ContinuousCoordinate– abstract of the continuous 

coordinate; 

WlSum– class of the controlling sum; 

ControlSequence – class of the controlling 

sequence; 

InternalEventHandler – handler (delegate) of the 

internal event. 

Controlling sums (ControlSum) initiate internal 

event of the aggregate -- CreateInternalEvent(w). 

Timing of the internal event is determined by the the 

parameter w. Determination of the parameter w can be 

done using object from the ControlSequence class. 

Generated internal event is placed on the list of internal 

events internalEventQuque. Internal event for the 

processing is selected using SimulationModel method. 

The processing method itself is called up using 

NextInternalEvent() and InternalEventHandler. 

Additional classes were added to construct QSS 

events: 

InternalHEvent– class of QSS events; 

InternalHEventList list for QSS events; 

Hsum – class of QSS events control sum. 

 

2.1.1. Modeling PCA by using hybrid aggregate 

model 

A three compartmental model of drug distribution 

between the serum and the brain tissue (effect 

compartment) was used to describe fentanyl and 

morphine pharmacokinetics/pharmacodynamics, as is 

shown in Figure 4. 

 
Figure 2: Three compartment pharmacokinetic 

model 

 

The central compartment (V1) represents a 

distribution volume and includes rapidly mixing portion 

of the blood. The peripheral compartments (V2, V3) are 

composed of tissues and organs, where drug distributes 

at a slower rate. The effect site is the hypothetical 

compartment that relates the time course of plasma drug 

concentration to the time course of drug effect. 

Pharmacokinetic model is described by four 

differential equations: 

 

{
 
 
 

 
 
 
𝑑𝑥1

𝑑𝑡
= 𝑘21 ∙ 𝑥2 − 𝑘12 ∙ 𝑥1 + 𝑘31 ∙ 𝑥3 − 𝑘13 ∙ 𝑥1

−𝑘10 ∙ 𝑥1 + 𝑢(𝑡)
𝑑𝑥2

𝑑𝑡
= 𝑘12 ∙ 𝑥1 − 𝑘21 ∙ 𝑥2;

𝑑𝑥3

𝑑𝑡
= 𝑘13 ∙ 𝑥1 − 𝑘31 ∙ 𝑥3;

𝑑𝑥𝑒

𝑑𝑡
= 𝑘𝑒0 ∙ 𝑥1 − 𝑘𝑒0 ∙ 𝑥𝑒 ,

  

 

where 𝑥1 , 𝑥2, 𝑥3 and 𝑥𝑒 are the amounts of drug in 

the central, second, third and effect site compartments, 

respectively, and k10, k12 , k13 , k21, k31, and ke0 are 

the constants defining the elimination and inter-

compartmental transfer rates, and 𝑢(𝑡) the function 

describing drug delivery. 

Aggregate scheme of patient controlled analgesia 

aggregate model is presented in Figure 5. 

 
Figure 3: Aggregate scheme of the 

pharmacokinetic model 
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3. PATIENT’S BEHAVIORAL MODEL 

 

We used two random real data logs from PCA 

device, one with a prescription for morphine and one for 

fentanyl. We analyzed the length of time period (in 

minutes) between the two consecutive drug 

requirements.For building of a suitable model we used 

SPSS and MATLAB statistical tools. 

 

3.1. Analysis of morphine PCA demands 

Analysis of correlograms shows (see Fig. 4 and Fig. 5), 

that neither the values of autocorrelation, nor the values 

of partial autocorrelation function are statistically 

significant. 

 
Figure 4: Values of autocorrelation function for 

morphine PCA log 

 

 
Figure 5: Values of partial autocorrelation function 

for morphine PCA log 

 

We compared 25 different ARMA(p,q) models, 

with values of p and q ranging form 0 to 4, and chose 

the model with lowest value of Bayesian Information 

Criterion (BIC). BIC, unlike e.g. R squared value, 

“punishes” models with higher number of parameters, 

thus it favors more parsimonious models. The values of 

BIC with different ARMA models are presented in 

Table 1: 

 

Table 1: BIC values of different ARMA(p,q) models 

(morphine PCA) 

 MA(q) 

AR(p) 0 1 2 3 4 

0 7,180 7,249 7,341 7,437 7,518 

1 7,245 7,343 7,440 7,542 7,560 

2 7,342 7,442 7,457 7,531 7,659 

3 7,441 7,467 7,531 7,659 7,725 

4 7,523 7,555 7,658 7,687 7,783 

 

Data form Table 1 shows, that ARMA(0,0) has 

lowest BIC value, which is consistent with the values of 

autocorrelation and partial autocorrelation functions. 

This suggests that the following model is optimal: 

𝑦𝑡 = 𝜇 + 𝑘𝑡 + 𝜀𝑡, 
where 𝜀𝑡~𝑊𝑁(0, 𝜎

2), i.e., identically distributed 

independent white noise, with mean 0 and variation 𝜎2. 

Parameter estimates are presented in Table 2. 

 

Table 2: Parameter estimates for ARMA(0,0) model 

(morphine PCA) 

Parameters Estimate Significance 

Constant: μ    21,029 0,034 

Numerator: k 0,407 0,222 

 

Parameter estimates of this model suggest, that lag 

numerator k is not statistically significant, thus optimal 

model for morphine data is 

𝑦𝑡 = 𝜇 + 𝑘𝑡 + 𝜀𝑡, 
where 𝜀𝑡~𝑊𝑁(0, 𝜎

2), i.e., identically distributed 

independent white noise, with mean 0 and variation 𝜎2. 

Parameter estimates (see Table 2) of this model 

suggest, that lag numerator k does not differ from 0 

significantly, thus optimal model for time periods 𝑦𝑡  
between two drug requirements during morphine 

analgesia can be modeled simply as: 𝑦𝑡 = 𝜀𝑡, where 

𝜀𝑡~𝑊𝑁(0, 𝜎
2). 

Thus, it seems reasonable to model time periods 

between two drug requirements as identically 

distributed independent random numbers. In order to 

choose the best probability distribution function, we 

used MATLAB distribution fitting tool. 

Research showed, that exponential distribution 

with parameter λ = 1/31.4 (i.e., mean value 31.4) 

provided the best fit, according to the value of log 

likelihood, which was -222.34 in this case. Histogram 

and fitted probability distribution function is presented 

in Figure 3. 
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Figure 6: Distribution fitting for data obtained from 

morphine PCA 

 

Since p value 0.6912 is above 0.05, chi square criterion 

does not reject the null hypothesis, making exponential 

distribution a reasonable fit for the data. 

 
>> [h,p,s] = chi2gof(M,'CDF',pd) 

h =    0 

p =  0.6912 

s = chi2stat: 0.7387 

edges:[4.9407e-324 12.40 24.80 37.20 

124.0000] 

O: [17 9 9 15] 

E: [16.3128 10.9906 7.4049 15.2917] 

 

Exponentially distributed random variables can be 

generated by using standard functions (e.g., function 

exprnd() in MATLAB), or by the inverse function 

method. If r is basic random number (i.e., uniformly 

distributed in interval [0;1]), exponentially distributed 

number ε can be generated as 𝜀 = −
ln 𝑟

𝜆
. 

 

3.2. Analysis of fentanyl PCA demands 

Analyzing correlograms of data, obtained from fentanyl 

PCA, suggests that it can not be assumed to be the 

white noise. Autocorrelation function damps cyclically, 

while partial autocorrelation cuts at level 2, which 

suggests that some kind of ARMA(2,q) process might 

be suitable. 

 

 
Figure 7: Values of autocorrelation function for 

fentanyl PCA log 

 

 
Figure 8: Values of partial autocorrelation function 

for fentanyl PCA log 

 

Additional research supports this hypothesis, since 

BIC value is lowest with ARMA(2,0), i.e. AR(2), 

process suits best (see Table 2.), though it’s squared 

value 0.306 explains smaller part of total variation 

among data. 

 

Table 3: BIC values of different ARMA(p,q) models 

(fentanyl PCA) 

 MA(q) 

AR(p) 0 1 2 3 4 

0 6,511 6,459 6,427 6,495 6,484 

1 6,371 6,360 6,422 6,496 6,514 

2 6,354 6,423 6,498 6,534 6,554 

3 6,426 6,452 6,530 6,626 6,641 

4 6,490 6,528 6,584 6,642 6,720 

 

Residuals of AR(2) model shows no significant 

autocorrelation, which suggests that residuals are not 

significantly different from the white noise. 

 

 
Fig. 9. Values of residuals from fitted ARMA(2,0) 

model (fentanyl PCA)  

 

Actual five values of patients drug requirements 

also fitted well into predicted 95 percent confidence 

intervals, thus ARMA(2,0) might be a reasonable model 

for the fentanyl analgesia data. 

Estimated ARMA(2,0) with linear trend model 

parameters are presented in Table 4.  
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Table 4: Parameter estimates for ARMA(2,2) model 

fitted for data from fentanyl analgesia 

Parameter Estimate Significance 

Constant  11,570 0,26 

AR 
Lag 1 -0,302 0,12 

Lag 2 0,203 0,11 

Numerator Lag 0 0,264 0,38 

 

All values are statistically significant under 

standard 0.05 level, so we chose the following model to 

simulate time period 𝑦𝑡  between two consecutive 

patient requirements for fentanyl dose by the following 

process: 

𝑦𝑡 = 11,57 + 0.264𝑡 − 0.302𝑦𝑡−1 + 0.203𝑦𝑡−2 + 𝜀𝑡, 
where 𝜀𝑡~𝑊𝑁(0, 𝜎

2) i.e., it is identically (though 

not necessary normally) distributed independent random 

variables, with mean 0 and variation 𝜎2. 

Our analysis suggests that generalized extreme 

values distribution, with parameters k= -0.021633, 

s=16.521 and m=-9.426 provides the best fit for AR(2) 

model residual, according to the likelihood criterion (the 

value is equal to -306.101). Histogram and fitted 

probability distribution function is presented in Fig. 7. 

 

 
Figure 7: Distribution fitting for residual of ARMA(2;0) 

model (fentanyl PCA) 

 

Chi square test does not reject our null hypothesis, 

that residuals are distributed according to a generalized 

extreme value distribution, since the p value is above 

the standard 0.05 value. 

 
>>pd = fitdist(FR,'GEV') 

pd =  

generalized extreme value 

distribution 

    k = -0.021633 

sigma = 16.5207 

mu = -9.42619 

>> [h,p,s] = chi2gof(FR,'CDF',pd) 

h = 0 

p = 0.0586 

s =  

chi2stat: 5.6748 

edges:[-38.89 -18.42 -8.18 2.05 12.29 

22.5260 63.47] 

O: [11 15 21 6 6 11] 

E: [12.5611 15.1296 14.9153 11.1766 

7.1537 9.0636] 

 

Moreover, we compared residuals from fitted 

ARMA(2,0) model with the data generated randomly, 

that have generalized extreme values distribution with 

already estimated parameters. Kolmogorov-Smirnov 

test for both data sets also did not reject the hypothesis 

that ARMA model residuals have the same distribution 

as data generated randomly. 

 
>> [h,p,s]=kstest2(FR,FRand) 

h = 0 

p = 0.7246 

s = 0.1143 

 

The values of generalized extreme values 

distribution can be generated by the standard functions 

(e.g., function gevrnd() in MATLAB), or by the use of 

an inverse function method.   

Generalized extreme values distribution with 

parameters k, s and m has the following cumulative 

distribution function: 

𝐹(𝑥; 𝑘, 𝑠,𝑚) = exp {− [1 + 𝑘 (
𝑥−𝜇

𝜎
)]

1

𝑘
}. 

Thus, the value of random variable ε, having 

generalized extreme value distribution, can be generated 

by the following transformation of standard random 

number r: 

𝜀 = 𝑠
(− ln 𝑟)−𝑘−1

𝑘
+𝑚. 

 

4. SIMULATION OF PCA USING REAL 

PATIENT DATA 

 

4.1. Simulation protocol 

Simulation of morphine and fentanyl PCA was 

performed according to aggregate scheme presented in 

Fig 3. Drug infusion controller simulates patients’ 

behavioral according to models, presented in section 2.  

Pharmacokineticsof morphine and fentanyl was 

simulated by three compartment model. We used the 

following parameters for simulation of morphine 

pharmacokinetics: 

Central compartment volume = 17.8 l, 

Time to deliver the bolus dose = 40 sec, 

Bolus dose = 1 ml. 

Morphine micro rate constants were chosen from 

(Dahlstrom et al. 1990). 

We used the following parameters for the simulation of 

fentanyl PCA: 

Central compartment volume = 6.09 l, 

Time to deliver the bolus dose = 40 sec, 

Bolus dose = 1 ml. 

Fentanyl micro rate constants were chosen from the 

previous publications (Shafer et al. 1990). 
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4.2. Evaluation of increased risk 

For the evaluation of critical periods during PCA 

operation, we generated 500 patients demand logs 

(according to models presented in section 2) and used 

hybrid simulation technique to estimate drug plasma 

and effect compartment concentrations, that was done 

according to the pharmacokinetic multi-compartmental 

models. Increased risk event was defined as the time 

when effect compartment concentration exceeded 

critical (toxic) threshold. From that, cumulative risk 

could be defined as the time above this threshold and 

may correlate with the duration and severity of 

respiratory depression. We chose the following critical 

concentration thresholds: 0.02 mcg/l for morphine and 

0.07 mcg/l for fentanyl; these levels were chosen 

arbitrarily for the demonstration purposes only. Two 

parameters were evaluated: the number of times critical 

concentration threshold was exceeded during 24 hour 

simulation period and the duration of the periods when 

concentration exceeds critical threshold. 

 

4.2.1. Evaluation increased risk periods for 

morphine 

 

500 simulation sessions were performed that 

modeled morphine concentration at the effect site 

during 24 hours period; simulations were performed by 

using personal patients behavioral model (presented in 

section 2.1) together with pharmacokinetic 

compartmental model (Dahlstrom et al., 1978). Average 

number of times that increased risk concentration was 

reached, was relatively small – 1.78. Histogram (see 

Fig. 8) resembles geometric distribution, but statistical 

test rejected the null hypothesis. 

 

 
Figure 8: Histogram of the number of increased risk 

periods during simulated morphine analgesia  

 

The time period spent above critical level is rather 

lengthy – about  109 minutes on average. More than 

half (256) of all increased risk periods were longer than 

30 minutes. The histogram is presented below in fig.9: 

 

 
Figure 9: Histogram of the length of increased risk 

periods during simulated morphine analgesia  

 

Overall proportion of time spent above the critical 

concentration during morphine PCA simulations was on 

average about 13.7 percent. 

We also compared the estimated effect site 

morphine concentration from the original demand log 

with simulated morphine PCA logs (see Fig 10.): 

 

 
Figure 10: Comparison of estimated patients’ drug 

concentration at the effect site (bold line) using 500 

simulated morphine PCA logs. (Critical threshold 0.02) 

It appears that the real patients’ data fits the pattern 

of simulations. 

 

4.2.2. Evaluation increased risk periods for fentanyl 

 

500 simulation sessions were performed that 

modeled fentanyl concentration at effect site during 24 

hours period; simulation was done  using patients’ 

random behavioral model (presented in section 2.2) 

together with previously described three compartmental 

pharmacokinetics model (Shaffer et al., 1990).  

Histogram demonstrating the number of times that 

effect site concentration exceeded critical threshold  

presented below in fig.11: 
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Figure 11: Histogram of the number of increased risk 

periods during simulated fentanyl analgesia  

 

Average number of times exceeding critical 

threshold (13.22) is much higher than that of the 

morphine PCA. Data analysis showed that no standard 

discrete distribution was suitable to model these data.   

However, mean length of the time above the 

critical threshold is much shorter than that of simulated 

morphine PCA - only about 6 minutes on average. 

Histogram is presented below in fig. 12 (no standard 

distribution was suitable to model the data): 

 

 
Figure 12: Histogram of the length of periods above 

critical threshold during fentanyl analgesia simulations 

 

On an average, the time spent above the critical 

threshold was shorter, about 5.5 percent that of time 

when comparing morphine analgesia.  

We also compared the estimated fentanyl 

concentration at the effect site obtained from the 

original demand log with the results obtained from 

simulated fentanyl PCA (see Fig 13): 

 

 
Figure 13: Comparison of the estimated patients’ drug 

concentration at the effect site (bold line) and the results 

obtained from simulated fentanyl PCA. (Critical 

threshold 0.07) 

As it is shown, patients’ data matches simulated 

drug concentration levels reasonably well. 

 

5. DISCUSSION 

 

Although patient’s demands for analgesia may be 

affected by a multiple factors, they can be reasonably 

approximated by the autoregressive moving average 

model of a stochastic process. To estimate the 

parameters of autoregressive moving average model we 

used the real data logs from PCA device, with duration 

in excess of 24. It provided ~50 data points in both 

morphine and fentanyl analgesia, which slightly 

exceeds a rule-of-thumb minimum sample size of 30 

(Box, Jenkins 1994). Estimated model parameter can 

also be updated once new data (e.g. from PCA log) have 

arrived. 

Even with limited patient’s demand data, 

frequency and duration of the rare events — when 

effect compartment concentration exceeds critical 

threshold — can be predicted. Moreover, analysis of 

PCA logs allowed to uncover the fact, that periods of 

concentration exceeding critical threshold are more 

common, but of a shorter duration, when using fentanyl 

as a drug, not morphine, what corresponds to well 

known respiratory depression patterns of these two 

medications (Wong, 2013). Clinical investigation of 

these findings is warranted in order to establish 

individual critical concentration threshold for the 

respiratory suppression. 

Our simulations assumed that starting drug 

concentration equals zero (figs. 10, 13). However, this 

is usually not the case, as patients commonly receive 

loading dose in order to achieve therapeutic 

concentration fast. This frequent clinical scenario was 

not accounted for in our simulations, although it is 

important to keep in mind, that the effect of a loading 

dose is negligible after two to three half-times of the 

drug. 

Moreover, in current analysis we did not 

investigate whether or not the stochastic demand 
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process depends on the average concentration in the 

effect compartment; we intend to do that in the future. 

 

6. CONCLUSION 

 

The time between analgesia demands can be 

viewed as a random variable. Time series of a random 

process of such variable can be expanded to an arbitrary 

length, even from the limited real data logs; then these 

series can be analyzed utilizing autoregression moving 

average model ARMA(p,q) , commonly used in time 

series forecasting.  

Modeling results suggest that periods above critical 

(toxic) concentration threshold of morphine are less 

frequent, but of a longer duration as compared to 

Fentanyl. 
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