
RAPID PROTOTYPING AND VERIFICATION OF SIMULATING SYSTEMS APPLYING

ABASIM ARCHITECTURE

Emil Řezanina(a), Antonín Kavička(b)

(a),(b)Faculty of Electrical Engineering and Informatics, University of Pardubice, Czech Republic

(a)emil.rezanina@upce.cz (b)Antonin.kavicka@upce.cz

ABSTRACT

When designing and developing computer simulation
models it is possible to employ different architectures of
simulate systems. Quite often Agent-based architectures
are used. They provide a number of advantages to the
needs of construction, modification and expansions of
relevant models. In the field of computer simulations a
variety of agent-based architectures are applied. They
are available in a number of simulation tools,
frameworks and programming languages.

Nowadays, when the emphasis is put on the reduction of
time for software systems development, it is often
required to have a graphic support for rapid prototyping
of simulation models available, using the appropriate
architecture.

The paper is aimed at presenting the development of a
software framework (working name ABAframe)
supporting the development of simulators using one
particular type of Agent-based architecture of
simulation models called ABAsim. Said architecture is
particularly suitable for creating simulators of service,
logistics and transport systems.

The main purpose of the ABAframe framework within
an integrated development environment is to enable
both rapid and partially automated graphical prototyping
of simulation models based on autonomous agents and
also support the implementation of simulation
experiments including evaluation of their results. An
important functionality the stated framework features is
providing the verification of communication interfaces
and communication of inter-agents within a built
prototype of simulator.

Keywords:

Agent-based architecture, simulation model, rapid

prototyping, prototype verification

1. INTRODUCTION

Currently, a number of simulation tools, frameworks,

and programming languages (Zheng 1992) are available

for the needs of production of (monolithic) simulation

models, where different architectures, or rather

approaches, are applied. The following architectures

could be used as an example:

- events or process-oriented architecture,

- architecture based on continuous activities,

- agent-based architecture,

- combined / hybrid architecture.

Within the existing tools a support is usually available to

facilitate the building of simulation models.

In this paper an attention is paid to one of the used agent-

based simulation model architectures called ABAsim

(Kavička, Klima and Adamko 2005). Using this

architecture is particularly suitable for complex

simulating systems reflecting traffic within the service,

logistics and transport systems.

To simplify and accelerate the creation of simulation

models the methodology of rapid (graphically supported)

prototyping can be used. This methodology facilitates the

implementation of quick configuration of a simulation

model prototype, in this case composed of agents. The

advantage of rapid prototyping is the possibility to bring

the simulation model prototype under formal correctness

control.

In order to increase the attractiveness of ABAsim

architecture it was requested by many users to build

a support for a quick and partially automated prototyping

of complex simulation models, including the possibility

to examine the correctness (verification) of the models.

In this connection, the ABAframe framework and the

ABAframeIDE tool, which is constructed above the

framework, are being developed.

The concept of ABAframe framework, including its

functionalities, is described below. Attention is paid

mainly to the process of rapid prototyping of simulating

systems and to the implementation of relevant prototype

verification. Also a case study is presented where the

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

113

mailto:emil.rezanina@upce.cz
mailto:Antonin.kavicka@upce.cz

individual parts of creation and verification of a

prototype are demonstrated.

2. ABASIM ARCHITECTURE

Agent-based ABAsim architecture allows the creation of

simulation models using autonomous units, the so-called

agents. These agents constitute an encapsulated

computer system that is able to flexibly and

autonomously operate in a specific environment to

achieve the stated objective (Jennings and Wooldridge

200). To "flexibly operate" means reactive, pro-active

and social behaviour of the agent. The following figure

shows the agent's behaviour when achieving the goal.

Figure 1: The structure of the agent’s behaviour

(Adamko 2013)

In the ABAsim architecture the simulation model consists

of cooperating agents organized in a hierarchical

structure. The architecture offers two types of agents -

control and dynamic agents. Control agents are static

entities which exist throughout the simulation run. These

agents represent a high-level system entities that

cooperate together in order to achieve system goals. The

second type of agents is represented by dynamic,

autonomous and proactive entities. They are always

current under the management of one control agent, but

may be transferred under the management of another

control agent. Dynamic agents mutually interact with the

environment (other dynamic agents, entities) and

communicate with the control agent. Dynamic agents are

created and cancelled during the simulation run and

receive local goals by managing agents (Adamko 2013,

Kormanova, Varga and Adamko 2014).

2.1. Composition of Agent

The ABAsim architecture supports decomposition of

individual autonomous agents into specialized

components that focus on performing certain activities.

The main component of each agent is a manager. This

component focuses on the control and communication

activities of an agent. The remaining internal

components of agents are called assistants. They are used

to support the manager. Assistants could be classified as

either prompt or continuous. The difference between

them is that prompt assistant performs the action

immediately, whereas continuous assistant needs some

time. Assistants can be divided into several groups

according to the type of activity:

a) Group of sensors has the task of monitoring the

area of an agent. This group includes a query

component and a monitor component. The

query component is a prompt assistant that

examines the surroundings at the request of the

manager and immediately inform it of the

outcome. The monitor component is a

continuous assistant that unlike query

component monitors the area for some time. If

there is any monitored event at this time (arrival

of a customer) it informs the manager.

b) Group of effectors represents assistants who

perform executive actions in the surroundings

of an agent. For immediate performance a

prompt assistant action is employed and for

continuous operation a continuous assistant

monitor is applied.

c) Group of advisors is being used by the manager

as a decision support. This group includes

prompt assistant adviser and continual assistant

planner.

2.2. Communication

Basic communication mechanism in ABAsim

architecture is a mechanism of messaging sending. This

mechanism is used both for inter-agent communication

and internal communication. Messages can be processed

in several different ways. Messages are saved in a

mailbox of an agent or in a central mailbox of

a simulation model. Another possibility is to process the

message immediately. Each message contains

a timestamp that represents the time when the message

should be processed.

For better organization of communication and for

simplification of the simulation model design the

ABAsim architecture defines several types of messages.

Message types actually enable messages to better

illustrate what kind of message it is and how it should be

processed. Communication via message types can be

seen in the following Figure.

Figure 2: Inter-agent and intra-agent communication

(Adamko 2013)

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

114

Message types that are used for inter-agent

communication are divided into (Fikejz and Řezanina

2013, Kocifaj and Adamko 2014):

 Notice – a message used to inform agents about

the situation that has arisen. The message only

indicates given facts and doesn't wait for a

response (e.g. resource was returned).

 Request / Response - Request message type is

used as a request for resource. The request is

sent to the addressee (e.g. Deliver mobile

source). To the extent possible a response is

expected in association with this type of

message. Message type Response is used as a

reply and it is sent back to the original sender.

Messages related to work with dynamic agents are also

used for inter-agent communication. It is the possibility

of transferring a temporary management (Entrust /

Return) or permanent management (Handover) to a

dynamic agent, assignment of goals (Goal) and

cancelling of goals (Cancel) to a dynamic agent. In

contrast, the dynamic agent sends to the managing agent

that administers it a message that indicates that the goal

was achieved (Done) or request to move the management

of dynamic agent elsewhere (Transfer).

Intra-agent communication is open to all its components,

but they must follow certain rules for this

communication. The manager can communicate with all

the other components of the agent. Other components do

not communicate with each other (Adamko 2013).

Manager and his assistants communicate through the

following types of messages:

- Start - This type of message is sent to a

continuous assistant. The addressee starts to

perform its autonomous activity after receiving

this message.

- Break - through this type of message the

manager affects the autonomous run of

continuous assistant. Assistant cease working

after receiving this message.

- Execute - type of message sent to prompt

assistants. Assistant responds with an instant

processing of the message and returning results

to this type of message.

Continuous assistants are initiated by the manager via

message Start mentioned above. During their existence,

continuous assistants can send the following types of

messages to the manager:

- Finish - this type of message is sent when a

continuous assistant completes its work.

- Notice - a message used by a continuous

assistant to inform the manager about important

matters that require reaction.

- Hold - is the only type of message that can have

higher timestamp of the message than the

current local virtual time of the agent. Message

type Hold is used in order to shift simulation

time.

More specifications of inter-agent and intra-agent

communication can be found in resource (Adamko

2013).

3. RAPID PROTOTYPING

Rapid prototyping is one of the ways to quickly create

simulation models of complex systems. The result of

prototyping is a simulation model with limited

functionality, so-called prototype. Prototypes of

simulation models based on Agent-based architectures

can be composed of empty agents and communication

links among them. In ABAsim architecture so-called pre-

defined agents are used instead of empty agents. These

agents are perceived as agents that contain external

interface for receiving messages from other agents as

well as a set of internal components of an agent.

Mentioned components include internal communication

interface, but without internal logic of incoming

messages processing.

Tools that provide a graphical user interface are very

often used for prototyping. These tools lead to

a significant speed-up of the creation of simulation

models and to convey its visualization. Visualization

brings greater knowledge of the proposed model. This is

very useful for complex solutions.

Another advantage of prototyping is an early control of

the model. Formal correctness does not relate directly to

a simulation model but to its prototype.

4. VERIFICATION

Verifying the correctness of the simulation model

consists of verification and validation of the model.

Model verification is a process of checking the formal

correctness of the model. In contrast, model validation is

a process to verify that the outputs of a simulation model

correspond to the realistic characteristics of the modelled

system.

When rapid prototyping simulation model in ABAsim

architecture we deal only with the verification of the

model prototype. Validation cannot be applied in this

case because components of pre-defined agents do not

contain internal logic and therefore the simulator is not

yet built.

Verification of the prototype of agent-based simulation

model determines whether all communication interface

settings are correct. These interfaces can be divided in

two groups, namely:

- The first group consists of the communication

interface of agents. Every agent knows what

messages it receives from other agents and what

messages it sends.

- The second group is composed of

communication interfaces of internal

components of individual agents. When

processing incoming messages from another

agent the manager communicates with his

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

115

assistants. The communication interface of each

assistant of the manager must be correctly

configured so that the manager is able to

communicate with the assistant.

The verification of the prototype also focuses on inter-

agent communication and the involvement of agents in

the simulation model.

The main advantage of prototype verification, as

mentioned, is the possibility of early correctness checks.

This allows to eliminate errors that might have arised at

the beginning of the draft before complete

implementation of the simulation model's internal logic.

5. ABAFRAME FRAMEWORK

ABAframe Framework uses a special simulation core,

which allows the simulation above the simulation models

created in ABAsim architecture. Simulation core works

with discrete events that represent moments of message

processing in the ABAsim architecture. Simulation core

performs simulation above the simulation model in two

phases. Synchronization algorithm of the simulation core

is based on the principles of the resource (Adamko 2013).

ABAframe Framework enables the user to create a

simulation model prototype using graphical user

interface (or more precisely integrated graphical

development environment). The prototype consists of

individual pre-prepared (partially formalized) agents and

specifications of inter-agent communication.

5.1. Creating a prototype

For creating a prototype of agent's simulating system

within the environment provided by the ABAframe

Framework a tool called ABAframeIDE is used. This tool

divides the creation of a prototype into several phases:

(1) A draft of a model, which consists of empty

agents and defined communication links among

agents.

(2) Specifications of individual internal

components an agent will consist of.

(3) Setting the communication interfaces of internal

components of individual agents.

(4) Implementation of internal model for incoming

messages processing within the component

manager.

(5) Generation of frames.

In the phase of a draft of the model at the level of agents

the user determines what agents, agent's models and

inter-agent's communication links the model will consist

of. Inter-agents communication link represents the

sending of one message. Any agent can be a sender and

the recipient of the message can be either a specific agent

or also an agent model. The message must also specify

the type (e.g. Notice), code (e.g. Incoming customer) and

parameters (e.g. Customer) of the message. For message

type Response it is necessary to set to which message

type Request it replies.

The internal composition of every created agent must be

set. Setting the composition of an agent comes under the

agent's internal components specification phase. For

each agent a tab appears that allows insertion and

removal of manager assistants (i.e. monitor, action).

The next phase is the setting of communication interfaces

of internal components. This phase is used to set what

messages assistants receive and how they respond. In

addition, for continuous assistants it is also necessary to

define what messages they will send during their

operations (to themselves or the manager).

The penultimate phase of developing the prototype

represents an implementation of an internal model of

incoming messages processing within a manager. At this

stage, there are several ways how to implement the

internal model. An imperative approach (using the

resource code of the programming language) or

declarative approach (based on the graphical

specification of the relevant - coloured - Petri nets) may

be used. If the first option is chosen, the implementation

of an internal model is omitted for the time being. The

programming of this model must be finished after the

generation of the prototype.

The last phase is the generation of frames. In this phase,

first of all a formal inspection of correctness of individual

parts' settings from previous stages takes place. If this

goes through successfully, an export of a simulation

model prototype to a resource code of the relevant higher

programming language (in which the model will be

further developed) ensues.

5.2. Verification

It is possible to conduct a formal control of correctness

within the ABAframe framework. It is divided in two

levels.

The first level of control is performed prior to the

generation of frames in the ABAframeIDE tool. The main

objectives of this level are to check the correctness of the

setting of agents' identifiers and their internal

components. Furthermore, it is examined whether some

communication links between two agents do not share

the same type and code.

The second level of control is performed after the export

of a prototype. This level is composed of the following

verification:

(i) verification of communication interfaces of

agents,

(ii) verification of communication interfaces of

agents' internal components,

(iii) verification of inter-agents communication and

(iv) verification of the involvement of agents in a

complex simulation model.

Verification of communication interfaces of agents

controls which messages agents receive and which

messages they send. Each message must pass the scrutiny

of their requirements. These requirements include e.g.

type code, sender, recipient, etc.

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

116

Verification of communication interfaces of agents'

internal components controls each interface of manager's

assistants. This control should check whether the

interface of each manager's assistant is properly applied

in the context of the internal logic of incoming messages

processing. This verification does not occur if an internal

model of incoming messages processing of the manager

has not yet been specified.

Verification of inter-agents communication checks

whether each message sent from agents has its existing

recipient who has a relevant routine utilities of this

message. Lists of agents' incoming and outgoing

messages are used for this purpose. During the control it

is checked whether a message from the list of agent's

outgoing messages has the same message notation in the

list of recipient’s incoming message. Messages are the

same if they have the same type, code and parameter list.

Verification of the involvement of agents in a complex

simulation model aims to reveal the single alone agents.

These are agents that do not communicate with any other

agent, and thus are not utilized within the model.

If the model prototype fails to pass the verification

successfully the framework informs the user about the

formal faults of the model so that they could be removed

subsequently.

The second level of control do not have to be used for

generated simulation model prototype only. It can also be

used for specific simulation model.

6. DEMOSTRATION APPLICATION

A procedure of creation of a simplified simulation model

of queuing is illustrated here to demonstrate the work

with the ABAframe framework and ABAframeIDE tools.

6.1. Description of a model of queuing

Customers enter the model from its surroundings, attend

two types of service and leave the system after their

completion. While the first type of service is linked to a

stable resource to which the customer must transfer, the

second resource is mobile, and thus transfers itself to the

customer in order to perform the second service. If the

customer comes to a service that does not have a free

resource, he will join the appropriate queue waiting for

this resource and stay here until taking his turn (Kavička,

Klima and Adamko 2005).

6.2. Creating a queuing model prototype

To create a queuing model prototype the ABAframeIDE

tool is used. The procedure of generation of a model

using this tool will be shown in this section.

In the first stage a simulation model was modelled. It

includes surroundings, service manager and resource

manager agents. Each of these agents has a specific role.

In addition, it was necessary to set up communication

between these agents.

Surroundings agent is responsible for the contact

between the model and its environs (arrivals and

departures of customers). This agent cooperates with

service manager agent, which is in charge of organizing

the service. Arriving customer will undergo two types of

services here and leave the model after completing these

services. To work with resources the service manager

agent communicates with the resource manager agent.

This agent is responsible for allocation and relocation of

resources to the service. In addition it deals with queues

of applicants for resources.

The design of individual inter-agents communication

links consists of two steps. The first step was setting the

resource and destination of the message. The second step

was to set the type, code and list of parameters of the link.

List of parameters contains the names of parameters the

message will transmit. E.g. communications link

"Incoming customer", which leads from the

surroundings agent to the service manager agent, carries

the Customer parameter in this list.

The result of this phase is shown in the following figure.

Figure 2: Design of simulation model of queuing.

The second phase dealt with the composition of

individual agents. In this step components that the

manager will use for his work were selected for each

agent.

Surroundings agent contains only a component process

Entering Customers. This component aims to generate

periodic messages announcing the arrival of a new

customer into the system.

The manager of Service agent operates with four

processes. The first process is the execution of

service A (Service A process). The second process is

responsible for the transfer of a customer from service A

to service B (Move customer process). This process is

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

117

followed by the process of performing service B (Service

B process). After completion of service B the customer

leaves the service and heads to the exit of the system. The

next process is employed here (Customer outgoing

process). The compositions of this agent in

ABAframeIDE tool is shown in Figure 3.

Figure 3: The compositions of service agent in ABAframeIDE

The last agent, the resource manager agent, has two

groups of manager's assistants. The first group helps the

manager with allocation and relocation of service

resources. This group consists of the following

components:

- action for allocation of resources (Assign

resource)

- action for recovery of resources (Return

resource)

- advisor for selection of free resources (Selection

of free resource)

- request to determine whether it is necessary to

relocate the resource (Need move resource) and

- process of transferring the resource (Move

resource).

The second group is in charge of the queue of customers

waiting for service. The queue depends on the occupancy

of resources. The group includes an action for adding an

applicant to the queue (Put applicant to queue for

resource action) and actions for removing the applicant

from the queue (Remove applicant from queue action).

Apart from setting the name of every assistant it was also

necessary to set a communication interface. The setting

of Put applicant to queue for resource action assistant

will be used as an illustration. This component represents

a prompt assistant that should add the sent applicant to

the queue for the resource – as expected by the manager.

The manager does not communicate with this assistant in

any other way. Communication interface of the assistant

includes only one record consisting of a notice message

type, "Put applicant to queue for resource" message code

and a parameter list. The parameter list contains only one

parameter called "Applicant". There is no need to set a

return value in this case.

After setting all the agents assistants it is possible to

proceed to the stage of setting the internal logic of

incoming message processing. Every manager must

respond to an incoming message (inter-agents and intra-

agents). In our model, for example, the Surroundings

agent must respond to three types of messages. The first

type of messages comes from the Service agent, which

sends information about an outgoing customer. The other

two types of messages are from continuous component -

Entering customer process. This assistant informs the

manager of the arrival of a customer or of the termination

of its activities.

For the implementation of internal logic a possibility of

programming in the resource code was selected.

ABAframeIDE tool was used for the prototype

verification within each particular phase.

The completion of each phase and successful verification

was followed by the generation of the simulation model

frames.

6.3. Completion of the simulation model

The result from the previous chapter can be added to the

project C # programming language. It is sufficient to then

add a reference to ABAframe framework into the project,

which will allow further work with this simulation

model, whether it concerns verification or launching of

the simulation model.

The generated simulation model is not yet complete. The

creation of an internal model of message processing by

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

118

the manager was omitted and the internal logic of

generated individual assistants is missing. The missing

parts must be programmed by the user.

After completion of the simulation model the ABAframe

framework verification may be used to control the formal

correctness.

Figure 4 shows the possible implementation of a

complete simulation of queuing

7. CONSLUSION

This article discusses rapid prototyping and verification

of simulation models in the agent oriented ABAsim

architecture. The ABAframe framework was introduced

here together with its tool ABAframeIDE that allow rapid

prototyping and verification of simulation models in this

architecture. A demonstration application dealing with

queueing was created for better understanding of the

design of simulation models using the ABAframe

framework. The process of creating a prototype of this

application is described in this article.

Figure 4: Resultant simulation of queuing

 proto the article.

REFERENCES

Zheng, Hong, et al. A Primer for Agent-Based

Simulation and Modeling in Transportation

Applications. No. FHWA-HRT-13-054. 2013

KAVIČKA, A., KLIMA, V., ADAMKO, N. Agent-

based simulation of transportation nodes, EDIS,

University of Žilina, 2005 (in Slovak), ISBN 80-

8070-477-5.

JENNINGS, N. R., WOOLDRIDGE, M. Agent-Oriented

Software Engineering. Artificial Intelligence. 2000,

roč. 117, s. 277–296.

ADAMKO, N. Agentovo orientovaná simulácia

zložitých obslužných systémov. Habilitation thesis,

Žilina, Faculty of management science and

informatics, University of Žilina, 2013.

KORMANOVA, A., VARGA, M., ADAMKO, N.

Hybrid model for pedestrian movement simulation.

In: The 10th International Conference on Digital

Technologies 2014 [online]. 2014 [cit. 2015-06-

09]. DOI: 10.1109/dt.2014.6868707.

KOCIFAJ, M., ADAMKO, N. Modelling of container

terminals using two-layer agent architecture.

In: 2014 IEEE 12th International Symposium on

Applied Machine Intelligence and Informatics

(SAMI) [online]. 2014 [cit. 2015-06-09]. DOI:

10.1109/sami.2014.6822416.

FIKEJZ, J. - ŘEZANINA, E. Simulation of localization

rolling stock within the railway network model

utilizing agent-based simulation. In The European

Simulation and Modeling Conference 2013.

Ostend: EUROSIS-ETI, 2013. s. 290-296. ISBN

978-90-77381-79-3.

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

119

