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ABSTRACT 
We present a mixed integer linear programming 
formulation with an application for the optimal train 
distribution problem. The objective was to assign trains 
to metro routes so that the sum of deficit capacity costs 
(i.e., passengers that cannot be carried) and the 
overcapacity costs (i.e., the number of empty seats) in a 
metro transportation system were minimized. We 
selected Mexico City’s Metro Transportation System 
(MTS) as a study case. We narrowed our model to the 
operation and demand of peak hours. First, we solve a 
deterministic model using mean values for the 
parameters. Then, we built a two-stage stochastic model 
to include uncertainty into the parameters and we 
calculated estimates for mean and variance using 
maximum likelihood estimation. We discuss the results 
and compare the solutions for the four cases that we 
created. Finally, we propose an extension of the model 
that includes a time index. 
 
Keywords: stochastic programming, train distribution, 
transportation system, integer programming 
 
1. LITERATURE REVIEW 
Train distribution is related to frequency optimization 
since there is a direct connection between number of 
trains and frequencies of rides. The use of linear models 
for frequency optimization in transportation has been 
widely studied; Yoo (2010) proposed an approach for a 
multi-modal transportation in which the problem is 
divided into two sub-problems, in the first they solve 
the route-selection problem from the passenger 
perspective, and for the second they find the optimal 
frequency from the operator perspective. Zhou et al. 
(2005) proposed a bi-level formulation in which the 
expected profit is maximized. Fernandez et al. (2008) 
proposed a methodology to deal with public 
transportation design and showed an application for the 
city of Santiago, Chile. Something that has been 
disregarded is the trade-off associated with non-uniform 
demand along the route, i.e., to have a higher demand in 
some particular stations in one direction than the rest of 
the line. We believe that measuring the overcapacity 
under such conditions would be useful for policy 
decision-making. 
 
 

2. INTRODUCTION 
Collective transport systems are a better mobility 
solution for medium to large distances than private cars 
within highly populated metropolis. Mexico City has 
more than 10 million people that are moving every day 
within the city. Its Metro Transport System (MTS) 
moves more than five million passengers every day. A 
key factor in the operation is the correct distribution of 
trains to meet the demand at every station; however, 
there is a fixed capacity in the whole system. So, the 
problem is how to assign trains to subsystems (i.e., 
routes) so that the operation is optimized. 
We would like to present the following example to 
show the approach we used for the train distribution 
problem. Presented here is a five-station metro route 
with uneven flows between stations/directions in the 
studied time period. 
 

 
Figure 1. Example of a five-station metro route 

 
Demand from station one to five is higher than that in 
the opposite direction (i.e., from five to one), also, 
stations two and three have a higher demand. This 
situation is common in transportation systems: to have a 
high demand of service in one direction in a certain 
period while the opposite direction has a low demand. 
One question that arises from the example: is it worthy 
to have a high and fixed capacity in the whole route just 
to meet the demand of two stations?  Although it is true 
that the passenger flow changes over the day, the traffic 
demand is always concentrated in a subset of stations. 
As described above, we find compelling the formulation 
of a model that not only penalizes the unsatisfied 
demand at some station, but also the capacity not used 
on the rest. We believe this could be an interesting 
approach to evaluate the tradeoffs of having a fixed 
capacity on both sides of the route. All the routes we 
considered (routes 1 to 9) have trains with the same 
characteristics (e.g. pneumatic wheels, size, etc.). 
 
3. METHODOLOGY 
We followed the next methodology: 
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Figure 2. Methodology to address the optimal 
distribution problem 
 
3.1 Data Collecting 
Inflow passenger data per station and the number of 
trains were obtained from the Mexico’s MTS site, 
which has data from 2012 to date, and it is available for 
public consultation. 
 
3.2 Model Formulation 
The process of model formulation started from the 
creation of one simple model and gradually we added 
more variables. First we present the deterministic 
model: objective function, decision variables, etc. 
 
3.3 Stochastic model 
We show the parameters that have uncertainty and the 
procedure we followed to handle their randomness 
Passenger inflow per station and service capacity were 
the main two parameters we estimated. Below we 
comment about the process and assumptions made. 
 
3.4 Scenarios 
For the stochastic model, we tried different number of 
scenarios. Using Monte Carlo sampling method we 
produced realization of the demand series. Since we are 
interested in the trade-offs between satisfying demand 
and overcapacity service we created four cases: the first 
two consist in finding the optimal distribution without 
penalizing the exceeding capacity; the other two, do 
penalize the exceeding capacity.  The scenarios are 
explained in detail below. 
 
3.5 Verification & Solution 
In this step we first selected the software to write and 
solve the model. We chose Matlab due to its easy code 
writing and data retrieval utilities. 
 
3.6 Result analysis 
We discuss and compare the optimal solutions for both 
of the models, the deterministic and the stochastic. 
 
 

4. MODEL FORMULATION 
 
4.1 Decision variables 
xijk is the number of passengers being transported from 
station i to station j on route k in the given time period.  
It includes the passengers from the previous station (i-1) 
plus the current passengers at station i. 
vk is the number of trains assigned to k route. It is the 
main decision variable since it determines the 
distribution of trains over the routes. It is an integer 
variable. 
 
4.2 Auxiliary variables 
dijk is the number of passengers not served at station i in 
direction to station j on route k in the given time period. 
It is used for quantifying the deficit of the service. 
eijk is the number of empty seats at station i to station j 
on route k in the given time period. It is an auxiliary 
variable used to quantify the exceeding capacity. 
 
4.3 Objective function 
We used a linear cost function 
 

          (1) 

 
The objective function minimizes the total sum of the 
deficit capacity cost (π1) and the exceeding capacity 
cost (π2) occurred at every station and route of the 
metro system. By penalizing both the deficit (dijk) and 
the overcapacity (eijk) we are forcing the model to find 
an optimal tradeoff between exceeding the demand and 
exceeding the capacity. We set π1=1 and π2=0 for A 
and B scenarios, and π1=6 and π2=1 for III and IV 
scenarios, respectively. 
 
4.4 Restrictions 
The first set of restrictions is in the form 
 

   (2) 
 
The equation states that the quantity of passengers 
arriving at station i (represented by bijk) plus a 
percentage pij of passengers travelling from the 
previous station (i-1) is equal to the number of 
passengers being transported from i to j plus the deficit 
variable dijk. 
 

                                               (3) 
 
Equation (3) ensures that the rate of passengers 
travelling from i to j at k route is less or equal to the 
capacity of the train (Ck) times the number of trains 
(vk). We show how Ck is obtained below. 
 

                                        (4) 
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Equation (4) assigns the exceeding capacity to the 
overcapacity variable (eijk). From the restriction (3) we 
know that xijk is less or equal to Ck*vk, so eijk will be 
zero or positive. 
 

                                                                    (5) 

 
Restriction (5) states that the sum of all assigned trains 
must be equal the total number of trains available (T). 
 
4.5 Deterministic model 
The complete deterministic model is 
 

 

 
The deterministic model has a total of 819 variables and 
811 constraints. 
 
5. STOCHASTIC MODEL 
The deterministic model does not consider that demand 
and capacity are variable. Demand in one day may be 
different from that on another day. The capacity of the 
route depends on the number of train loops, which are 
not always the same due to technical reasons or delays. 
Stochastic models introduce randomness into 
parameters. Below we discuss how uncertainty was 
introduced into the model’s parameters. 
 
5.1 Demand (bijk) 
This parameter represents the number of passengers at 
station i moving to station j along k route. The first step 
was to calculate the mean and standard deviation. 
From the historical data, we did an exploratory 
graphical analysis. We discovered a positive trend in the 
demand series (Figure 3). We removed the trend by 
differentiating one time (Figure 4). 
The histogram of the differentiated series resembles a 
Normal distribution (Figure 5), so we decided to assume 
the demand behaves in that manner. We calculated an 
estimate for the mean and variance using Maximum 
Likelihood estimation (See Appendix B) for every 
route. 
Then, we studied the correlation in the series using the 
sample autocorrelation function and the sample partial 
autocorrelation function. We noticed that the series cuts 

off after lag 1 in the autocorrelation function, implying 
that there is a negative correlation only between time t 
and t+1 (Figure 6). The partial autocorrelation function 
shows that the process is dying off, which confirms a 
negative correlation (Figure 7). 
 

 
Figure 3. Weekly passengers demand from January 
2012 to December 2013 
 

 
Figure 4. Differentiated demand series 

 

 
Figure 5. Histogram of the demand after differentiating 

 
Now, we have data about the number of passengers 
entering at station i in route k, but we do not know how 
many of them are moving in which direction. We 
determined these two numbers by using the linear 
combination: 
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bik is the known number of passenger inflow in the 
station i, route k; bijk is the portion of bik moving in the 
direction of j; bhi, is that moving in the direction of h. 
We assume lambda decreases linearly from 1 in station 
i=1, to 0 in station i=n (terminal). 
 

 
Figure 6. Sample auto correlation function 

 

 
Figure 7. Sample partial autocorrelation function 

 
5.2 Changes in the objective function 
Following the formulation of the two-stage stochastic 
programming, we added two more variables δ ijk

s and 
ε ijk

s to absorb the deficit or surplus of demand for every 
scenario s. We penalized those values with the same 
weight we gave to the deterministic variables for deficit 
(π1) and surplus (π2) times 1/S; S is the total number of 
scenarios: 
 

 

 
Since it is a minimization model, these costs have a 
positive sign on the objective function. 
 
5.3 Changes in restrictions 
The only set of restriction that changed is the first one. 
We added the two-stage variables of deficit (δ ijk

s) and 
surplus (ε ijk

s): 
 

 

 
5.4 Service Capacity (Ck) 
This parameter represents the capacity of service per 
unit of time and per train. In this work we considered 
the unit of time as one hour, so for every station we 
calculated Ck by a function of the length and the 
number of stations. A comparison was made between 
the results obtained using this formula and those 
provided by the City Metro – Map & Route Planner 
App (See Appendix A). 
The time of one circuit loop for every train is 
 

 
 
where s is the number of stations and l is the total length 
of the route in meters. α and β are random variables for 
waiting time and speed, respectively. We assume they 
have a uniform distribution over the interval [0.8µ, 
1.2µ] where µ is the mean value. We also assume that 
the mean value for α is 1.5 minutes, and that for β is 
35.5 km/hour. So, we calculate the expected time for 
every route and then, use that value to obtain the 
expected capacity service: 

                                                   (6) 

 
So, equation (6) is the formula to calculate the expected 
time of one circuit for every route k. 
Now we proceeded to calculate Ck and do the 
dimensional analysis: 
 

 

 
Finally, we have 
 

                                                       (7) 

 
The capacity (tck) is 1,020 passengers per train in routes 
four and six, and 1,530 for the rest of the routes. The 
results are shown in Table 1. 
We used the Ck

0.98 value for restrictions 2 and 3, to 
ensure the solution will satisfy the capacity requirement 
98 out 100 cases. 
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Table 1. Summary data of the Ck (capacity) 

Route Stations 
s 

l  
(m) tk 

Ck  
(mean) 

Ck
0.98 

(98% 
conf.) 

1 20 16,804 116.8 786 646 
2 24 20,863 142.5 644 529 
3 21 21,428 135.4 678 556 
4 10 9,513 62.1 984 809 
5 13 14,435 87.8 1,045 857 
6 11 11,434 71.6 854 701 
7 14 17,011 99.5 923 756 
8 19 17,679 116.7 786 646 
9 12 13,033 80 1,147 940 

 
 
5.3 Two-Stage Stochastic Model 
The complete two-stage stochastic model is 
 

 
The number of variables and restrictions depends on the 
number of scenarios; for the largest case we tried (35 
scenarios), it has a total of 19,719 variables and 9,991 
restrictions. 
 
6. SCENARIOS 
We used Monte Carlo sampling method to produce s 
scenarios (realizations), each of them with probability 
of 1/S. We assumed the demand has a normal 
distribution; the mean and the variance were obtained 
from the historical data (see Appendix B). We solved 
the model for 2, 5, 10, 20, 25, 30, and 35 scenarios. 
From the tenth onwards, the optimal solution did not 
change.  
In order to compare the solutions of the deterministic 
and stochastic models, we produced four cases: 
 

1. Deterministic model; assigning π1=1, π2=0, 
and average values in demand and service 
capacity. 

2. Stochastic model; assigning π1=1, π2=0, and 
using 35 scenarios for the demand and 98% of 
confidence in service capacity. 

3. Deterministic model; assigning π1=6, π2=1, 
and average values in demand and service 
capacity. 

4. Stochastic model; assigning π1=6, π2=1, and 
using 35 scenarios for the demand and 98% of 
confidence in service capacity. 

 
In III and IV cases we are establishing that one 
occupied seat is six times more important than one 
available space (i.e., π1=6 and π2=1).  
 
7. RESULTS  
The results for the optimal train distribution are shown 
in Table 2. To make comparable the solutions, we 
associated a cost for the unmeet demand (Table 3). The 
total cost is equal to the sum of the costs: c*(capacity-
demand), for every route, we set c=1. 
 

Table 2. Distribution of trains for every route 

Route  
Current 

Optimal solution (trains) 
I II III IV 

1 30 29 29 35 24 
2 24 37 42 38 40 
3 29 33 33 30 28 
4 8 4 3 4 9 
5 15 12 7 9 10 
6 9 10 5 9 13 
7 19 12 12 15 15 
8 18 18 18 15 15 
9 17 14 20 14 15 

 
 
 

Table 3. Passengers capacity per hour 

Route Optimal solution (passengers) 
I II III IV 

1 22,794 22,794 27,510 18,864 
2 23,828 27,048 24,472 25,760 
3 22,374 22,374 20,340 18,984 
4 3,936 2,952 3,936 8,856 
5 12,540 7,315 9,405 10,450 
6 8,540 4,270 7,686 11,102 
7 11,076 11,076 13,845 13,845 
8 14,148 14,148 11,790 11,790 
9 16,058 22,940 16,058 17,205 

Cost 65,725 66,102 65,977 64,163 
 
We can see that the minimal cost occurs on the case IV, 
i.e., solving the two-stage stochastic model for 35 
scenarios. 
The mayor changes are in the route 2 and seven. All the 
cases have at least 13 more trains in the former and at 
least four less in the latter. The current train distribution 
seems to be uneven in regards to meeting the demand. 
 
8. CONCLUSIONS 
In this paper we proposed a two-stage stochastic mixed 
integer program to assign train to routes in a 
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transportation system, minimizing a cost function, 
which penalizes both, deficit and exceeding capacity. 
We found the function to be a compelling idea to assess 
the trade-offs associated to a non-uniform distributed 
demand in the system. 
 
9. EXTENSIONS OF THE MODEL 
One problem with the proposed model is that it is based 
on hour-average operation parameters. If we add a time 
index to x, d and e variables, then we can change the 
size of the time interval and make it arbitrarily small to 
obtain a more accurate result; however, the number of 
variables increases notably. So, we have for the 
stochastic model: 
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APPENDIX A. TRAIN LOOP TIMES 
In Figure 8 we show a comparison between our formula 
tk and the times calculated by a commercial application. 
 

 
Figure 8. Comparison of one-loop times 

 
The highest relative difference is on route 4 where the 
formula estimation is 107% higher than the App’s. We 
believe that App predictions underestimate loop times 
in low-demand routes (4 to 7) possibly because it uses 

passenger demand to calculate the times and delays 
disregarding distance. 
 
APPENDIX B. MONTHLY AVERAGE DEMAND 
The estimates for mean and standard deviation were 
calculated from the historical data using the maximum 
likelihood estimation. The monthly results are shown in 
the following table: 
 

Table 4. Monthly mean and standard 
deviation  
Route Mean SD CV 

1 21,594,861 1,044,094 4.8% 
2 24,901,980 851,348 3.4% 
3 20,105,945 588,261 2.9% 
4 2,413,326 166,630 6.9% 
5 6,611,076 376,188 5.7% 
6 4,184,297 481,499 11.5% 
7 7,610,587 596,027 7.8% 
8 11,471,053 397,340 3.5% 
9 9,657,134 586,501 6.1% 

 
In the box plot of the differentiating total demand series, 
we can see that it is highly concentrated around the 
median. The interquartile range has length of 2.5 
millions, which represents approximately 28% of the 
range. It has long extreme values though. The median is 
around zero. Two outliers are shown in red. 
 

 
Figure 9. Boxplot of the observations after 
differentiating 
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