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ABSTRACT 

The paper deals with the comparison of selected 

optimization methods - Random Search, Hill Climbing, 

Tabu Search, Local Search, Downhill Simplex, 

Simulated Annealing, Differential Evolution, SOMA 

and Evolution Strategy – efficiency used for 

optimization of four selected testing functions. We 

tested these optimization methods on different 

dimensions of the search space to compare their 

efficiency of finding the global optimum in the search 

space.  

 

Keywords: simulation optimization, testing function, 

dimension of the search space  

 

1. INTRODUCTION 

Simulation optimization is one possible solution for 

solving an NP-hard problem. The simulation model is 

the modelled problem. The problem is to find suitable 

settings for the simulation model input parameters 

(input variables): 

 

   1,...,2,1,0:  njjx jX   (1) 

 

Where X denotes the concrete setting of the input 

parameters; jx  denotes the value of the j -th 

simulation model input parameter (first simulation 

model input parameter is indexed by 0 because the first 

item in the list is commonly labelled by 0 in 

programming language); n denotes the number of the 

simulation model input parameters – dimension of the 

search space. Each possible solution – candidate 

solution (the concrete setting of the input 

parameters X ) is a representation of the element of the 

search space X
~

. The dimension of the search n  space 

equals the number of simulation model input 

parameters. The search space in the case of Box 

Constraint can be formulated as follows: 

   1,...,2,1,0:,
~ 1

1






njjbaX
n

j

jj  (2) 

 

Where ja denotes the lower bound of the j -th 

simulation model input parameter; jb denotes the lower 

boundary of the j -th simulation model input 

parameter. We should also say that we obtain one or 

more simulation model outputs after the simulation run 

(the result of simulation experiment with a concrete 

setting) which are inputs of the objective function. The 

candidate solution in the search space can be evaluated 

by the objective function value  XF  which represents 

the quality of candidate solution regarding the specified 

objective. It is clear that if the number of simulation 

model input increases, the search space contains a large 

number of possible solutions.  

The basic problem of finding an optimal/suboptimal 

feasible solution (respecting the defined model 

constraints) can be formulated as follows: 

      XFFXF
X

~
:

~
minarg ~ 


XXXXXX

X


 (3) 

 

where X


 denotes the global minimum of the objective 

function;  XF  denotes the objective function value of 

the candidate solution – the range commonly includes 

real numbers; X
~

  denotes the Search space.  (Raska & 

Ulrych, 2013) 

The next figure (Figure 1) shows the possible 

optimization process if the objective function is 

minimized. We can see that the objective function has a 

local and global optima if the objective function is 

maximized – problem of premature convergence. 

Premature convergence – the global optimization 

process can converge prematurely to a local optimum 

because there is no opportunity to examine other areas 

of a space of possible solutions (currently, only a 

particular area is examined). Another area of search 

space exists (which is not currently known) that 

contains a better solution than the currently known 

solution. (Weise, 2009). Other basic problems of the 

optimization methods used in global optimization are 

(Rockwell Automation, 2014): The whole search space 

cannot be examined (testing all possible solutions) 

because of large demands on computer memory, or time 
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spent on examining the space – nondeterministic 

polynomial problems; the landscape of objective 

function – multimodal objective function – premature 

convergence, objective function smoothness landscape 

etc.; multi-objective optimization; identification of a 

suitable method for handling the constraints; 

specification of appropriate termination criteria; setting 

the parameters of the optimization method, etc. 

 

  
Figure 1: Possible Optimization Process - Objective 

Function Minimization 

 

The whole space X contains feasible and non-feasible 

possible solutions when some constraints are specified 

e.g. Box Constraints. The green area denotes the 

feasible possible solutions (axes in the search space are 

indexed from index 1, because it is not common to mark 

first axes by the index 0. Indexing with index 0 will be 

used in mathematical notation or in the algorithm). If 

this candidate solution is generated by the optimization 

method then it is accepted and evaluated by the 

objective function value regarding the simulation model 

output. There are different variants for generating 

candidate solutions: neighbourhood relation which 

allows us to define the set of feasible candidate 

solutions neighbouring a selected candidate solution 

through a series of transformations of selected candidate 

solution. Condition of availability is important for a 

definition of neighbourhood relations , which requires 

that every feasible solution has to be reached from any 

other feasible solution by sequential application of 

neighbourhood relation (Stefka, 2005), generating a 

random candidate solution using different distribution, 

genetic operators – e.g. mutation, crossover (Mitchell, 

1996; Miranda, 2008; Hynek, 2008), etc.  

The process of generating new initial candidate 

solutions in the specified (red) area is shown in Figure 

1. 

Optimization methods usually generate more than one 

candidate solution using the iterations in cycle. These 

candidate solutions are sequentially placed in the list in 

the order which they were generated (in the context of 

evolutionary algorithms this list is represented by the 

population - generation). This candidate solution 

(individual) in the population can be formulated as 

follows: 

 

   1,...,2,1,0:  miiiLiX   (4) 

 

Where 
iX denotes i-th candidate solution – individual; 

i  denotes the index of candidate solution; L  denotes 

the list of candidate solutions - population; m denotes 

the number of generated candidate solutions - the 

population size. 

The optimization method selects the best candidate 

solution from this generation (population) regarding the 

objective function values of candidate solutions. This 

best candidate solution from the 0-th initial generation 

becomes the centre of area where other candidate 

solutions can be generated. These processes are 

repeated until some of the termination criteria are 

satisfied. If the termination criterion is met the 

optimization method returns one or more best found 

solutions.  

Optimization method can generate the non-feasible 

solution. Optimization method can use the repair 

algorithms and special operators (Hynek, 2008). 

Mirroring of non-feasible solution into a feasible region 

is shown in the next figure. The non-feasible solution is 

flipped into the feasible region around the respective 

edge of the search space at a distance of this non-

feasible solution to the edge of the search space (Tvrdik, 

2010).  

 

2. SELECTED OPTIMIZATION METHODS 

We have transformed some of the selected optimization 

methods to use the principle of evolutionary algorithms. 

Different variants of selected optimization methods 

obtained from a literature review were united into the 

algorithm.  

 

2.1. Random Search 

A new candidate solution is generated in the search 

space with uniform distribution (Monte Carlo method). 

This method is suitable for cases where the user has no 

information about the objective function type. The user 

is able to perform a number of simulation experiments. 

 

2.2. Downhill Simplex 

This method uses a set of n + 1 linearly independent 

candidate solutions (n denotes search space dimension) 

- Simplex. The method uses four basic phases – 

Reflection, Expansion, Contraction and Reduction. 

(Tvrdík 2004; Weise 2009) 

 

2.3. Stochastic Hill Climbing  

Candidate solutions are generated (populated) in the 

neighbourhood of the best candidate solution from the 

previous population. Generating new possible solutions 
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is performed by mutation. This method belongs to the 

family of local search methods. 

 

2.4. Stochastic Tabu Search  

The newly generated candidate solution is an element of 

the Tabu List during the optimization process. This 

candidate solution cannot be visited again if the 

aspiration criterion is not satisfied (this feature prevents 

the method from becoming stuck at a local optimum). 

The method uses the FIFO method of removing the 

candidate solution from the Tabu List. The user can set 

whether the new candidate solution is generated using 

mutation of the best candidate solution from the 

previous population or the new solution is generated 

using mutation of the best found candidate solution. 

(Monticelli, Romero and Asada 2008; Weise 2009) 

 

2.5. Stochastic Simulated Annealing 

A candidate solution is generated in the neighbourhood 

of the candidate solution from the previous iteration. 

This generating could be performed through the 

mutation of a randomly selected gene or through the 

mutation of all genes. Acceptance of the worse 

candidate solution depends on the temperature. 

Temperature is reduced if the random number is smaller 

than the acceptance probability or the temperature is 

reduced if and only if a worse candidate solution is 

generated. If the temperature falls below the specified 

minimum temperature, temperature is set to the initial 

temperature. (Monticelli, Romero and Asada 2008; 

Weise 2009) 

 

2.6. Stochastic Local Search  

A candidate solution is generated in the neighbourhood 

of the best candidate solution. 

 

2.7. Evolution Strategy 

This optimization method uses Steady State Evolution – 

population consists of children and parents with good 

fitness. A candidate solution (child) is generated in the 

neighbourhood of the candidate solution (parent) and it 

is based on the Rechenberg 1/5th-rule. The population 

is sorted according to the objective values (Rank-Based 

Fitness Assignment). The optimization method uses 

Tournament selection. (Koblasa, Manlig and Vavruska 

2013; Miranda 2008; Tvrdik 2004) 

 

2.8. Differential Evolution 

Selection is carried out between the parent and its 

offspring. The offspring is created through a crossover 

between the parent and the new candidate solution 

(individual) which was created through the mutation of 

four selected individuals and the best one selected from 

the population – BEST method. The optimization 

method uses General Evolution and the Ali and Törn 

adaptive rule. The user can define the probability of a 

crossover between the new candidate solution and the 

parent. (Tvrdík 2004; Wong, Dong, 2008) 

 

2.9. SOMA 

SOMA is based on the self-organizing behaviour of 

groups of individuals in a “social environment”. It can 

also be classified as an evolutionary algorithm, despite 

the fact that no new generations of individuals are 

created during the search. Only the positions of the 

individuals in the search space are changed during a 

generation, called a “migration loop”. Individuals are 

generated at random according to what is called the 

“specimen of the individual” principle. The specimen is 

in a vector, which comprises an exact definition of all 

these parameters that together led to the creation of such 

individuals, including the appropriate constraints of the 

given parameters. SOMA is not based on the 

philosophy of evolution (two parents create one new 

individual – the offspring), but on behaviour of a social 

group of individuals.  (Zelinka, 2004) 

 

3. TESTING FUNCTIONS 

Considering the time requirements of testing the 

behaviour of optimization methods (according to 

different settings) (Raska & Ulrych, 2015) we substitute 

the testing on the simulation models (and its objective 

function) by a different testing function. Implemented 

optimization methods were tested on four standard 

testing functions - domain of the function is a defined 

step for each axis – substitution of the simulation model 

input parameter (discrete) values of the discrete event 

simulation model. All testing functions were 

minimized.  

 

3.1.  De Jong´s Function 

A convex and unimodal testing function. The function 

definition:  (Pohlheim, 2006) 

 

 

 

 44,30,20,10,2,:1

  ,3030 001.0
01.0
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jj
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 (5) 

 

where  XF  denotes the objective function; j denotes 

index of control; n denotes the dimension of the search 

space - the dimension of the search space is 2; 10; 20; 

30; 44; xj
 denotes the value of control - testing functions 

(except Michalewicz function) input parameters values 

are in the range from -30 (lower boundary) to 30 (higher 

boundary). We substitute the testing on the simulation 

models by testing on the testing function hence we 

defined the smallest step that can be performed by the 

optimization methods is 0.01 for each axis in the search 

space (xj mod 0.01=0). The input parameters are not 

continuous. This resolution represents 36,012,001 

possible solutions (combinations of testing function 

input parameters) in a two dimensional search space and 

the same resolution represents 1.7452×10166 possible 

solutions in a forty-four dimensional search space. We 

chose a forty-four dimensional search space regarding 

the tested discrete event simulation model of automated 
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guided vehicle transportation with forty-four simulation 

model input parameters to see the optimization 

methods’ efficiency. To achieve a better idea of the 

testing functions landscapes the continuous testing 

functions are shown in the following four figures. De 

Jong´s continuous function is shown in Figure 2.  

 

 
Figure 2: De Jong´s Function 

 

3.2. Rosenbrock´s Function 

Rosenbrock´s (Rosenbrock's valley, Rosenbrock's 

banana) function is unimodal and non-convex testing 

function. The function definition:  (Pohlheim, 2006) 
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The Rosenbrock´s continuous function is shown in 

Figure 3. 

 

 
Figure 3: Rosenbrock´s Function 

 

3.3. Michalewicz Function 

Michalewicz function is a multimodal test function (n! 

local optima). The parameter m defines the "steepness" 

of the valleys or edges. Larger m leads to a more 

difficult search. For very large m the function behaves 

like a needle in a haystack (the function values for 

points in the space outside the narrow peaks give very 

little information on the location of the global 

optimum). (Pohlheim 2006) 
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We selected 5m  in our simulation model. The 

Michalewicz continuous function is shown in Figure 4. 

  

 
Figure 4: Michalewicz Function 

 

3.4. Ackley´s Functions 

Ackley´s function is a multimodal test function. This 

function is a widely used testing function for premature 

convergence.  (Tvrdik, 2010) 
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The Ackley´s continuous function is shown in Figure 5. 

 

 

Figure 5: Ackley´s Function 

 

4. OPTIMIZATION EXPERIMENTS 

We tested optimization methods on the testing functions 

where the dimension of the search space was 2; 10; 20; 

30; 44. We specified the same conditions which had to 

be satisfied for each optimization method, e.g. the same 

termination criteria: The optimization method could 

perform a maximum of 20,000×n (parameter n denotes 

the dimension of the search space) simulation 

experiments to find the global optimum in the search 

space (Tvrdik, 2010) or the termination criterion was 

met if the optimum was found - VTR (value to reach); 

the same search space where the optimization method 

can search for the global optimum, etc. If the 

optimization method has the same parameters as 
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another optimization method, we set up both parameters 

with the same boundaries (same step, lower and upper 

boundaries). 

We performed optimization experiments with different 

optimization method settings to find a suitable setting, 

but the analysis of these results is not the purpose of this 

paper.  

We evaluated these optimization experiments with 

different settings - series. These series we replicated 

several times to reduce the random behaviour of the 

tested optimization methods. The following charts show 

the average optimization method success of finding 

optimum (suboptimum if the optimum was not found).  

The first criterion f1 is the value of not finding the 

known VTR (value to reach). This value is expressed by 

pseudopascal code: 

 

 
Function whose output is normalized scalar value in 
the range . This value represents the failure 
of finding global optimum by the optimization method 
in a particular series – value minimization 

Input: :  The list of found optima in each 
optimization experiment in the series  

Input: :  Global optimum  in the search space 

Input: :  Tolerated deviation from the value of 
the objective function value of global 
optimum 

Data: :   Objective function value 

Data: :  Counter of successful finding 
optimum 

Output: : Standardized scalar value  

 
1  begin 

2   ;   

3   for   do  

4    if  then  

5      ; 
(*Optimum or acceptable candidate solution 
was found *) 

6   result  ;   

(*standardization - % share of unsuccessful 
series*) 

7  end; 

  
Figure 6: Pseudopascal Algorithm of First criterion – 

Finding the Global Optimum or Suboptimum  

 

If the failure is 100[%] the first criterion equals 1 

therefore we try to minimize this criterion. Average 

Method Success of Finding Optimum can be formulated 

as follows:  

 

 % 1001 1
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  (8) 

 

where i denotes the index of one series, 
i

f1
 denotes the 

value of the first criterion (Optimization method success 

– the best value is zero), s denotes the number of 

performed series. 

The series were also evaluated regarding specified 

tolerance between the best optimum (suboptimum) 

found in the series and the specified parameter  . We 

initially specified 001.0 . The optimization method 

had to find the candidate solution whose objective 

function value is nearly the same as the objective 

function value of global optimum in the search space 

(the tolerance equals 0.001).  This aspect is unfounded 

in practice. Hence we specified the tolerance to one 

percent of the difference between the objective function 

value of the global maximum and the objective function 

value of the global minimum of the search space: 

   
100

XX


FF 
   (9) 

 

Where   denotes the difference between the objective 

function value of the global maximum and the objective 

function value of the global minimum of the search 

space;  X


F  denotes the objective function value of the 

global maximum of the search space;  X


F  denotes the 

objective function value of the global minimum of the 

search space. 

The following figures show the average optimization 

methods success of finding optimum (suboptimum – the 

best found candidate solution of the series). Chart 

values of optimization method success are maximized.   

We set up the termination criterion in such a manner 

that the optimization method can perform a maximum 

of 20,000×n (parameter n denotes the dimension of the 

search space) simulation experiments for each series to 

find the global optimum in the search space. The other 

part of termination criterion is the value to reach 

condition¨- VTR. We tested the optimization method in 

two; ten; twenty; thirty; forty-four-dimensional search 

space. We specified two different settings of acceptable 

tolerance (ε) of best found candidate solution testing 

(objective) function value from the objective function 

value of global optimum (ε = 0.001). If the global 

optimum of testing function is not known (e. g. 

Michalewicz testing function) the optimum is 

represented by the best found candidate solution of all 

performed simulation experiments performed on testing 

function.  
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4.1. Two-Dimensional Search Space 

We started our simulation optimization experimentation 

in a two-dimensional search space where tolerated 

deviation from the value of the objective function value 

of global optimum is ε = 0.001. Figure 7 shows the 

average success of finding optimum. All tested 

optimization methods are successful (except Random 

Search) when the testing (objective) function landscape 

is not complicated – De Jong. Gradient optimization 

methods (Local Search, Hill Climbing and Tabu Search) 

have a problem to find the optimum if the testing 

function is multimodal – Ackley´s testing function.  

 

 

Figure 7: Average Optimization Method Success of 

Finding Optimum (Suboptimum) - Two-Dimensional 

Search Space – each series contains 40,000 simulation 

experiments; ε = 0.001 

 

 
Figure 8: Average Optimization Method Success of 

Finding Optimum (Suboptimum) - Two-Dimensional 

Search Space – each series contains 40,000 simulation 

experiments; ε = 1 % of objective function value range 

 

If the tolerance is set to one percent of the difference 

between the objective function value of the global 

maximum and the objective function value of the global 

minimum of the search space the optimization methods 

have no problem to find the global optimum of the 

testing function in two-dimensional search space - 

Figure 8. If the function landscape is complicated 

(especially Ackley´s function and also Michalewicz) the 

gradient methods are not effective.  

4.2. Ten-Dimensional Search Space 

Other optimization experiments are performed in a 

ten-dimensional search space. The finding of global 

optimum of testing functions is much more difficult - 

Figure 9. When the testing function landscape is not 

complicated – De Jong´s convex and unimodal function 

– some methods - Downhill Simplex, Differential 

Evolution, Evolution Strategy and eventually SOMA 

Strategy - are more effective than gradient based 

methods - Local Search, Hill Climbing and Tabu 

Search.   

 

 

Figure 9: Average Optimization Method Success of 

Finding Optimum (Suboptimum) - Ten-Dimensional 

Search Space – each series contains 200,000 simulation 

experiments; ε = 0.001 

 

 
Figure 10: Average Optimization Method Success of 

Finding Optimum (Suboptimum) - Ten-Dimensional 

Search Space – each series contains 200,000 simulation 

experiments; ε = 1 % of objective function value range 

 

If the user accepts one percent of the difference between 

the objective function value of the global maximum and 

the objective function value of the global minimum of 

the search space, the optimization methods have no 

problem to find the global optimum of simple testing 

function – De Jong´s and Rosenbrock´s testing function 

- Figure 10. If the testing function landscape is 

complicated – Michalewicz and Ackley´s testing 

function – gradient methods have a problem with 

finding the optimum.  
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4.3. Twenty-Dimensional Search Space 

The problem of finding optimum in the search space 

increases with the higher number of the dimension of 

the search space. We could see that the optimization 

method has a problem with a ten-dimensional search 

space - Figure 9. Gradient based optimization methods 

are not effective. Local Search reaches 6.6 % success of 

finding optimum in the search space of De Jong´s 

testing function - Figure 11. Other gradient methods - 

Hill Climbing and Tabu Search - reach almost the same 

2.3 % value of success of finding optimum in the search 

space of De Jong´s function.  

 

 
Figure 11: Average Optimization Method Success of 

Finding Optimum (Suboptimum) - Twenty-

Dimensional Search Space – each series contains 

400,000 simulation experiments; ε = 0.001 

 

If we compare the efficiency of finding optimum in all 

searched search spaces of all testing functions when the 

epsilon is ε = 0.001 we can say that we should favour 

SOMA and Differential Evolution optimization 

methods. SOMA is another variation of the Differential 

Evolution methods.   

 

 
Figure 12: Average Optimization Method Success of 

Finding Optimum (Suboptimum) - Twenty-

Dimensional Search Space – each series contains 

400,000 simulation experiments; ε = 1 % of objective 

function value range 

 

If we increase the tolerated deviation ε all tested 

optimization methods (except Random Search) can find 

the optimum in the search space of simple testing 

function – De Jong´s and Rosenbrock´s testing function 

– Figure 12. Only two methods - Simulated Annealing 

and SOMA - are less successful. Their average 

optimization method success of finding optimum varies 

between 66 % and 77%.  

 

4.4. Thirty-Dimensional Search Space 

Differential Evolution is very successful when we 

optimize De Jong´s thirty-dimensional search space - 

Figure 13.  

 

 
Figure 13: Average Optimization Method Success of 

Finding Optimum (Suboptimum) - Thirty-Dimensional 

Search Space – each series contains 600,000 simulation 

experiments; ε = 0.001 

 

After comparing all charts representing the average 

optimization methods success we can say that the 

Differential Evolution is very effective in the case of 

our tested optimization methods. When ε equals 1 % of 

objective function value range all optimization methods 

are able to find the optimum in the simple testing 

function – De Jong´s and Rosenbrock´s function - with 

more than 60 % certainty - Figure 14.  

 

 
Figure 14: Average Optimization Method Success of 

Finding Optimum (Suboptimum) - Thirty-Dimensional 

Search Space – each series contains 600,000 simulation 

experiments; ε = 1 % of objective function value range 
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SOMA, Differential Evolution, eventually Downhill 

Simplex and Simulated Annealing are able to find the 

optimum if the testing function landscape is 

complicated – multimodal test function.    

 

4.5. Forty-Four-Dimensional Search Space 

Differential Evolution is also very successful when we 

want to find the optimum of De Jong´s 

thirty-dimensional search space. Compared to 

thirty-dimensional search space Evolution Strategy is 

not able to find the optimum in forty-four dimensional 

search space of De Jong´s testing function - Figure 15.  

 

 
Figure 15: Average Optimization Method Success of 

Finding Optimum (Suboptimum) - Forty-four-

Dimensional Search Space – each series contains 

880,000 simulation experiments; ε = 0.001 

 

Gradient based methods are not effective in the case of 

complicated testing functions with higher dimensions. 

These methods are useful for finding the optimum of a 

simple testing function landscape. Differential 

Evolution is successful optimization for optimization of 

different dimensional search spaces. This method is the 

best from our tested optimization methods.  

 

 
Figure 16: Average Optimization Method Success of 

Finding Optimum (Suboptimum) - Forty-four-

Dimensional Search Space – each series contains 

880,000 simulation experiments; ε = 1 % of objective 

function value range 

 

SOMA is derived from Differential Evolution. This 

optimization method is useful when we can accept 

deviation equals one percent of the difference between 

the objective function value of the global maximum and 

the objective function value of the global minimum of 

the search space. If we do not want to use the methods 

based on evolution processes we can use Downhill 

Simplex method or Simulated Annealing.   

 

4.6. Forty-Dimensional Search Space and 

Higher Number of Performed Simulation 

experiments 

 

Regarding the large number of possible candidate 

solutions in the search space we set up the termination 

criterion in a way that the optimization method can 

perform a maximum of 100,000×n (parameter n denotes 

the dimension of the search space) simulation 

experiments to find the global optimum in the search 

space. The next condition of termination criterion is to 

stop the optimization experiment if the optimum is 

found - VTR (value to reach). We tested the 

optimization method on a forty-dimensional search 

space (i. e. optimization method could perform a 

maximum of 4,000,000 simulation experiments in each 

series).  

 

 
Figure 17: Average Optimization Method Success of 

Finding Optimum (Suboptimum) - Forty-Dimensional 

Search Space – each series contains 4,000,000 

simulation experiments; ε = 0.001 

If we compare the previous chart (forty-four dimension 

search space – see Figure 15) of success of finding 

optimum to the following chart (Figure 17) where the 

same condition of ε = 0.001 is met, it is obvious that the 

success of finding optimum by SOMA strategy 

increased the most in the case of Michalewicz, De 

Jong´s and Ackley´s testing functions. Differential 

Evolution and Downhill Simplex also improve their 

efficiency of finding the optimum if the number of 

performed simulation experiments increases. 

If we compare the previous chart (Figure 16) of success 

of finding optimum to the following chart (Figure 18) 

where the same condition of ε = 1 % of objective 

function value range is met, we can say that the success 

of finding optimum of Simulated Annealing, 
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Differential Evolution and SOMA strategy particularly 

increased in the case of Ackley´s function. Downhill 

Simplex and SOMA method also increase their 

efficiency of finding optimum of Michalewicz function 

if the number of performed simulation experiments in 

one series is five times higher. Gradient based 

optimization methods like Hill Climbing and Local 

Search also increase their average success of finding 

optimum with the higher number of simulation 

experiments but not as much as previously mentioned 

methods.  

 

 
Figure 18: Average Optimization Method Success of 

Finding Optimum (Suboptimum) - Forty-Dimensional 

Search Space – each series contains 4,000,000 

simulation experiments; ε = 1 % of objective function 

value range 

 

5. SUMMARY 

The goal of the research is to compare selected 

optimization methods - Random Search, Hill Climbing, 

Tabu Search, Local Search, Downhill Simplex, 

Simulated Annealing, Differential Evolution, SOMA 

and Evolution Strategy – used for optimization of four 

selected testing functions. We tested these optimization 

methods on different dimensions of the search space to 

compare their efficiency of finding the global optimum 

in the search space.  

We substituted the testing on the discrete event 

simulation models by a different testing function – 

De Jong´s, Rosenbrock´s, Michalewicz and Ackley´s 

function. The dimension of the search space was 2; 10; 

20; 30; 44. We specified the same conditions which had 

to be satisfied for each optimization method. Regarding 

the large number of possible candidate solutions in the 

search space we set up the termination criterion in a 

way that the optimization method can perform a 

maximum of 20,000 × the dimension of the search 

space simulation experiments to find the global 

optimum in the search space. We also tested the 

optimization method if the number of performed 

simulation experiments in one series is five times 

higher. 

We initially specified tolerated deviation from the value 

of the objective function value of global optimum to a 

specified value ( 001.0 ). The optimization method 

had to find the candidate solution whose objective 

function value is nearly the same as the objective 

function value of global optimum in the search space.  

This aspect is unfounded in practice. Hence we 

specified the tolerance to one percent of the difference 

between the objective function value of the global 

maximum and the objective function value of the global 

minimum of the search space. The success of finding 

the optimum of the optimization method especially 

increases when we specified this new value of tolerated 

deviation (De Jong´s and Rosenbrock´s testing 

function).  

The success of heuristic optimization methods depends 

on the objective function landscape. Gradient based 

methods are not effective in the case of complicated 

testing functions with higher dimensions. These 

methods are useful for finding the optimum of simple 

testing function landscapes. Differential Evolution is 

successful optimization for optimization of different 

dimensional search spaces. This method is the best from 

our tested optimization methods. SOMA is also a useful 

method for optimization. This method is derived from 

Differential Evolution. 

Regarding the large time demands we would like to test 

the Client-Server architecture for parallel management 

of simulation experiments with different optimization 

methods settings. We also would like to test the use of a 

knowledge database to increase the speed of finding the 

optimum. The server sends the information about the 

setting of the optimization method parameters. The 

optimization experiment (simulation runs of a discrete 

event simulation model) is performed on the client PC. 

The client searches for the result of the simulation 

experiment with the same simulation model input 

parameters setting in the knowledge database before the 

simulation run. If this information is found, the client 

loads the objective function value from the database. If 

this information is not found, the client performs the 

simulation model run and the information about the 

simulation experiment (the setting of the simulation 

model input parameters and the objective function 

value) is sent to the knowledge database where this 

information is stored. 

We would like to test optimization method behaviour 

and optimization parameters setting on different 

simulation models (e. g. simulation model of internal 

company logistics; this discrete event simulation model 

contains multiple simulation model input parameters).  
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