
PERFORMANCE GAIN AND ENERGY SAVINGS USING MULTI-THREADED

SOFTWARE ON AN EMBEDDED ASYMMETRIC CHIP MULTIPROCESSOR

Michael Bogner(a), Christof Steps(b), Franz Wiesinger(c)

(a),(b),(c)University of Applied Sciences Upper Austria – Embedded Systems Design

Softwarepark 11, A-4232 Hagenberg, Austria

(a)michael.bogner@fh-hagenberg.at, (b)christof.steps@fh-hagenberg.at, (c)franz.wiesinger@fh-hagenberg.at

ABSTRACT

More powerful computers, as well as the rising costs for

energy require modern computing systems to be more

and more energy efficient. A modern approach in order

to solve this issue is the usage of multi-core processors

instead of single-core processing units.

This paper focuses on modern ARM multi-core

processors, which combine powerful and energy

efficient processor cores on a single chip, in order to

reduce power consumption and increase performance.

To verify how much energy can be saved and how

much performance can be gained by using multi-

threaded software, we have simulated a various number

of different calculation scenarios for a modern ARM

System-on-Chip.

The results of these simulations show notably, how

advantageous the usage of multi-core processors and

power saving processors together on a single chip is. By

using intelligent multi-threading concepts, the processor

is able to reduce its power consumption by up to 60%

compared to a single-threaded execution.

Keywords: multi-core, parallel software, power

consumption, embedded asymmetric processor

1. INTRODUCTION

Modern computing systems, especially mobile devices,

are getting more powerful every year, which results in

an increase in power consumption. Furthermore,

modern batteries still don’t provide an acceptable power

capacity and energy costs are constantly rising.

Considering all these factors, processor manufactures

tend to develop processors that are more energy

efficient.

But being energy efficient alone is not the way to go, if

the processors performance is lacking. A modern

mobile device for example spends 80% of the time in an

idle or standby mode, where only small background

tasks are being executed. On the other hand, tasks that

require a lot of performance should still be executed as

quickly as possible. This trade-off between a low power

consumption when doing light work but still providing

a great performance when needed is the current aim for

modern processor manufacturers.

One way to achieve this is to use multi-core processors.

By using more than one processor core, power

consumption can be significantly reduced by sharing

work across all available cores. Those cores can run at a

much lower clock speed and therefore use less power

than a single-core processor, whilst still providing the

same or even more performance.

Another way to be more energy efficient is to use both

high performance and low power processor cores

together on a single chip. With this architecture, the

processor can save a lot of energy during low

performance tasks, but still provide maximum power

with its high performance processor cores. An example

for this architecture is the NVIDIA Tegra 3 processor. It

uses 4 high performance ARM Cortex-A15 processor

cores and one low power ARM Cortex-A7 processor

core on one chip. This setup is called 4-PLUS-1 (Nvidia

Corporation 2011). The advantage of using these cores

together is remarkable: During high performance tasks,

the Cortex-A15 quad-core unit provides maximum

power. While the processor is in idle mode or not doing

any heavy work at all, its power consumption can be

reduced dramatically by switching to the low power

Cortex-A7 core. However, both types of processor cores

cannot work together at the same time. This means that

the processor never has more than four active cores,

because either the Cortex-A15 quad-core, or the single

Cortex-A7, so-called “companion core”, is active. The

operating system itself only sees 4 logical processor

cores, without knowing if it’s the single companion core

or the four high-performance cores (Nvidia Corporation

2013).

The advantages of these setups are huge: By reducing

the power consumption, mobile devices will have

longer battery lives, less charging cycles and of course

smaller batteries, which lead to a thinner and lighter

device. Especially modern “internet of things” devices

as wells as intelligent embedded systems will profit a

lot from a reduced power consumption, because they

are independent from constant power supply.

The objective of this study was to simulate different

workloads for the NVIDIA Tegra 3 processor, in order

to figure out the best way using the processor energy

efficiently. This includes single- and multi-threaded

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

207

mailto:michael.bogner@fh-hagenberg.at
mailto:christof.steps@fh-hagenberg.at
mailto:franz.wiesinger@fh-hagenberg.at

applications as well as simulating heavy workloads and

measuring the processors performance, energy

consumption and processor allocation. The results are

then being compared and discussed.

2. RELATED WORK

Energy efficiency and performance especially on

mobile devices have become increasingly important

throughout the last years. As a result, many works were

published throughout the last years, dealing with multi-

threading to reduce power consumption (Youssef, A. et

al. 2010, Grant et al. 2006, Arm Ltd. 2013). Those

works however differ from this paper, as they are using

simulators for the hardware, instead of real hardware

and are taking a more theoretical approach. Focusing on

using different processor cores on the same chip, there

has also been done a lot of work in the past (Nvidia

Corporation 2011, Nvidia Corporation 2013, Arm Ltd.

2013). Those works again have a more theoretical

approach, as they are lacking tests with real hardware,

which is the focus of this paper. Other tests using

modern processors for mobile devices as well as real

software prototypes have not been conducted yet.

3. TEST ENVIRONMENT

Power consumption and energy efficiency are very

important in all modern computing systems, including

mobile devices as well as desktop computers. As mobile

devices suffer the most from a high power consumption,

due to limited battery capacity, these tests focus on an

NVDIA Tegra 3 processor. The Tegra 3 processor is,

for example, part of an HTC One X Phone, which was

used for these tests.

The used operating system is Android and the

simulation software is developed with the Java

programming language.

3.1. Clock Speed and Processor Utilization

In order to evaluate the results of the simulation tests,

an application to measure the processors clock speed as

well as its utilization had to be developed.

Unfortunately, the operating system itself does only see

four processor cores, even though there are five logical

cores. In order to overcome this issue and get the usage

and clock speed of all five cores, we took a closer look

at the processor cores clock speed: while the high-

performance Cortex-A15 operates at a clock speed

between 1000 and 1500 MHz, the low-power

companion core operates at a clock speed of around

350-750 MHz. By taking this fact into consideration,

we can easily determine which processor cores are

currently active. For example, if there is only one active

processor core, and its clock speed is below 750 MHz,

we can assume that we are currently operating on the

low-power companion core. On the other hand, if there

are more than one cores active, or all of the active cores

clock speed is above 1000 MHz, we can assume that the

high-performance quad-core is currently enabled.

The processors total utilization can be read from the

Android system file “/proc/stat”, as seen in Listing 1.

The four values represent time units in which the

processor was in a certain state since the device had

started. The first value represents the time the processor

spent in the user state, then system state, nice state and

finally idle state.

Listing 1: Content of the system file /proc/stat

1 cpu 8000 2000 1000 9000

To calculate the relative time the processor was busy

and idle, two measurements have to be made and the

values have to be subtracted, as shown in Table 2. The

Subtracted values now show the relative time the

processor spent in a certain state over the last 0.5

seconds.

Table 1: Two measurements of the CPU utilization and

the subtracted values over the last 0.5 seconds

 User System Nice Idle

Measure 1 8000 2000 1000 9000

Measure 2 9500 2500 1500 9500

Subtracted 1500 500 500 500

This means that during the last 0.5 seconds the

processor spent a total of 3000 time units either working

or idle. Using this value and the time the processor

spent in each state, the relative processor utilization can

finally be calculated:

Idle: 500 / 3000 = 16 % (1)

Busy: 2500 / 3000 = 83 % (2)

To avoid influencing the systems performance by

reading the processor utilization too often, the

calculations are done every 0.5 seconds. By doing so,

the values are still representative and don’t influence the

systems performance. Figure 1 shows the application on

the home screen. The application always stays on top of

every other application and shows the clock speed as

well as the utilization in real time, updating every 0.5

seconds.

Figure 1: The measuring application on the homescreen.

3.2. Power Consumption

In order to evaluate the power consumption of the

processor, an application called “PowerTutor” was used

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

208

(Lide Zhan et al. 2010). This application shows the

power that certain parts of the device use, such as the

processor itself, the Wi-Fi connection or the display. It

calculates the processors power consumption

approximately using the operating voltage and the

current utilization. Figure 2 shows a screenshot of the

application. The green chart represents the power

consumption of the processor over the last 60 seconds.

Figure 2: The PowerTutor application.

3.3. Objectives

The objective of this paper is to evaluate the processors

multi-threading capabilities as well as its energy

efficiency in different scenarios. Thus, we developed

several tests to measure the processors multi-threading

performance as well as its power consumption and

efficiency. Firstly, we took a look at the performance

that can be gained when using multi-threading, in order

to find out if using more threads will result in an overall

greater performance. Secondly, we compared the power

consumption of the companion core and the high

performance cores. This test aims at finding out if doing

more work on the companion core, and therefore

sacrificing performance for a lower power consumption,

is advantageous in certain scenarios. Next, we analyzed

the energy that can be saved when using multi-

threading. Furthermore, we tested how the processors

dynamic load balancing works. The goal of testing the

processors dynamic load balancing, which means its

efficiency, is to find the best way for an application to

be executed: at high speed with maximum performance

but a very high power consumption, with reduced speed

but an overall lower power consumption, or a mix of

both. The following sections evaluate these tests and

discuss the achieved results.

4. PERFORMANCE GAIN THROUGH MULTI-

THREADING

This test should show the performance gain when doing

heavy work on multiple threads, compared to a single-

threaded execution.

4.1. Simulation

In order to test the processors multi-core performance

appropriately, an application was developed, that

simulates heavy workload. This simulation includes

prime number calculations and square root calculations,

as those operations require a lot of performance.

The algorithm for the prime number calculation was

realized using the well-known division method. In order

to check if a certain number is a prime number, it is

divided by every number up to the square root of the

given number. Is the remainder of one of these divisions

zero, the number is not a prime number. The algorithm

itself is supposed to have a long execution time, in order

to simulate a heavy workload and is therefore not very

efficient. The square root algorithm simply involves

multiple calls of Math.sqrt() on a range of numbers.

In order to get appropriate execution times, those

calculations are being called on up to one million

values. In the single-threaded test, one thread does the

whole calculation. When testing the multi-core

performance using more than one thread, the workload

is split evenly among all threads.

The multi-core performance is measured using the

speedup. The speedup is a mathematical formula that

describes the relation between a serial and a parallel

execution time of a program.

4.2. Results

The results of the multi-core performance tests are

shown in Table 2. The execution times of the

algorithms are given in seconds. As expected, the

results show that the usage of more threads significantly

reduces the execution time of the algorithms.

Furthermore, using more than four threads does not

speed up the calculation any more, even though the

Tegra 3 processor has five logical processor cores. This

is due to the fact that, as already mentioned, the Tegra 3

does not use all five processor cores at the same time

(Nvidia Corporation 2013). The fifth thread, however,

will then be running on one of the main cores instead,

resulting in a lower performance as with four threads

due to oversubscription.

Table 2: Multi-threaded execution times in seconds

Threads Prime number Square root

1 6.550 5.821

2 4.013 2.910

3 2.887 2.002

4 2.125 1.498

5 2.201 1.522

Figure 3 shows the achieved speedup. When using two

threads, the program executes approximately 150%

faster than on one thread. Three threads are more than

200% faster and four threads are around 300% faster

than the single-threaded execution. Using five threads

or more does not speed up the calculation any more.

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

209

Figure 3: Graphical representation of the achieved

speedup in percentage.

5. POWER CONSUMPTION: COMPANION

CORE VS HIGH PERFORMANCE CORE

In this test we analyzed the power consumption of the

processor in various different scenarios.

5.1. Simulation

The first scenario analyses a single-threaded application

with a very low workload. The goal of this is to force

the processor to use the companion core. As the

operating system does not know anything about the five

processor cores (and so the companion core), it can’t

decide which core to use, because the processor core

allocation is done entirely in hardware. But by using a

very simple low workload application, the hardware

scheduler disables the high performance cores and

enables the companion core.

The second scenario analyses a single-threaded

application that does a heavy calculation. The goal here

is to use one high performance core and measure its

power consumption. For this calculation we used the

prime number calculation already mentioned in section

4.1.

The last scenario analyses the same calculation as in the

second scenario, but the workload is now split among

four threads. The power consumption of the processor,

as well as the processor core allocation is then being

measured for 60 seconds.

5.2. Results

The results of the different scenarios are shown in Table

3. Just as intended, with the low workload, the hardware

automatically executed the code on the companion core

and therefore saving a lot of power. Over the course of

60 seconds, the processors average power consumption

was around 50mW, which can be seen in Figure 4. The

power consumption was staggering between 0 and

100mW.

Table 3: The processors power consumption in different

scenarios.

Processor Power Consumption

1x Companion Core @ 475Mhz 50 mW

1x HP Core @ 1500Mhz 380 mW

4x HP Cores @ 1400Mhz 400 mW

The single high performance core, however, needed

around 380mW of power on average throughout the 60

seconds, which can be seen in Figure 5. The processors

clock speed during the calculation went up to 1500

MHz, which is only possible in single-core mode. When

two or more high performance cores are active, their

clock speed is limited to 1400 MHz.

As we can see in Table 3, the multi-core power

consumption, using all four cores, is around the same as

the single-core power consumption. This means that,

even though we could increase our performance by

around 300% compared to the single-threaded

execution, the power consumption still stays the same,

no matter how many of the high performance cores are

currently active. This is very important point for

modern software development: By splitting work

among multiple threads, the processor can reduce the

clock speed of the processor cores and therefore save a

lot of power and still provide the same or even more

performance.

Figure 4: Power consumption of the companion core

over 60 seconds.

Figure 5: Power consumption of the high performance

core over 60 seconds.

6. POWER SAVINGS THROUGH MULTI-

THREADING

This test shows how much power can be saved by using

a multi-threaded instead of a single-threaded execution.

6.1. Simulation

The simulation involved a prime number calculation up

to one million values. The calculation was simulated on

one, two, three and four threads, in order to measure the

power consumption of the different multi-core

scenarios. The workload was split evenly among all

available threads. The result we are looking at is the

average power consumption over the time that the

single-threaded execution took. This means, if the

calculation takes 60 seconds on a single-core, we take

the average power consumption of these 60 seconds as a

reference. Doing the calculation on two cores is faster

and therefore takes less time to execute, but we are still

taking the full 60 seconds into consideration for the

power consumption. This means we are comparing all

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

210

scenarios over the full 60 seconds, even though the

calculation might finish early in some scenarios.

6.2. Results

As already mentioned, a single-core computation at

1500 MHz has the same power consumption as a multi-

core computation at 1400 MHz. Furthermore, we can

save power when distributing the workload among

multiple cores, as Figure 6 shows. The fact that the

multi-core calculation is faster, enables the hardware to

disable the high performance cores and enable the

companion core earlier. The faster the execution is, the

earlier the companion core can be enabled, which saves

huge amounts of power, as the results in section 5.2

already showed.

Figure 6: The average power consumption over the time

of the execution, with the workload being distributed

among all available threads.

Figure 7 shows how long certain processor cores where

active during/after the calculation. The single-threaded

execution took 60 seconds, so 100% of the time the

Tegra 3 processor used the high performance core,

which results in a fairly high power consumption.

When using two threads, the calculation only takes half

the time and the processor can enable the companion

core at around 30 seconds. When using four threads, the

calculation finishes after 15 seconds and therefore the

processor spends the following 45 seconds on the

companion core, saving a lot of power.

Figure 7: The time the device spent using the high

performance cores and the companion core.

When looking at the results in Figure 6, we can clearly

see how much power can be saved using more than one

thread. When using two threads, the power consumption

can be reduced by 50%, and with four threads it can be

reduced by more than 60%.

7. DYNAMIC LOAD BALANCING

This test should show in how far the processor core

allocation and the dynamic clock speed can be

influenced by software development. We want to find

out at which load the hardware scheduler switches from

the companion core to the high performance cores, and

when the clock speed is increased.

7.1. Simulation

The application for these tests does a square root

calculation on a dynamic number of values.

Additionally, to dynamically reduce and increase the

load, short delays are added between every calculation.

The application starts with calculating the square root of

1000 values, including 10 ms break after every

calculation. The number of values then has been

increased and the delay between the calculations has

been decreased after every test, in order to simulate an

increasing workload.

7.2. Results

The results of the dynamic load balancing tests can be

seen in Table 4. With only 1000 square roots to

calculate and 10 ms of breaks in between every

calculation, the entire operation is done on the low

power companion core. By increasing the number of

values and reducing the delay, the hardware scheduler

switches to the high performance core with a clock

speed of 1 GHz. When further increasing the number of

calculations, the processors clock frequency increases to

1.5 GHz with a load of 70%. With 100.000.000 square

roots to calculate and no delay, the processors load goes

up to 100%, using the maximum performance.

Table 4: Results of the dynamic load balancing test.

Values Delay Processor CPU Load

1.000 10 ms Companion

Core @

475 Mhz

18%

100.000 100 us Companion

Core @

475 Mhz

40%

100.000 10 us Main Core

@ 1 GHz

50%

1.000.000 1 u s Main Core

@ 1.5 Ghz

70%

100.000.000 - Main Core

@ 1.5 Ghz

100%

This example shows very well, how the software can

influence the processors core allocation as well as the

clock speed. By adding short breaks in between

calculations or reducing the number of calculations, we

can force a complex operation onto the low power

companion core, and therefore save a lot of power.

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

211

8. CONCLUSION

Based on the results of these tests, a lot of interesting

conclusions regarding parallel software development

can be made.

Generally, as far as the given algorithms allow it, multi-

threading should always be preferred over a single-

threaded execution. Using more than one thread on a

multi-core processor increases the performance by a lot,

and also greatly reduces the power consumption. As the

results show, a single-core ARM Cortex-A15 at 1500

MHz clock speed uses the same amount of power as a

quad core ARM Cortex-A15 at 1400 MHz. Therefore, it

is always better to use multi-threading.

Another factor is dynamic load balancing. When

calculation times are shorter, the processor itself can go

into an idle state much earlier, and reduce the clock

speed drastically or even switch to a low power core to

save more energy.

When developing background tasks or tasks that should

be executed when the device is in idle or in standby

mode, reducing the workload can save a lot of power as

well. This can be realized by adding short breaks in

between calculations. For example, if you are doing

some heavy calculations in a loop, the hardware

scheduler will most likely use the high performance

core for this operation. But by adding shorts delays after

every loop, we can force the scheduler to stay on the

companion core and therefore save power. This can be

done if the calculation time is not very important or the

result is needed at some time later in the future.

For applications that periodically read data or do

calculations, increasing the interval can also reduce the

CPU load and therefore force a lower clock speed or

different processor cores to be used.

Finally, it can be said that using low power and high

performance processor cores together on one chip is

definitely the way to go. As the results of these tests

show, the advantages that this setup brings to the table

are huge, especially for mobile devices. But not only

mobile devices profit from a setup like this, the results

of these tests can be translated to desktop computers as

well. Even though they do not use asymmetric

multiprocessing at the moment, dynamic load balancing

and multiprocessing in general have been part of

desktop processors for years.

All in all, the processor saves a lot of power when not

doing any heavy work, but still provides maximum

performance when needed. But in order to profit from

these technical advantages, the software has to be

adapted as well. The software developer has to have

knowledge of the underlying architecture in order to

profit from all those advantages.

REFERENCES

Lide Zhan et al., 2010, Accurate Online Power

Estimation and Automatic Battery Behaviour

Based Power Model Generation for Smartphones.

Available from:

http://robertdick.org/publications/zhang10oct.pdf

[accessed 4 May 2015]

Nvidia Corporation, 2013, NVIDIA Tegra 4 Family

CPU Architecture. Available from:

http://www.nvidia.com/docs/IO/116757/NVIDIA_

Quad_a15_whitepaper_FINALv2.pdf [accessed 4

May 2015]

Nvidia Corporation, 2010, The Benefits of Multiple

CPU Cores in Mobile Devices. Available from:

http://www.nvidia.com/content/PDF/tegra_white_

papers/Benefits-of-Multi-core-CPUs-in-Mobile-

Devices_Ver1.2.pdf [accessed 4 May 2015]

Nvidia Corporation, 2011, Variable SMP (4-PLUS-1).

Available from:

http://www.nvidia.com/content/PDF/tegra_white_

papers/Variable-SMP-A-Multi-Core-CPU-

Architecture-for-Low-Power-and-High-

Performance.pdf [accessed 4 May 2015]

Nvidia Corporation, Nvidia-Tegra-3-Mobilprozessoren.

Available from: http://www.nvidia.de/object/tegra-

3-de.html [accessed 4 May 2015]

Thomas Küneth, Android 4: Apps entwickeln mit dem

Android SDK, 2012, Galileo Computing.

ARM Ltd. 2013, Multi-threading technology and the

challenges of meeting performance and power

consumption demands for mobile applications.

Available from:

http://www.arm.com/files/pdf/Multi-

threading_Technology.pdf [accessed 04.05.2015]

ARM Ltd., ARM Processor Architecture. Available

from:

http://www.arm.com/products/processors/instructi

on-set-architectures/index.php [accessed 20 March

2014]

ARM Ltd., 2013, big.LITTLE Processing with ARM

Cortex-A15 and Cortex-A7. Available from:

http://www.arm.com/files/downloads/big_LITTLE

_Final_Final.pdf [accessed 20 March 2014]

Youssef, A. et al., 2010 M., On the Power Management

of Simultaneous Multithreading Processors, Very

Large Scale Integration (VLSI) Systems, IEEE

Transactions on , vol.18, no.8, pp.1243,1248,

doi: 10.1109/TVLSI.2009.2020727

Grant, R.E.; Afsahi, A. 2006, "Power-performance

efficiency of asymmetric multiprocessors for

multi-threaded scientific applications," Parallel

and Distributed Processing Symposium, 2006.

IPDPS 2006. 20th International , vol., no., pp.8

pp.,, 25-29 April 2006

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

212

http://robertdick.org/publications/zhang10oct.pdf
http://www.nvidia.com/docs/IO/116757/NVIDIA_Quad_a15_whitepaper_FINALv2.pdf
http://www.nvidia.com/docs/IO/116757/NVIDIA_Quad_a15_whitepaper_FINALv2.pdf
http://www.nvidia.com/content/PDF/tegra_white_papers/Benefits-of-Multi-core-CPUs-in-Mobile-Devices_Ver1.2.pdf
http://www.nvidia.com/content/PDF/tegra_white_papers/Benefits-of-Multi-core-CPUs-in-Mobile-Devices_Ver1.2.pdf
http://www.nvidia.com/content/PDF/tegra_white_papers/Benefits-of-Multi-core-CPUs-in-Mobile-Devices_Ver1.2.pdf
http://www.nvidia.com/content/PDF/tegra_white_papers/Variable-SMP-A-Multi-Core-CPU-Architecture-for-Low-Power-and-High-Performance.pdf
http://www.nvidia.com/content/PDF/tegra_white_papers/Variable-SMP-A-Multi-Core-CPU-Architecture-for-Low-Power-and-High-Performance.pdf
http://www.nvidia.com/content/PDF/tegra_white_papers/Variable-SMP-A-Multi-Core-CPU-Architecture-for-Low-Power-and-High-Performance.pdf
http://www.nvidia.com/content/PDF/tegra_white_papers/Variable-SMP-A-Multi-Core-CPU-Architecture-for-Low-Power-and-High-Performance.pdf
http://www.nvidia.de/object/tegra-3-de.html
http://www.nvidia.de/object/tegra-3-de.html
http://www.arm.com/files/pdf/Multi-threading_Technology.pdf
http://www.arm.com/files/pdf/Multi-threading_Technology.pdf
http://www.arm.com/products/processors/instruction-set-architectures/index.php
http://www.arm.com/products/processors/instruction-set-architectures/index.php
http://www.arm.com/files/downloads/big_LITTLE_Final_Final.pdf
http://www.arm.com/files/downloads/big_LITTLE_Final_Final.pdf

