
TOWARDS AN EXTENSION OF PROMELA FOR THE MODELING, SIMULATION AND
VERIFICATION OF DISCRETE-EVENT SYSTEMS

Aznam YACOUB(a), Maamar HAMRI(a), Claudia FRYDMAN(a) , Chungman SEO(b) , Bernard P. ZEIGLER(b)

(a) Aix-Marseille Université, CNRS, ENSAM, Université de Toulon, LSIS UMR 7296,
13397, Marseille, FRANCE

(b) RTSync Corp. and Arizona Center for Integrative Modeling and Simulation, AZ

(a)aznam.yacoub@lsis.org, amine.hamri@lsis.org, claudia.frydman@lsis.org
(b)cseo@rtsync.com, zeigler@rtsync.com

ABSTRACT
PROMELA is a well-known formalism for the modeling
and the verification of concurrent systems. PROMELA
deals with high-level specifications. As a result,
PROMELA models are expressed in a high-level
abstraction which not considers explicit representation of
time or events for example. But, the efficiency of the
processes of Verification and Validation relies on the
accuracy of the models. That is why we propose in this
paper preliminary work to a new extension of
PROMELA for the modeling of discrete-event systems.
The verification of these models is then done by
combining formal verification and simulation-based
verification.

Keywords: DEv-PROMELA, Simulation, Formal
Verification, Verification and Validation

1. INTRODUCTION
Process Meta Language (PROMELA) is a well-known
formalism proposed by Holzmann (1991, 2004) for the
modeling and the verification of concurrent systems by
model-checking. Model-Checking (Clarke and Emerson
1982, Baier and Katoen 2008), and more generally
formal verification techniques (Huth and Ryan 2005),
represent promising methods of verification. Because
they are potentially able to explore all the states of a
model, these methods appear as comprehensive and
efficient methods. A verification model is focusing on
the conceptual aspects of a design that are relevant to the
properties one wants to verify. The meaning of that is that
a verification model must be as simpler as possible, and
PROMELA is designed to encourage the user to make
abstraction of the computational aspects of the system
under study. This also guarantees the efficiency of the
model-checking algorithms. But, by enforcing these
restrictions, the expressiveness of PROMELA is
reduced. For example, the interactions between the
components of a system can strongly depends on the
values of data or on their timely coordination. Making
strong assumptions about that or a too high-level
abstraction can lead to the development of a non-efficient
model.

In the opposite, Discrete-Event system Specification
(DEVS) formalism (Zeigler 1976) is well-suited for low-
level modeling and analysis of real systems. By
providing a clean operational semantics, the DEVS
formalism allows a clean interpretation of the model
elements in the real world. The few restrictions enforced
by DEVS increase its expressiveness. The other side of
the coin is that it becomes impossible to apply formal
proofs on these models. The challenge to introduce the
DEVS semantics into a formalism of formal verification
like PROMELA then seems to provide some benefits.
First, it allows accurate modeling of discrete-event
systems (DES) by using a formalism which supports
formal verification. In other words, the purpose of such
an approach is increasing the expressiveness of
PROMELA without breaking its formal verification
capabilities. Second, specifying a DES model into a
syntactic formalism like PROMELA can make easier the
translation from the conceptual model to a computerized
simulation model. Indeed, transformation rules can
easily be defined and verified between two syntactic
formalisms. Third, the verification and validation of the
conceptual DES models can be done through two
combined methods, formal verification and discrete-
event simulation, without needing to use multiple
formalisms.
The goal of this paper is to present preliminary work
about an extension of PROMELA for modeling of DES.
The section 2 is a quick overview of PROMELA. The
section 3 presents our extension. Two example is given
in section 4 to illustrate the verification process using the
MS4Me environment (Seo et al. 2013) and the SPIN
(Simple PROMELA Interpreter) model-checker
(Holzmann 1991).

2. QUICK OVERVIEW OF PROMELA
PROMELA is a specification language with a semantics
of executability. Its syntax is influenced by the Dijkstra’s
Guarded Command Language (Dijkstra 1975) and the C
programming language defined by Kernighan and
Ritchie [1978]. This fact makes that its use is relatively
easy compared with other formal methods because its
syntax is really close to any implementation languages.
We are focusing in this section only on concepts

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

340

interesting to the scope of this paper. The section 2.1 is
about how specifying components of a system in
PROMELA. The section 2.2 expose the semantics of
PROMELA. We don’t deliberately talk about the
specification of the properties that one wants to verify on
the model in this paper, because we are focusing on how
increasing the accuracy of conceptual models.

2.1. System Specifications
A PROMELA system relies on three main types of
objects: processes, data objects and messages.
The components of the system are modeled by a finite set
of instances of processes. The processes can
communicate with each other thanks to different
mechanisms: buffered messages, shared global variables
or rendez-vous handshakes. Each process is a finite set of
guarded commands called instructions. At any time t,
only one instruction is executed without any assumptions
about its duration. Note that a set of instructions can be
labeled as atomic: in this case, these instructions are
considered as a unique instruction, like any common
atomic operations. Processes can be also prioritized,
meaning that a process with a higher priority will always
execute its instructions before other processes.
Syntactically, a process is defined by a proctype block
of instructions, as given in Program 1.

Instructions are divided into two categories: statements
that modify the state of the system on the one hand, and
control-flow instructions on the other hand. Assignments
involve local and global variables, whereas
communication statements involve global buffered
channels. Control flow instructions are classical
conditional and loop structures. They allow the selection
of the next statement among different branches regarding
a guard. Because PROMELA processes are non-
deterministic, if several guards are satisfied, the next
instruction is randomly selected. If none of them is
satisfied, the control flow structure is blocked.
PROMELA provides two special guards called else and
timeout: if these guards are present in a control flow

structure, and if this one is blocked, these instructions are
then executed.
Data in PROMELA is represented by local and shared
variables. Local variables are relative to the process only
in which they are declared, whereas global variables are
shared by all the processes. A variable is characterized
by its value and its type, among either all the PROMELA
scalar basic datatypes as given in Table 1, or any finite
combinations (structures) or finite arrays of these types.

Table 1 : Basic PROMELA Datatypes
Type Size (bit) Range of Values

bit, bool 1 [0;1]
byte 8 [0;255]

mtype (constants) 8 [0;255]
short 16 [-216;216-1]
int 32 [-232;232-1]

2.2. PROMELA Semantics
PROMELA centers on a semantics of executability
(Natarajan and Holzmann 1997, Holzmann 2004). We
can study it at two levels: on the one hand, at the process
level, and on the other hand, at the whole program level.

2.2.1. Executability of a Process
A PROMELA process with a set L of statements is a
finite state machine P = (Q, T, q0, F) where

 � = { qi = (i, l1, …, lm, g1, …, gn, c1, …, co) ∈
ℕ x ∏ �� x�

��� ∏ �� x�
��� ∏ ��

�
��� } is the finite

set of states. Each state is defined by its id, the
value of each local and global variable, and the
value of each channel;

 � ⊂ � x L x � is the set of labeled transitions;
 �� is the initial state;
 � is the set of final states.

Denote (qi,qj) ∈ Q2 and l ∈ L (l is an instruction in the
process). Then, t = (qi,l,qj) ∈ T iff the process can change
its state from qi to qj by only executing l. This means that
an instruction syntactically denotes two consecutive
states. A transition can be executed only if it is enabled:

 l is a non-blocking instruction: an assignment, a
conditional instruction with a satisfied guard, or
any control-flow atomic instruction (else, skip,
break, etc);

 l is an asynchronous message sent over a non-
full channel;

 l is an asynchronous message received from a
non-empty channel;

 l is an unblocking rendez-vous message.

If a transition is enabled and executed, the process
changes its state from the source state to the target state
by applying an appropriate action function. This action
function modifies the values of the variables, the content
of the channels, etc. If more of one instruction is enabled,

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

341

the semantics engine randomly selects one of them and
executes it.

2.2.2. Executability of a Program
A PROMELA program can be simply seen as the
asynchronous product of the automata of each process.
Then, a PROMELA program is defined by:

 � ⊆ ∏ ��
�
��� where �� is the set of states of the

process Pi;
 � is the set of transitions; t = (si,l,sj) ∈ T if it

exists a transition that changes the state of any
of the processes by applying l;

 �� is the initial state;

A transition t is enabled if its equivalent ti is enabled in
the process pi. If two or more transitions are enabled, the
semantics engine selects one of them at random and
executes it (unless there is a defined priority between
processes).

3. DISCRETE-EVENT PROMELA
The previous section shortly described the PROMELA
semantics. As seen, PROMELA does not define either
explicit time representation or events. But as stated by
Tripakis (1996), the systems which can be modeled with
PROMELA can be characterized as real-time systems.
The representation of time becomes thus important to
develop a more efficient design. Many timed extensions
of PROMELA (Tripakis and Courcoubetis 1996;
Bosnacki and Dams 1998; Nabialek et al. 2008) and the
algorithms for their verification were studied in the
literature. In opposite of these approaches which try to
deal with the algorithms of formal verification and with
the PROMELA semantics, we propose to integrate the
DEVS semantics into PROMELA. This approach has
two main advantages. On the one hand, it gives to
PROMELA the capability of modeling DES with a lower
level of abstraction. The model is more accurate and
formal verification can be applied only on interesting
paths. Formal verification can also be used to check
structural properties on the model. Moreover, while
formal verification deals with finite models, discrete-
event simulation can be used for simulation-based
verification of behavioral properties on infinite models,
validation and analysis. On the other hand, modeling
DES with a syntactic language close to an
implementation language make easier the translation
from the conceptual model to the computerized
simulation model.
The sections 3.1 and 3.2 will recall concepts around
discrete-event systems and the DEVS operational
semantics. Then, the section 3.3 will introduce our new
extension called Discrete-Event PROMELA (DEv-
PROMELA).

3.1. Discrete-Event Concepts
DES are a specific class of timed systems (Zeigler 1976,
Zeigler 1984). A DES can be seen as an extension of a
Moore Machine, in the sense that the outputs of a DES

can depend only on its current state. Zeigler (1976)
introduced two important concepts: the association of a
lifespan to each state and the hierarchical composition. A
DES evolves along the events that it emits or consumes,
the distribution of events can be non-linear and time can
be represented (through the lifespan concept) by any
value of the ℝ�-space. A DES thus relies on the
following notions:

1. Each state has a lifespan whose the value is a
real. When the lifetime of state expired, the
current state changes according to the transition
table. An output is then emitted;

2. When an input is consumed by a DES, its
current state changes according to the transition
table, regardless the current lifetime of the
current state;

3. Each event are well-dated. If e1 and e2 are two
events, thus e1 and e2 can always be ordered;

4. If two events overcome at the same time, then
either they are probably equivalent events (e1 =
e2) or they are prioritized; the priority between
two events is well-defined (non-deterministic
behavior are not permitted);

5. The state trajectory is stable between two
successful events;

6. As a result of the previous points, transitions are
characterized by their nature: internal
transitions correspond to autonomous behaviors
while external transitions allow the system to
react to any external events.

3.2. Overview of the DEVS Formalism
A DEVS system is built upon DEVS atomic models
which can be coupled to get a DEVS coupled model. A
DEVS atomic model is then a small simulation unit
defined by � = (�, �, �, ��, ��, �, ��) where

 X is the set of inputs;
 Y is the set of outputs;
 S is the set of sequential states;
 ��: � x � → � is the external transition

function;
 �� : � → � is the internal transition function;
 � ∶ � → � is the output function;
 �� ∶ � → ℝ�is the time advance function;
 � = {(�, �) | � ∈ �, 0 ≤ dt ≤ ta(s)} is the set

of total states.

Taking a DEVS atomic model A in a current state q. If
the lifespan of q is ended (i.e. q = (s,ta(s))), the model
changes its state to s’= �� (s). It emits the output y = λ(s).
If A receives an event x, it change its state according to
s’= ��(q,x). Otherwise, it stays in q, letting the time
progress.
A DEVS coupled model is defined by � =
(�, �, �, {�}, ���, ���, ��, ������) where

 X is the set of inputs;

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

342

 Y is the set of outputs;
 D is the name set of components;
 M is the set of atomic components;
 EOC is the set of external output coupling;
 EIC is the set of internal input coupling;
 IC is the set of internal coupling;
 Select is the tie-breaking function to choose the

next event from the set of simultaneous events.

Informally, a DEVS coupled model is composed by
atomic models. The date of the next event is computed
by getting the minimum value among all the dates of all
the next events. By processing an event, each component
is updated according to its transition functions. If
multiple events occur at the same date, the Select
function chooses the next event to proceed.

3.3. Building Discrete-Event PROMELA
Introducing a new semantics in PROMELA needs to
define new syntactic elements to model the concepts we
are adding. The section 3.3.1 introduces these new
syntactic elements. The section 3.3.2 and 3.3.3 define the
meaning a DEv-PROMELA model.

3.3.1. Syntactic Rules
A new datatype called real is introduced. The purpose of
real variables is to represent infinite and unbounded real
values. Real variables can be local or global, and their
declaration does not differ from any scalar variables:

real i,j,k;

Real variables can be combined in complex structures or
in arrays, without any restriction.
An implicit local clock is associated to each process.
Consequently, like in Timed PROMELA, introducing a
specific type for clocks is not needed. Each process is
ensured to have a clock. The clock valuation can be
accessed through a specific getCurrentDate instruction.
Clocks can be used to define exactly the date of next
events. The purpose of clocks is only to determine the
next event by taking the minimum value of the dates of
all next events.
Missing concepts of events, state lifespan and type of
transitions as viewed in the previous section are then
introduced. Syntactically, a state is defined between two
instructions in PROMELA. This means we can easily
define the lifespan associated to each state and the type
(internal or external) of the transitions associated to each
instruction. We extend each statement with the following
grammar described in the Backus-Naur Form:

<proctype decl> ::= "[" priority "=" <int> "]" <proctype>
<event stmnt> ::= "[" <timed trans> "]" <stmnt> | <stmnt>
<timed trans> ::= <clt expr> | <evt expr> |

<clt expr> "|" <evt expr>
<clt expr> ::= "clt:" <real expr> "->emit:" <evt val>
<evt expr> ::= "evt:" <evt val> [<op> <evt expr>]
<op> ::= " |"
<evt val> ::= <mtype> | "silent"

<real expr> ::= <real> | "infinity" | /* Any C-function
returning a real value */

Each statement is prefixed by an event descriptor (in
brackets) which defines the lifespan of the source state of
the considering transitions and how transitions are
triggered. For instance, look at these instructions:

[clt:3.0->emit:newa] a = a + 3; (1)

[evt:newc] d = a + 9; (2)

[clt:lifespan(a)->emit:newa | evt:newb] b = a * 7; (3)

(1) defines a state with a lifetime equal to 3 units of time,
and an internal transition will emit the event "newa". By
executing this transition, the assignment is executed. (2)
defines a passive state (with an infinite lifetime) and an
external transition which will be enabled by receiving the
event "newc". (3) defines a state with a lifetime equal to
"lifespan(a)" and two transitions: an internal one which
will emit the event "newa" and an external one which will
be enabled by consuming the event "newb". This third
example shows how event descriptors can define
transitions either as internal (with the clt command), or
as external (with the evt command), or as a combination
of multiple external events with probably one internal
transition. A PROMELA statement can now label several
transitions. Note that the default lifespan of each state is
equal to infinity if an evt descriptor is defined and if there
is no clt command. The clt command is optional and
needed only to denote internal transitions. For
convenient purposes, if a statement is not prefixed by an
event descriptor, that is interpreted like it is prefixed by
[clt:0 ->emit:silent]. The statement is executed without
any delay by emitting the silent event. Priority
descriptors on processes are also added. Indeed, the
concept of DEv-PROMELA priority allows the ordering
the events coming (resp. generating) from (resp. by) each
process. This is a different meaning than the PROMELA
initial concept of priority.

3.3.2. Semantics of a DEv-PROMELA Process
A DEv-PROMELA process P with a set L of statements
is an automaton � = (��, �, ��, ��, ��, �) where

 �� = { si = (��, i, l1, …, lm, g1, …, gn, c1, …, co) ∈
ℕ x ∏ �� x�

��� ∏ �� x�
��� ∏ ��

�
��� } is the finite

set of states;
 � is the finite set of events; E contains at least

the silent event denoted ε;
 �� ∶ �� → �� x E is the partial function that

defines transitions labeled by a statement l ∈ L;
note that it is a partial function because no
internal transition can be defined for passive
state.

 �� ∶ � x E → � is the partial function that
defines external transitions labeled by a
statement l ∈ L; note that it is a partial function

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

343

because for a state q, there is not necessarily an
external transition defined for each event e;

 �� is the initial state;
 � is the set of final states.

We also define:

 ��: �
�� → ℝ�

��(�) ↦ ��
 is the lifespan function;

 � = { � = (�, ��), � ∈ �� and 0 ≤ dt ≤ ta(s) } is
the set of total states;

 �� = { � = (�, 0), � ∈ �� }
 �� = { � = (�, ��(�)), � ∈ �� }

Take s a state, and l a statement with an event descriptor.
If l denotes an internal transition, l is enabled and ��(s) is
triggered only if the value of the current clock of the
process is equal to the lifetime ta(s). The event associated
to the transition is emitted and the next event date for the
process is computed by:

de = getCurrentDate + ta(s’) if (s’; e) = ��(s).

If l denotes an external transition on an event e, l is
enabled if the process receives the event e. If the next
event of the current process is at the same date than
another external event, the priority statement resolves the
conflict. If ta(s) = ∞, all of the statements related to s are
blocked. Only external transitions can be enabled in this
case. Because there is at most one internal transition per
state and because there is a priority statement, a DEv-
PROMELA process is deterministic.
What about the non-determinism expressed in the
PROMELA control-flow structures ?

Take a look at the Program 2. In the meaning of
PROMELA, both guards are satisfied, meaning one of
them is non-deterministically chosen. From another point
of view, this means the model checker will verify the
both paths, and this is the purpose of a good low-level
verification model. But, if we take a look at the state
space (Figure 3), we can clearly note that there is three
cases. Two of them are unambiguous; concerning the
intersection, the behavior is not well-defined.
Transposed to an event system, this model would
describe two situations:

1. Denotes e1 and e2 two different events that
overcome at the same date. The verification
model does not care about which event is

consumed at first; the two orders will be
checked;

2. The lifespan of the state (x=2, y=2) is ended, but
two behaviors are possible. In this case, the
verification model is not well-defined and effort
are put into the verification of paths that are
maybe meaningless for the real system.

We mean that the non-determinism involved by the
PROMELA control-flow structures doesn't come
necessarily from the non-deterministic nature of the
considered program, or from a high-level abstraction, but
can be involved by incomplete specifications.

Figure 1 : State space of the Algorithm 2. T1 denotes
the transition labelled by the statement line 4, and
T2 the transition labelled by the statement line 5.

Enforcing determinism allows a unique, clear and
unambiguous interpretation of the model in the real
world, even non-determinism is really convenient for the
verification of high-level models.
Taking into account these considerations, the Program 3
introduces a DEv-PROMELA version of the Program 2.

This program can be interpreted in three manner:

1. if t1 ≠ t2, there is not ambiguity: the state
concerned by the branches are not the same.
Indeed, if t1 is lesser than t2, T1 will be always
triggered in first. If t2 is lesser than t1, T2 will be
always triggered in first;

2. if t1 = t2, this model is non-deterministic.
Determinism is then enforced by always
executing the first enabled branch T1 in the case
(x=2, y=2).

This property is applicable to any branching structures.

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

344

3.3.3. Semantics of a DEv-PROMELA Program
A DEv-PROMELA program is a product of the automata
of each process that composed the program, as in
PROMELA. The difference is that, while in PROMELA
the sequences of the states are interleaved (i.e. the final
graph is composed by all the possible permutations of the
statements), DEv-PROMELA takes into account only the
execution paths given by the order of the events. Denote
e1 and e2, two events of the DEv-PROMELA system
composed by two processes P1 and P2. If date(e1) <
date(e2), then the statement associated to e1 will be
executed in first. Both processes update their state
according to the action function and computes their local
next event e1’ and e2’. The next event date is then given
by min(e1’ ; e2’).
If date(e1) = date(e2), priority as defined in the previous
section determines the next event between both events.
Non-determinism is implicitly resolved for a precise
instance: this does not mean that non-determinism
doesn’t exist in the global system. Because order of
events can depend on the execution context, multiple
branches could exist for a given global state. A
verification algorithm would then have to check any
possible orders of events. But in opposite of PROMELA,
for a given order of events, one and only one path can be
walked through.
It is also important to note that if the value of a global
variable is changed, an implicit event is emitted. Other
processes change their respective state. Their respective
clock is however preserved, meaning their respective
next event remains unchanged.

4. APPLICATIONS
We used our extension to model two examples of
systems. First is the well-known Fischer’s Mutual
Exclusion Protocol. Second concerns the Alternate Bit
Protocol with Finite Queue and Infinite Queue.
Verification of properties were done through combined
formal verification using the classic SPIN model-
checker, and simulation-based verification using the
MS4Me Environment. Because the DEv-PROMELA
semantics is the same than the one of DEVS, the
translation from DEv-PROMELA specifications to DNL
format were easy.

4.1. Fischer’s Mutual Exclusion Protocol
The Fischer's Mutual Exclusion Protocol (Abadi and
Lamport 1994) looks like a very simple algorithm
(Algorithm 4) for handling mutual exclusion: firstly, the
process p checks whether another process either is
already or wants to enter the critical section (line 4). If it
is the case, the process stays in an active wait. Then, the
process p declares his willing to enter the critical section
before entering a sleep mode. When it wakes up, it
checks whether another process is entered the critical
section during its sleeping. If it is the case, the protocol
restarts from the beginning, else the process can enter the
critical section. Fisher's protocol can be seen as a timed
system, and also a timed event system.

Using DEv-PROMELA, it is easy to obtain a verification
and a simulation model (Program 6) of this algorithm.
Because of the system can be considered as closed,
almost of the transitions correspond to an autonomous
behaviors which depend only on the current state.
Priority ensures that each process will have the hand in
turn. When a process is sleeping, it is blocked until the
delay is exactly expired or until another process changes
the value of the id variable. This is modeled in l.16: the
model stays in this state during delay units of time or
until it receives the changepid event. In other words, the
next event for a process will be at getCurrentDate+delay
after the execution of line 14.

If both processes wake up at the same time, priority will
decide of the next event to proceed. Remember that the
execution of this DEv-PROMELA program is
deterministic.
The structural preservation property of DEv-PROMELA
is out-of-scope of this paper. This property allows the
generation of an untimed PROMELA verification model
which has the same structural properties than the DEv-
PROMELA model (Program 5). Thanks to that model,
two properties can be easily verified:

1. “Two processes cannot be in critical section in
same time." (□ ! (�� ∧ ��))”

2. “Is there cases in which two processes cannot be
in critical section in same time ?” (◊ ! (�� ∧ ��))

While the property 2 is well-verified by the model, the
SPIN model-checker returns a violation error as expected
for the property 1. Indeed, a process P can execute the
l.11 and l.14, then a process Q can execute the l.11 and
l.14 and enters the critical section while P is always in it.
This is well-known that the timed constraint delay > C
(where C is the longest time that a process may take to
perform a step while trying to enter the critical section)
must be met to guarantee the mutual exclusion by this
protocol. This only result could enforce the designers to
design solutions to prevent such an error.
But if the system is well specified, for example if the
duration taken to execute each instruction is quantified, a
simulation-based verification can bring another
interpretation. Remember that the DEv-PROMELA
semantics is the same than the DEVS semantics, meaning
a DEv-PROMELA model is a DEVS model. As a
consequent, a DEv-PROMELA model is also a
simulation model. We encode the Program 6 into a DNL

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

345

format given in Appendix A by translation; then, we
simulate it into the MS4 Me Environment (Figure 2). A
simulation-based verification is then performed. In the
context in which two processes exactly acts in the same
manner and with the semantics of Classic DEVS, the
analysis reveals that whatever the value of the delay, two
processes can’t be in the critical section at the same time.
Property 1 is thus verified by this DEv-PROMELA
model. How interpreting the difference between the
results of formal verification and simulation ? On the one
hand, the formal verification gives first information
about the correctness of the model, on a high-level
abstraction. For example, the formal verification ensures
the absence of deadlocks. It can help designer to fix the
design before considering other forms of testing. On the
other hand, the simulation-based verification gives more
precise information to the designer to understand what
really happened. Because the DEv-PROMELA model is
at lower level of abstraction than the PROMELA model,
the designers can decide that the error found by the model
checker is outside the scope of the model or not. Another
advantage is that discrete-event simulation can be also
used for validation at the same time. Designer can then
get information about the validity of this model against
its intended use.

4.2. Alternating Bit Protocol
We also use DEv-PROMELA to model the Alternating
Bit Protocol (APB) (Bartlett et al. 1969), which has been
used to illustrate the analysis capabilities of PROMELA
(Holzmann 2004). The only things we have to do is to
model the time T to transmit a bit, and the time T1 up to
that we can consider a message is lost. The obtained
model does not really differ from the PROMELA one.
But what happened if we want take into account a queue
which stores messages before sending them ? As shown
by Zeigler and Nutaro (2014), the capacity of the queue
has an impact on the behavior of the system. Modeling
the queue in PROMELA certainly increases the size of
the state space, and reduces the efficiency of the formal
verification algorithms. But DEv-PROMELA can be
used in two manner: as a verification model, assumptions
can be verified in idealized conditions (in this case, by
abstracting the capacity of the queue or by considering
there is no queue), and as a simulation model. Then, the
DEv-PROMELA model of the APB can be coupled with
any simulation model of queues. The simulation-based
verification then extends the formal verification by
exploring scenarios outside the scope of the formal
verification.

Figure 2 : State Diagram of the DEv-PROMELA
model of Fischer's Algorithm in MS4 Me
Environment.

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

346

5. CONCLUSION AND FUTURE WORK
We described in this paper some preliminary work to
develop a new extension of PROMELA for the modeling
and simulation of DES. This is done by introducing the
DEVS operational semantics into PROMELA, without
breaking the verification capabilities of PROMELA. A
DEv-PROMELA model is then a verification model and
a simulation model which can be verified by combining
formal verification for structural properties and
simulation-based verification for behavioral properties.
The other advantage is that we are providing a syntactic
formalism for DEVS modeling. This can help to
implement computerized models from conceptual
models. This maybe also enables the formal verification
of the simulation models by using rewriting rules (for
example from DEv-PROMELA to DNL).
The major drawbacks of our methodology is that DEv-
PROMELA is limited to the Classic DEVS and its
subclasses. Parallel DEVS cannot be modelled with this
approach due to the limitations of PROMELA. But it can
be interested to study how introducing the semantics of
Parallel DEVS into PROMELA. Future work also
concerns providing a formal proof that a DEv-
PROMELA model is well a DEVS model, and working
on limiting the formal verification algorithms only to the
paths which are really expressed by the DEv-PROMELA
models, without generating all the state space of the
PROMELA equivalent.

ACKNOWLEDGMENTS
This work is a part of the R&D project “MAGE”, from
French “Investing for the Future” national program.

APPENDIX A: DEV-PROMELA MODEL OF
FISCHER’S ALGORITHM ENCODING IN THE
DNL FORMAT

use delay with type double and default “0.1”!
use id with type int and default "1"!
use pid with type int and default "0"!

generates output on silent!
generates output on changedpid1!
generates output on changedpid0!
accepts input on changedpid0!
accepts input on changedpid2!

to start hold in S1 for time 0.1!
after S1 output silent!
from S1 go to S2!

when in S1 and receive changedpid0 go to S1!
when in S1 and receive changedpid2 go to S1!
external event for S1 with changedpid0
<%pid = 0;%>!
external event for S1 with changedpid2
<%pid = 2;%>!

internal event for S1
<%if(pid==0) holdIn("S2",0.1);

else holdIn("S1",0.1);%>!
hold in S2 for time 0.1!
after S2 output changedpid1!
from S2 go to S3!

when in S2 and receive changedpid0 go to S2!
when in S2 and receive changedpid2 go to S2!
external event for S2 with changedpid0
<%pid = 0;%>!
external event for S2 with changedpid2
<%pid = 2;%>!

internal event for S2
<%pid = id;%>!
hold in S3 for time delay!
when in S3 and receive changedpid0 go to S1!
when in S3 and receive changedpid2 go to S1!

external event for S3 with changedpid0
<%pid = 0; holdIn("S1",0.1);%>!
external event for S3 with changedpid2
<%pid = 2; holdIn("S1",0.1);%>!
after S3 output silent!
from S3 go to S4!

internal event for S3
<%if(pid==id) holdIn("S4",0.1);
else holdIn("S1",0.1);%>!
hold in S4 for time 0.1!
after S4 output changedpid0!
from S4 go to S1!

when in S4 and receive changedpid0 go to S4!
when in S4 and receive changedpid2 go to S4!
external event for S4 with changedpid0
<%pid = 0;%>!
external event for S4 with changedpid2
<%pid = 2;%>!

internal event for S4
<%pid = 0;%>!

REFERENCES
Abadi M. and Lamport L., 1994. An old-fashioned

Recipe for Real-Time. ACM Transactions on
Programming Languages and Systems. Vol. 16,
pp1543-1571.

Baier C. and Katoen J.P., 2008. Principles of Model
Checking. MIT Press.

Bartlett K.A., Scantlebury R.A., and Wilkinson P.T.
1969. A note on reliable full-duplex transmission
over half-duplex lines, Comm. of the ACM, Vol.12,
No. 5, pp260-265.

Bosnacki D. and Dams D., 1998. Discrete-Time
PROMELA and SPIN. Formal Techniques in Real-
Time and Fault-Tolerant Systems, Vol.1486, 307-
310. Berlin, Springer Berlin Heidelberg.

Clarke E.M. and Emerson E.A., 1982. Design and
Synthesis of Synchronization Skeletons Using

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

347

Branching-Time Temporal Logic. Logic of
Programs, Workshop, pp52-71. London, UK.

Dijkstra E.W., 1975. Guarded commands,
nondeterminacy and formal derivation of programs.
Comm. of the ACM. Aug. 1975. Vol. 18, No. 8, pp.
453-457.

Holzmann G.J., 1991. Design and Validation of
Computer Protocols. Englewood Cliffs, NJ,
Prentice Hall.

Holzmann G.J., 2004. The SPIN Model Checker: Primer
and Reference Manual. Readings Massachusetts,
Addison-Wesley.

Huth M. and Ryan M., 2005. Logic in Computer
Sciences: Modelling and Reasonning about
Systems. Cambridge University Press.

Kernighan B.W. and Ritchie D.M., 1978. The C
Programming Language. First Edition. Englewood
Cliffs, NJ, Prentice Hall.

Nabialek W., Janowska A. and Janowski P., 2008.
Translation of Timed PROMELA to Timed
Automata with Discrete Data. Journal Fundamata
Informaticae, Vol.85, pp409-424. Amsterdam, IOS
Press.

Natarajan V. and Holzmann G.J.., 1997. Outline for an
Operational Semantics of PROMELA. The SPIN
Verification System. DIMACS Series in Discrete
Mathematics and Theorical Computer Sciences.
AMS, 1997. Vol. 32, pp.133-152.

Seo C., Zeigler B.P, Coop R. and Kim D., 2013. DEVS
Modeling and Simulation Methodology with MS4
Me Software. Theory of Modeling and Simulation
Symposium, SpringSim MultiConference. San
Diego, CA.

Tripakis S. and Courcoubetis C., 1996. Extending
PROMELA and SPIN for Real-Time. Proceedings
of the Second International Workshop on Tools and
Algorithms for Construction and Analysis of
Systems, TACAs, pp329-348. 1996, London, UK.

Zeigler B.P., 1976. Theory of Modeling and Simulation.
John Wiley.

Zeigler B.P., 1984. Multifacetted Modelling and
Discrete-Event Simulation. San Diego, CA, USA.
Academic Press Professional Inc.

Zeigler B.P. and Nutaro J., 2014. Combining DEVS and
Model-Checking: Using System Morphisms for
Integrating Simulation and Analysis in Model
Engineering. Proceedings of the 26th European
Modeling and Simulation Symposium, pp350-356.
2014.

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

348

