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ABSTRACT 
PROMELA is a well-known formalism for the modeling 
and the verification of concurrent systems. PROMELA 
deals with high-level specifications. As a result, 
PROMELA models are expressed in a high-level 
abstraction which not considers explicit representation of 
time or events for example. But, the efficiency of the 
processes of Verification and Validation relies on the 
accuracy of the models. That is why we propose in this 
paper preliminary work to a new extension of 
PROMELA for the modeling of discrete-event systems. 
The verification of these models is then done by 
combining formal verification and simulation-based 
verification. 

 
Keywords: DEv-PROMELA, Simulation, Formal 
Verification, Verification and Validation 

 
1. INTRODUCTION 
Process Meta Language (PROMELA) is a well-known 
formalism proposed by Holzmann (1991, 2004) for the 
modeling and the verification of concurrent systems by 
model-checking. Model-Checking (Clarke and Emerson 
1982, Baier and Katoen 2008), and more generally 
formal verification techniques (Huth and Ryan 2005), 
represent promising methods of verification. Because 
they are potentially able to explore all the states of a 
model, these methods appear as comprehensive and 
efficient methods. A verification model is focusing on 
the conceptual aspects of a design that are relevant to the 
properties one wants to verify. The meaning of that is that 
a verification model must be as simpler as possible, and 
PROMELA is designed to encourage the user to make 
abstraction of the computational aspects of the system 
under study. This also guarantees the efficiency of the 
model-checking algorithms. But, by enforcing these 
restrictions, the expressiveness of PROMELA is 
reduced. For example, the interactions between the 
components of a system can strongly depends on the 
values of data or on their timely coordination. Making 
strong assumptions about that or a too high-level 
abstraction can lead to the development of a non-efficient 
model. 

In the opposite, Discrete-Event system Specification 
(DEVS) formalism (Zeigler 1976) is well-suited for low-
level modeling and analysis of real systems. By 
providing a clean operational semantics, the DEVS 
formalism allows a clean interpretation of the model 
elements in the real world. The few restrictions enforced 
by DEVS increase its expressiveness. The other side of 
the coin is that it becomes impossible to apply formal 
proofs on these models. The challenge to introduce the 
DEVS semantics into a formalism of formal verification 
like PROMELA then seems to provide some benefits. 
First, it allows accurate modeling of discrete-event 
systems (DES) by using a formalism which supports 
formal verification. In other words, the purpose of such 
an approach is increasing the expressiveness of 
PROMELA without breaking its formal verification 
capabilities. Second, specifying a DES model into a 
syntactic formalism like PROMELA can make easier the 
translation from the conceptual model to a computerized 
simulation model. Indeed, transformation rules can 
easily be defined and verified between two syntactic 
formalisms. Third, the verification and validation of the 
conceptual DES models can be done through two 
combined methods, formal verification and discrete-
event simulation, without needing to use multiple 
formalisms. 
The goal of this paper is to present preliminary work 
about an extension of PROMELA for modeling of DES. 
The section 2 is a quick overview of PROMELA. The 
section 3 presents our extension. Two example is given 
in section 4 to illustrate the verification process using the 
MS4Me environment (Seo et al. 2013) and the SPIN 
(Simple PROMELA Interpreter) model-checker 
(Holzmann 1991). 
 
2. QUICK OVERVIEW OF PROMELA 
PROMELA is a specification language with a semantics 
of executability. Its syntax is influenced by the Dijkstra’s 
Guarded Command Language (Dijkstra 1975) and the C 
programming language defined by Kernighan and 
Ritchie [1978]. This fact makes that its use is relatively 
easy compared with other formal methods because its 
syntax is really close to any implementation languages. 
We are focusing in this section only on concepts 
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interesting to the scope of this paper. The section 2.1 is 
about how specifying components of a system in 
PROMELA. The section 2.2 expose the semantics of 
PROMELA. We don’t deliberately talk about the 
specification of the properties that one wants to verify on 
the model in this paper, because we are focusing on how 
increasing the accuracy of conceptual models. 
 
2.1. System Specifications 
A PROMELA system relies on three main types of 
objects: processes, data objects and messages. 
The components of the system are modeled by a finite set 
of instances of processes. The processes can 
communicate with each other thanks to different 
mechanisms: buffered messages, shared global variables 
or rendez-vous handshakes. Each process is a finite set of 
guarded commands called instructions. At any time t, 
only one instruction is executed without any assumptions 
about its duration. Note that a set of instructions can be 
labeled as atomic: in this case, these instructions are 
considered as a unique instruction, like any common 
atomic operations. Processes can be also prioritized, 
meaning that a process with a higher priority will always 
execute its instructions before other processes. 
Syntactically, a process is defined by a proctype block 
of instructions, as given in Program 1. 
 

 
 
Instructions are divided into two categories: statements 
that modify the state of the system on the one hand, and 
control-flow instructions on the other hand. Assignments 
involve local and global variables, whereas 
communication statements involve global buffered 
channels. Control flow instructions are classical 
conditional and loop structures. They allow the selection 
of the next statement among different branches regarding 
a guard. Because PROMELA processes are non-
deterministic, if several guards are satisfied, the next 
instruction is randomly selected. If none of them is 
satisfied, the control flow structure is blocked. 
PROMELA provides two special guards called else and 
timeout: if these guards are present in a control flow 

structure, and if this one is blocked, these instructions are 
then executed.  
Data in PROMELA is represented by local and shared 
variables. Local variables are relative to the process only 
in which they are declared, whereas global variables are 
shared by all the processes. A variable is characterized 
by its value and its type, among either all the PROMELA 
scalar basic datatypes as given in Table 1, or any finite 
combinations (structures) or finite arrays of these types. 
 
 

Table 1 : Basic PROMELA Datatypes 
Type Size (bit) Range of Values 

bit, bool 1 [0;1] 
byte 8 [0;255] 

mtype (constants) 8 [0;255] 
short 16 [-216;216-1] 
int 32 [-232;232-1] 

 
2.2. PROMELA Semantics 
PROMELA centers on a semantics of executability 
(Natarajan and Holzmann 1997, Holzmann 2004). We 
can study it at two levels: on the one hand, at the process 
level, and on the other hand, at the whole program level. 
 
2.2.1. Executability of a Process 
A PROMELA process with a set L of statements is a 
finite state machine P = (Q, T, q0, F) where 
 

 � =  { qi = (i, l1, …, lm, g1, …, gn, c1, …, co) ∈
ℕ x ∏ �� x�

��� ∏ �� x�
��� ∏ ��

�
���  } is the finite 

set of states. Each state is defined by its id, the 
value of each local and global variable, and the 
value of each channel; 

 � ⊂ � x L x � is the set of labeled transitions; 
 �� is the initial state; 
 � is the set of final states. 

 
Denote (qi,qj) ∈ Q2 and l ∈ L (l is an instruction in the 
process). Then, t = (qi,l,qj) ∈ T iff the process can change 
its state from qi to qj by only executing l. This means that 
an instruction syntactically denotes two consecutive 
states. A transition can be executed only if it is enabled: 
 

 l is a non-blocking instruction: an assignment, a 
conditional instruction with a satisfied guard, or 
any control-flow atomic instruction (else, skip, 
break, etc); 

 l is an asynchronous message sent over a non-
full channel; 

 l is an asynchronous message received from a 
non-empty channel; 

 l is an unblocking rendez-vous message. 
 
If a transition is enabled and executed, the process 
changes its state from the source state to the target state 
by applying an appropriate action function. This action 
function modifies the values of the variables, the content 
of the channels, etc. If more of one instruction is enabled, 
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the semantics engine randomly selects one of them and 
executes it.  
 
2.2.2. Executability of a Program 
A PROMELA program can be simply seen as the 
asynchronous product of the automata of each process. 
Then, a PROMELA program is defined by: 
 

 � ⊆  ∏ ��
�
���  where �� is the set of states of the 

process Pi; 
 � is the set of transitions; t = (si,l,sj) ∈ T if it 

exists a transition that changes the state of any 
of the processes by applying l; 

 �� is the initial state; 
 
A transition t is enabled if its equivalent ti is enabled in 
the process pi. If two or more transitions are enabled, the 
semantics engine selects one of them at random and 
executes it (unless there is a defined priority between 
processes). 
 
3. DISCRETE-EVENT PROMELA 
The previous section shortly described the PROMELA 
semantics. As seen, PROMELA does not define either 
explicit time representation or events. But as stated by 
Tripakis (1996), the systems which can be modeled with 
PROMELA can be characterized as real-time systems. 
The representation of time becomes thus important to 
develop a more efficient design. Many timed extensions 
of PROMELA (Tripakis and Courcoubetis 1996; 
Bosnacki and Dams 1998; Nabialek et al. 2008) and the 
algorithms for their verification were studied in the 
literature. In opposite of these approaches which try to 
deal with the algorithms of formal verification and with 
the PROMELA semantics, we propose to integrate the 
DEVS semantics into PROMELA. This approach has 
two main advantages. On the one hand, it gives to 
PROMELA the capability of modeling DES with a lower 
level of abstraction. The model is more accurate and 
formal verification can be applied only on interesting 
paths. Formal verification can also be used to check 
structural properties on the model. Moreover, while 
formal verification deals with finite models, discrete-
event simulation can be used for simulation-based 
verification of behavioral properties on infinite models, 
validation and analysis. On the other hand, modeling 
DES with a syntactic language close to an 
implementation language make easier the translation 
from the conceptual model to the computerized 
simulation model. 
The sections 3.1 and 3.2 will recall concepts around 
discrete-event systems and the DEVS operational 
semantics. Then, the section 3.3 will introduce our new 
extension called Discrete-Event PROMELA (DEv-
PROMELA). 

 
3.1. Discrete-Event Concepts 
DES are a specific class of timed systems (Zeigler 1976, 
Zeigler 1984). A DES can be seen as an extension of a 
Moore Machine, in the sense that the outputs of a DES 

can depend only on its current state. Zeigler (1976) 
introduced two important concepts: the association of a 
lifespan to each state and the hierarchical composition. A 
DES evolves along the events that it emits or consumes, 
the distribution of events can be non-linear and time can 
be represented (through the lifespan concept) by any 
value of the ℝ�-space. A DES thus relies on the 
following notions: 
 

1. Each state has a lifespan whose the value is a 
real. When the lifetime of state expired, the 
current state changes according to the transition 
table. An output is then emitted; 

2. When an input is consumed by a DES, its 
current state changes according to the transition 
table, regardless the current lifetime of the 
current state; 

3. Each event are well-dated. If e1 and e2 are two 
events, thus e1 and e2 can always be ordered; 

4. If two events overcome at the same time, then 
either they are probably equivalent events (e1 = 
e2) or they are prioritized; the priority between 
two events is well-defined (non-deterministic 
behavior are not permitted); 

5. The state trajectory is stable between two 
successful events; 

6. As a result of the previous points, transitions are 
characterized by their nature: internal 
transitions correspond to autonomous behaviors 
while external transitions allow the system to 
react to any external events. 

 
3.2. Overview of the DEVS Formalism 
A DEVS system is built upon DEVS atomic models 
which can be coupled to get a DEVS coupled model. A 
DEVS atomic model is then a small simulation unit 
defined by � = (�, �, �, ��, ��, �, ��) where 
 

 X is the set of inputs; 
 Y is the set of outputs; 
 S is the set of sequential states; 
 ��: � x � → � is the external transition 

function; 
 �� : � → � is the internal transition function; 
 � ∶ � → � is the output function; 
 �� ∶ � →  ℝ�is the time advance function; 
 � = {(�, �) | � ∈ �, 0 ≤  dt ≤  ta(s)} is the set 

of total states. 
 

Taking a DEVS atomic model A in a current state q. If 
the lifespan of q is ended (i.e. q = (s,ta(s))), the model 
changes its state to s’= �� (s). It emits the output y = λ(s). 
If A receives an event x, it change its state according to 
s’= ��(q,x). Otherwise, it stays in q, letting the time 
progress. 
A DEVS coupled model is defined by � =
(�, �, �, {�}, ���, ���, ��, ������) where 
 

 X is the set of inputs; 
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 Y is the set of outputs; 
 D is the name set of components; 
 M is the set of atomic components; 
 EOC is the set of external output coupling; 
 EIC is the set of internal input coupling; 
 IC is the set of internal coupling; 
 Select is the tie-breaking function to choose the 

next event from the set of simultaneous events. 
 
Informally, a DEVS coupled model is composed by 
atomic models. The date of the next event is computed 
by getting the minimum value among all the dates of all 
the next events. By processing an event, each component 
is updated according to its transition functions. If 
multiple events occur at the same date, the Select 
function chooses the next event to proceed. 
 
3.3. Building Discrete-Event PROMELA 
Introducing a new semantics in PROMELA needs to 
define new syntactic elements to model the concepts we 
are adding. The section 3.3.1 introduces these new 
syntactic elements. The section 3.3.2 and 3.3.3 define the 
meaning a DEv-PROMELA model. 

3.3.1. Syntactic Rules 
A new datatype called real is introduced. The purpose of 
real variables is to represent infinite and unbounded real 
values. Real variables can be local or global, and their 
declaration does not differ from any scalar variables: 
 

real i,j,k; 
 
Real variables can be combined in complex structures or 
in arrays, without any restriction. 
An implicit local clock is associated to each process. 
Consequently, like in Timed PROMELA, introducing a 
specific type for clocks is not needed. Each process is 
ensured to have a clock. The clock valuation can be 
accessed through a specific getCurrentDate instruction. 
Clocks can be used to define exactly the date of next 
events. The purpose of clocks is only to determine the 
next event by taking the minimum value of the dates of 
all next events. 
Missing concepts of events, state lifespan and type of 
transitions as viewed in the previous section are then 
introduced. Syntactically, a state is defined between two 
instructions in PROMELA. This means we can easily 
define the lifespan associated to each state and the type 
(internal or external) of the transitions associated to each 
instruction. We extend each statement with the following 
grammar described in the Backus-Naur Form: 
 
<proctype decl> ::= "[" priority "=" <int> "]" <proctype> 
<event stmnt> ::= "[" <timed trans> "]" <stmnt> | <stmnt> 
<timed trans> ::= <clt expr> | <evt expr> | 

<clt expr> "|" <evt expr> 
<clt expr> ::= "clt:" <real expr> "->emit:" <evt val> 
<evt expr> ::= "evt:" <evt val> [ <op> <evt expr> ] 
<op> ::= " |" 
<evt val> ::= <mtype> | "silent" 

<real expr> ::= <real> | "infinity" | /* Any C-function 
returning a real value */ 
 
Each statement is prefixed by an event descriptor (in 
brackets) which defines the lifespan of the source state of 
the considering transitions and how transitions are 
triggered. For instance, look at these instructions: 
 
[clt:3.0->emit:newa] a = a + 3;                                                 (1) 
 
[evt:newc] d = a + 9;                                                            (2) 
 
[clt:lifespan(a)->emit:newa | evt:newb ] b = a * 7;           (3) 
 
(1) defines a state with a lifetime equal to 3 units of time, 
and an internal transition will emit the event "newa". By 
executing this transition, the assignment is executed. (2) 
defines a passive state (with an infinite lifetime) and an 
external transition which will be enabled by receiving the 
event "newc". (3) defines a state with a lifetime equal to 
"lifespan(a)" and two transitions: an internal one which 
will emit the event "newa" and an external one which will 
be enabled by consuming the event "newb". This third 
example shows how event descriptors can define 
transitions either as internal (with the clt command), or 
as external (with the evt command), or as a combination 
of multiple external events with probably one internal 
transition. A PROMELA statement can now label several 
transitions. Note that the default lifespan of each state is 
equal to infinity if an evt descriptor is defined and if there 
is no clt command. The clt command is optional and 
needed only to denote internal transitions. For 
convenient purposes, if a statement is not prefixed by an 
event descriptor, that is interpreted like it is prefixed by  
[clt:0 ->emit:silent]. The statement is executed without 
any delay by emitting the silent event. Priority 
descriptors on processes are also added. Indeed, the 
concept of DEv-PROMELA priority allows the ordering 
the events coming (resp. generating) from (resp. by) each 
process. This is a different meaning than the PROMELA 
initial concept of priority. 
 
3.3.2. Semantics of a DEv-PROMELA Process 
A DEv-PROMELA process P with a set L of statements 
is an automaton � = (��, �, ��, ��, ��, �) where 
 

 �� =  { si = (��, i, l1, …, lm, g1, …, gn, c1, …, co) ∈
ℕ x ∏ �� x�

��� ∏ �� x�
��� ∏ ��

�
���  } is the finite 

set of states; 
 � is the finite set of events; E contains at least 

the silent event denoted ε; 
 �� ∶  �� → �� x E is the partial function that 

defines transitions labeled by a statement l ∈ L; 
note that it is a partial function because no 
internal transition can be defined for passive 
state. 

 �� ∶  � x E → � is the partial function that 
defines external transitions labeled by a 
statement l ∈ L; note that it is a partial function 
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because for a state q, there is not necessarily an 
external transition defined for each event e; 

 �� is the initial state; 
 � is the set of final states. 

 
We also define: 
 

 ��: �
�� →  ℝ� 

��(�) ↦  ��
 is the lifespan function; 

 � = { � = (�, ��), � ∈ �� and 0 ≤ dt ≤ ta(s) } is 
the set of total states; 

 �� = { � = (�, 0), � ∈ �� } 
 �� = { � = (�, ��(�)), � ∈ �� } 

 
Take s a state, and l a statement with an event descriptor. 
If l denotes an internal transition, l is enabled and ��(s) is 
triggered only if the value of the current clock of the 
process is equal to the lifetime ta(s). The event associated 
to the transition is emitted and the next event date for the 
process is computed by:  
 

de = getCurrentDate + ta(s’) if (s’; e) = ��(s). 
 

If l denotes an external transition on an event e, l is 
enabled if the process receives the event e. If the next 
event of the current process is at the same date than 
another external event, the priority statement resolves the 
conflict. If ta(s) = ∞, all of the statements related to s are 
blocked. Only external transitions can be enabled in this 
case. Because there is at most one internal transition per 
state and because there is a priority statement, a DEv-
PROMELA process is deterministic. 
What about the non-determinism expressed in the 
PROMELA control-flow structures ? 
 

 
 
Take a look at the Program 2. In the meaning of 
PROMELA, both guards are satisfied, meaning one of 
them is non-deterministically chosen. From another point 
of view, this means the model checker will verify the 
both paths, and this is the purpose of a good low-level 
verification model. But, if we take a look at the state 
space (Figure 3), we can clearly note that there is three 
cases. Two of them are unambiguous; concerning the 
intersection, the behavior is not well-defined. 
Transposed to an event system, this model would 
describe two situations: 
 

1. Denotes e1 and e2 two different events that 
overcome at the same date. The verification 
model does not care about which event is 

consumed at first; the two orders will be 
checked; 

2. The lifespan of the state (x=2, y=2) is ended, but 
two behaviors are possible. In this case, the 
verification model is not well-defined and effort 
are put into the verification of paths that are 
maybe meaningless for the real system. 

 
We mean that the non-determinism involved by the 
PROMELA control-flow structures doesn't come 
necessarily from the non-deterministic nature of the 
considered program, or from a high-level abstraction, but 
can be involved by incomplete specifications. 
 
 

 
Figure 1 : State space of the Algorithm 2. T1 denotes 
the transition labelled by the statement line 4, and 
T2 the transition labelled by the statement line 5. 
 
Enforcing determinism allows a unique, clear and 
unambiguous interpretation of the model in the real 
world, even non-determinism is really convenient for the 
verification of high-level models. 
Taking into account these considerations, the Program 3 
introduces a DEv-PROMELA version of the Program 2. 
 

 
 
This program can be interpreted in three manner: 
 

1. if t1 ≠ t2, there is not ambiguity: the state 
concerned by the branches are not the same. 
Indeed, if t1 is lesser than t2, T1 will be always 
triggered in first. If t2 is lesser than t1, T2 will be 
always triggered in first; 

2. if t1 = t2, this model is non-deterministic. 
Determinism is then enforced by always 
executing the first enabled branch T1 in the case 
(x=2, y=2). 
 

This property is applicable to any branching structures. 
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3.3.3. Semantics of a DEv-PROMELA Program 
A DEv-PROMELA program is a product of the automata 
of each process that composed the program, as in 
PROMELA. The difference is that, while in PROMELA 
the sequences of the states are interleaved (i.e. the final 
graph is composed by all the possible permutations of the 
statements), DEv-PROMELA takes into account only the 
execution paths given by the order of the events. Denote 
e1 and e2, two events of the DEv-PROMELA system 
composed by two processes P1 and P2. If date(e1) < 
date(e2), then the statement associated to e1 will be 
executed in first. Both processes update their state 
according to the action function and computes their local 
next event e1’ and e2’. The next event date is then given 
by min(e1’ ; e2’).  
If date(e1) = date(e2), priority as defined in the previous 
section determines the next event between both events. 
Non-determinism is implicitly resolved for a precise 
instance: this does not mean that non-determinism 
doesn’t exist in the global system. Because order of 
events can depend on the execution context, multiple 
branches could exist for a given global state. A 
verification algorithm would then have to check any 
possible orders of events. But in opposite of PROMELA, 
for a given order of events, one and only one path can be 
walked through. 
It is also important to note that if the value of a global 
variable is changed, an implicit event is emitted. Other 
processes change their respective state. Their respective 
clock is however preserved, meaning their respective 
next event remains unchanged. 
 
4. APPLICATIONS 
We used our extension to model two examples of 
systems. First is the well-known Fischer’s Mutual 
Exclusion Protocol. Second concerns the Alternate Bit 
Protocol with Finite Queue and Infinite Queue. 
Verification of properties were done through combined 
formal verification using the classic SPIN model-
checker, and simulation-based verification using the 
MS4Me Environment. Because the DEv-PROMELA 
semantics is the same than the one of DEVS, the 
translation from DEv-PROMELA specifications to DNL 
format were easy.  
 
4.1. Fischer’s Mutual Exclusion Protocol 
The Fischer's Mutual Exclusion Protocol (Abadi and 
Lamport 1994) looks like a very simple algorithm 
(Algorithm 4) for handling mutual exclusion: firstly, the 
process p checks whether another process either is 
already or wants to enter the critical section (line 4). If it 
is the case, the process stays in an active wait. Then, the 
process p declares his willing to enter the critical section 
before entering a sleep mode. When it wakes up, it 
checks whether another process is entered the critical 
section during its sleeping. If it is the case, the protocol 
restarts from the beginning, else the process can enter the 
critical section. Fisher's protocol can be seen as a timed 
system, and also a timed event system.  

Using DEv-PROMELA, it is easy to obtain a verification 
and a simulation model (Program 6) of this algorithm. 
Because of the system can be considered as closed, 
almost of the transitions correspond to an autonomous 
behaviors which depend only on the current state. 
Priority ensures that each process will have the hand in 
turn. When a process is sleeping, it is blocked until the 
delay is exactly expired or until another process changes 
the value of the id variable. This is modeled in l.16: the 
model stays in this state during delay units of time or 
until it receives the changepid event. In other words, the 
next event for a process will be at getCurrentDate+delay 
after the execution of line 14.  
 

 
 
If both processes wake up at the same time, priority will 
decide of the next event to proceed. Remember that the 
execution of this DEv-PROMELA program is 
deterministic.  
The structural preservation property of DEv-PROMELA 
is out-of-scope of this paper. This property allows the 
generation of an untimed PROMELA verification model 
which has the same structural properties than the DEv-
PROMELA model (Program 5). Thanks to that model, 
two properties can be easily verified:  
 

1. “Two processes cannot be in critical section in 
same time." (□ ! (�� ∧  ��))” 

2. “Is there cases in which two processes cannot be 
in critical section in same time ?” (◊ ! (�� ∧  ��)) 

 
While the property 2 is well-verified by the model, the 
SPIN model-checker returns a violation error as expected 
for the property 1. Indeed, a process P can execute the 
l.11 and l.14, then a process Q can execute the l.11 and 
l.14 and enters the critical section while P is always in it. 
This is well-known that the timed constraint delay > C 
(where C is the longest time that a process may take to 
perform a step while trying to enter the critical section) 
must be met to guarantee the mutual exclusion by this 
protocol. This only result could enforce the designers to 
design solutions to prevent such an error. 
But if the system is well specified, for example if the 
duration taken to execute each instruction is quantified, a 
simulation-based verification can bring another 
interpretation. Remember that the DEv-PROMELA 
semantics is the same than the DEVS semantics, meaning 
a DEv-PROMELA model is a DEVS model. As a 
consequent, a DEv-PROMELA model is also a 
simulation model. We encode the Program 6 into a DNL 
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format given in Appendix A by translation; then, we 
simulate it into the MS4 Me Environment (Figure 2). A 
simulation-based verification is then performed. In the 
context in which two processes exactly acts in the same 
manner and with the semantics of Classic DEVS, the 
analysis reveals that whatever the value of the delay, two 
processes can’t be in the critical section at the same time. 
Property 1 is thus verified by this DEv-PROMELA 
model. How interpreting the difference between the 
results of formal verification and simulation ? On the one 
hand, the formal verification gives first information 
about the correctness of the model, on a high-level 
abstraction. For example, the formal verification ensures 
the absence of deadlocks. It can help designer to fix the 
design before considering other forms of testing. On the 
other hand, the simulation-based verification gives more 
precise information to the designer to understand what 
really happened. Because the DEv-PROMELA model is 
at lower level of abstraction than the PROMELA model, 
the designers can decide that the error found by the model 
checker is outside the scope of the model or not. Another 
advantage is that discrete-event simulation can be also 
used for validation at the same time. Designer can then 
get information about the validity of this model against 
its intended use. 
 
4.2. Alternating Bit Protocol 
We also use DEv-PROMELA to model the Alternating 
Bit Protocol (APB) (Bartlett et al. 1969), which has been 
used to illustrate the analysis capabilities of PROMELA 
(Holzmann 2004). The only things we have to do is to 
model the time T to transmit a bit, and the time T1 up to 
that we can consider a message is lost. The obtained 
model does not really differ from the PROMELA one. 
But what happened if we want take into account a queue 
which stores messages before sending them ? As shown 
by Zeigler and Nutaro (2014), the capacity of the queue 
has an impact on the behavior of the system. Modeling 
the queue in PROMELA certainly increases the size of 
the state space, and reduces the efficiency of the formal 
verification algorithms. But DEv-PROMELA can be 
used in two manner: as a verification model, assumptions 
can be verified in idealized conditions (in this case, by 
abstracting the capacity of the queue or by considering 
there is no queue), and as a simulation model. Then, the 
DEv-PROMELA model of the APB can be coupled with 
any simulation model of queues. The simulation-based 
verification then extends the formal verification by 
exploring scenarios outside the scope of the formal 
verification. 

 

 

 
Figure 2 : State Diagram of the DEv-PROMELA 
model of Fischer's Algorithm in MS4 Me 
Environment. 
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5. CONCLUSION AND FUTURE WORK 
We described in this paper some preliminary work to 
develop a new extension of PROMELA for the modeling 
and simulation of DES. This is done by introducing the 
DEVS operational semantics into PROMELA, without 
breaking the verification capabilities of PROMELA. A 
DEv-PROMELA model is then a verification model and 
a simulation model which can be verified by combining 
formal verification for structural properties and 
simulation-based verification for behavioral properties. 
The other advantage is that we are providing a syntactic 
formalism for DEVS modeling. This can help to 
implement computerized models from conceptual 
models. This maybe also enables the formal verification 
of the simulation models by using rewriting rules (for 
example from DEv-PROMELA to DNL).  
The major drawbacks of our methodology is that DEv-
PROMELA is limited to the Classic DEVS and its 
subclasses. Parallel DEVS cannot be modelled with this 
approach due to the limitations of PROMELA. But it can 
be interested to study how introducing the semantics of 
Parallel DEVS into PROMELA. Future work also 
concerns providing a formal proof that a DEv-
PROMELA model is well a DEVS model, and working 
on limiting the formal verification algorithms only to the 
paths which are really expressed by the DEv-PROMELA 
models, without generating all the state space of the 
PROMELA equivalent. 
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APPENDIX A: DEV-PROMELA MODEL OF 
FISCHER’S ALGORITHM ENCODING IN THE 
DNL FORMAT 
 
use delay with type double and default “0.1”! 
use id with type int and default "1"! 
use pid with type int and default "0"! 
 
generates output on silent! 
generates output on changedpid1! 
generates output on changedpid0! 
accepts input on changedpid0! 
accepts input on changedpid2! 
 
to start hold in S1 for time 0.1! 
after S1 output silent! 
from S1 go to S2! 
 
when in S1 and receive changedpid0 go to S1! 
when in S1 and receive changedpid2 go to S1! 
external event for S1 with changedpid0 
<%pid = 0;%>! 
external event for S1 with changedpid2 
<%pid = 2;%>! 
 
internal event for S1   
<%if(pid==0) holdIn("S2",0.1); 

else holdIn("S1",0.1);%>! 
hold in S2 for time 0.1! 
after S2 output changedpid1! 
from S2 go to S3! 
 
when in S2 and receive changedpid0 go to S2! 
when in S2 and receive changedpid2 go to S2! 
external event for S2 with changedpid0 
<%pid = 0;%>! 
external event for S2 with changedpid2 
<%pid = 2;%>! 
 
internal event for S2   
<%pid = id;%>! 
hold in S3 for time delay! 
when in S3 and receive changedpid0 go to S1! 
when in S3 and receive changedpid2 go to S1! 
 
external event for S3 with changedpid0 
<%pid = 0; holdIn("S1",0.1);%>! 
external event for S3 with changedpid2 
<%pid = 2; holdIn("S1",0.1);%>! 
after S3 output silent! 
from S3 go to S4! 
 
internal event for S3   
<%if(pid==id) holdIn("S4",0.1); 
else holdIn("S1",0.1);%>! 
hold in S4 for time 0.1! 
after S4 output changedpid0! 
from S4 go to S1! 
 
when in S4 and receive changedpid0 go to S4! 
when in S4 and receive changedpid2 go to S4! 
external event for S4 with changedpid0 
<%pid = 0;%>! 
external event for S4 with changedpid2 
<%pid = 2;%>! 
 
internal event for S4   
<%pid = 0;%>! 
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