
GENERATION OF DISPATCHING RULES FOR JOB SEQUENCING IN SINGLE-

MACHINE ENVIRONMENTS

Johannes Karder(a), Andreas Scheibenpflug(b), Stefan Wagner(c), Michael Affenzeller(d)

(a),(b),(c),(d)Heuristic and Evolutionary Algorithms Laboratory

University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg, Austria
(b),(d)Institute for Formal Models and Verification

Johannes Kepler University, Altenbergerstraße 69, 4040 Linz, Austria

(a)jkarder@heuristiclab.com, (b)ascheibe@heuristiclab.com, (c)swagner@heuristiclab.com, (d)maffenze@heuristiclab.com

ABSTRACT

A typical way to schedule a set of jobs is to evaluate and

optimize different job sequences and then process them

in the best found order. This global optimization

approach can be applied for any set of jobs.

Unfortunately, optimizing a subset of these jobs requires

a new optimization run for this particular subsequence.

In this paper we show the generation of dispatching rules

that aid job sequencing in single machine environments

using genetic programming and delta features. The rules

are applied to sets of jobs and yield priorities depending

on certain characteristics. These priorities are then used

to create job orders dynamically depending on the last

executed job. Once generated for specific scenarios, the

rules provide on-the-fly sequence generation capability

for queued subsets of jobs. Finally, we compare the

performance and robustness of the generated rules

against the scheduling approach.

Keywords: dispatching rules, sequence optimization,

scheduling, single-machine, genetic algorithms, genetic

programming

1. INTRODUCTION

We can categorize manufacturing shops into two groups:

Those that have a small product catalog, but produce

items in very high lot sizes and those that produce in

smaller lot sizes and have a large product catalog. A long

list of distinct products combined with small lot sizes can

lead to volatile production scenarios, because

manufacturers offering a wide variety of products might

not produce all of them at the same time, but rather work

on-demand and only have to produce a certain subset of

their product catalog.

This paper focuses on low volume production scenarios

where a single machine needs different tools to be set up

to process a number of different jobs placed in a process

queue. These jobs are a selection from a superset of jobs,

namely the product catalog, based on existing orders.

New orders and therefore additional jobs may be added

to the process queue at any given time. The goal is to

minimize production costs in terms of set-up time and

engage in sustainable production steering to increase

long term competiveness on the market.

To enable live scheduling for known and newly added

jobs, an approach that employs dispatching rules (i.e.

priority rules) is investigated. We use the concept of delta

features to create rules which take job similarities into

account. Whenever new jobs are added to the process

queue, a predefined dispatching rule can be used to

schedule the jobs. Each rule is created by means of

genetic programming (Koza 1992) and specifically

designed for a certain environment, i.e. a machine that is

used to create products from a certain product catalog.

The rest of this paper is structured as follows: In Section

2 we provide insights into others’ related work. Section

3 gives a brief definition of the addressed scheduling

problem. Our methodology is explained in Section 4.

Experiments, including algorithm and problem

parameters, are shown in Section 5. The final Sections 6

and 7 show achieved results, as well as drawn

conclusions and possible future research topics,

respectively.

2. RELATED WORK

During the last centuries, scheduling problems have been

widely discussed in literature. Ullman (1975) writes

about NP-completeness of different scheduling

problems, including the general scheduling problem and

single execution time scheduling. Lenstra et al. (1977)

classify scheduling problems on single, different and

identical machines and experiment with various

parameter to influence complexity. Both Davis (1985)

and Van Laarhoven et al. (1992) use evolutionary

concepts such as genetic algorithms or simulated

annealing for problem solving. Cheng et al. (1999)

created a tutorial survey of works on various hybrid

approaches for job-shop scheduling practices using

genetic methods. Dispatching rules itself have also been

addressed numerous times, e.g. by Blackstone et. al

(1982), Holthaus and Rajendran (1997) or Tay and Ho

(2008). Beham et al. (2008) combines automated

generation of dispatching rules and parallel simulation to

solve scheduling problems. Comparisons between

standard scheduling approaches using genetic algorithms

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

117

mailto:jkarder@heuristiclab.com
mailto:ascheibe@heuristiclab.com
mailto:swagner@heuristiclab.com
mailto:maffenze@heuristiclab.com

and the application of dispatching rules have been done

by Kim et al. (2007), as well as Longo (2012). In both

cases, it was concluded that scheduling performs better

than dispatching. Previous work in the domain of

dispatching rules for job scheduling was also done by

Kofler et al. (2009), where sequence-dependent set-up

costs were minimized using both scheduling and

dispatching concepts. The authors suggested multiple

simple priority rules and then used genetic programming

to synthesize more complex rules which use different

features from the specified jobs. The authors of this paper

(Karder et al. 2015) also created a simulator for a specific

kind of scheduling problem from scratch by using Sim#

(Beham et al. 2014) with custom extensions. Experience

gained from that work is used within this paper.

3. PROBLEM DESCRIPTION

The scheduling problem consists of a number of jobs that

have to be scheduled on a single machine. Each job has

a certain demand for tools that need to be set up inside

the machine before the respective job can be processed

by an operator. After the job has been processed, all tools

are removed from the machine. A tool storage allows the

machine to automatically load and unload most of the

required tools without operator interaction. Since

different jobs require different sets of tools and the

storage capacity is limited, the storage layout can only be

configured to support a certain number of jobs. Sets of

jobs that can be executed with a particular storage

configuration are referred to as job batches. When

switching from one job batch to another, the operator has

to manually alter the storage configuration to contain all

required tools for the next batch. The time consumption

of all manual tool changes is also included in the set-up

time evaluation. The problem can be evaluated by using

three different quality criterions:

1. Set-up Time (ST)

2. Batch Count (BC)

3. Manual Tool Change Count (MTCC)

Changing the quality criterion yields different quality

values. ST and MTCC are highly correlating, meaning

that lower set-up times lead to less manual tool changes

and vice versa, whereas a lower set-up time usually also

leads to a greater batch count. When a job sequence

needs to be evaluated, a new storage layout is generated

in the following way: All referenced tools (starting with

job 1) are added to the storage as long as possible. If tools

from a job cannot be added anymore, this job is used to

start a new job batch and the storage will be altered to

contain all tools for the new job batch. If replacing tools

is not possible, e.g. because of storage constraints, all

tools will be removed before the new ones are added.

4. METHODOLOGY

We use HeuristicLab (HL) (Wagner et al. 2014), a

paradigm-independent and extensible environment for

heuristic optimization, as the underlying software

foundation. It features ready-to-use implementations of

many different evolutionary algorithms and problem

types, including special variants of genetic algorithms

and basic problem implementations that can easily be

adapted to specific needs. HeuristicLab’s plug-in concept

allows to easily extend its functionality by implementing

new plug-ins based on existing framework elements.

Taking advantage of the plug-in system, we introduce a

new problem type which employs a simulation model for

evaluating the performance of the dispatching rules and

uses its own solution encoding and respective algorithm

operators to make it compatible with population-based

evolutionary algorithms. To evaluate scheduling

solutions, we employ a discrete-event simulation that is

built upon the Sim# library. It is able to simulate every

movement of the machine’s main mechanical parts,

which allows us to accurately compute the set-up times

of the real machine.

Rule generation is done using genetic programming

(GP), a concept introduced by John Koza in 1992. GP,

which is included in the list of default HL plug-ins, is a

method where objects in form of trees are built using

evolutionary concepts such as selection, crossover and

mutation. In our case, a tree represents a dispatching rule,

i.e. a mathematical formula, in form of a syntax tree. This

formula consists of different mathematical operations

and operands, including variables and constants. An

example of a simple tree is depicted in Figure 1.

Figure 1: A random GP tree.

The size of a tree is traditionally limited by a maximum

length and depth. The tree length is the total number of

nodes and the depth is the number of edges from a node

to the root node. The tree shown in Figure 1 has a length

of 6 and a maximum depth of 2.

To evaluate formulas containing variables, it is necessary

to supply a dataset which defines values for these

variables. These values are also called features and a set

of features supplied to a formula is called row or sample.

Trees are therefore evaluated for rows in datasets. Our

dataset contains one row for each job from the pool.

Some features can be calculated immediately for each

job. All other features – we call them delta features –

must be calculated on-the-fly, because their values are

state-dependent. All delta features are in a way similarity

measures, which allow the rule to prioritize according to

the current state. Each rule is applied 𝑚 times to a

random subset of 𝑛 jobs from the pool. Out of this subset,

one job is selected to be the first job processed by the

machine. For all remaining (i.e. unprocessed) jobs of the

subset, the delta features to the currently processed job

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

118

are calculated. Examples of such features would be the

number of same tools, the number of same tool types or

the number of same tool kinds the two jobs share. With

these additional features, the rule can be used to calculate

priorities for the remaining jobs. The job with the highest

priority is selected to be processed next, the current job

is updated and another iteration is executed until all jobs

have been processed. The qualities of the resulting job

sequence are calculated according to the selected quality

criterion and summed up. The average quality – which

should be minimized – makes up the quality of the rule.

Pseudocode for this procedure can be seen in Listing 1.

r := rule
r_q := 0.0 // rule's summed quality
P := product catalog // all available jobs
repeat m times
 shuffle P
 J := first n elements from P // orders
 S := empty list of jobs
 c := first element from J // current job
 S.add(c)
 repeat n - 1 times
 R := J \ S
 calc. delta features from jobs in R to c
 b := best job from R according to r
 S.add(b)
 c := b
 endrepeat
 q := quality criterion for job sequence def. by S
 r_q := r_q + q
endrepeat
return r_q / m // rule's average quality

Listing 1: Pseudocode describing the evaluation of a

single dispatching rule.

Consequently, the dispatching rule is trained to work for

a certain product catalog. Subsets are used to simulate a

daily or weekly amount of orders. It is important not to

train with the whole catalog of products, since there will

most likely never be an order containing every product

and overfitting to the complete catalog itself should be

avoided. Instead, more diverse batches of jobs should be

used to mix different smaller orders and create a more

general rule for the specific scenario.

5. EXPERIMENTS

To construct an exemplary production environment, we

create a product catalog that contains 34 different jobs.

These jobs are used to generate a dispatching rule. The

evaluation parameters are set as follows:

𝑚 = 5 (sample size)

𝑛 = 18 (group size)

Additionally, 4 random subsets of jobs containing 10, 15,

20 and 25 jobs are created to reflect daily or weekly

orders. The jobs are then scheduled by applying the best

found rule. Afterwards, the same subsets are optimized

with a standard scheduling approach using a

combinatorial optimization problem, which is optimized

by a genetic algorithm with offspring selection (OSGA)

(Affenzeller and Wagner 2005). We then compare the

best found job sequence with the sequence suggested by

the rule. All problem instances for the standard

scheduling approach and the dispatching approach have

been configured as shown in Table 1.

Table 1: Scheduling and dispatching problem

parameters.

Parameter Value

Scheduling

Optimization Target Job Order

Quality Criterion Set-up Time

Dispatching

Allowed GP Symbols Add, Sub, Mul, And, Or,

Not, Xor, GreaterThan,

LessThan, IfThenElse,

Variable, Constant

Max. Tree Depth 17

Max. Tree Length 100

Sample Size 5

Group Size 18

Quality Criterion Set-up Time

The OSGA configurations were similar for the both

approaches. Multi-operators were used to induce

different operator behaviors into the corresponding

optimization procedure. Constant comparison factors

were set to work with the concept of weak offspring

selection, which means that children are included in the

next population if they outperform their weaker parent.

For the dispatching approach, the mutation rate was

increased by 5 % and gender-specific selection was

replaced with proportional selection. A list of algorithm

parameters is shown in Table 2.

Table 2: OSGA parameters for the scheduling (1) and

dispatching (2) approach.

Parameter Value

Lower Comp. Factor 0

Comp. Factor Modifier –

Crossover Multiple(1)

SubtreeSwapping(2)

Elites 1

Max. Generations 1000

Max. Sel. Pressure 100

Mutation Probability 10 %(1)

15 %(2)

Mutator Multiple

OS Before Mutation False

Population Size 100

Selector Gender-specific(1)

Proportional(2)

Success Ratio 1

All experiments have been conducted on a distributed

optimization cluster (HeuristicLab Hive) with 10

repetitions to produce valid empirical test results.

6. RESULTS

Table 3 shows a direct comparison between the

scheduling and dispatching approaches. The scheduling

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

119

results are the set-up times of the best found job

sequences. The dispatching results are the set-up times of

the sequences that are generated by the best dispatching

rules found for each job set.

Table 3: Test result comparison between scheduling and

dispatching approach.

Job Set
Set-up Time [min]

Scheduling Dispatching

js1 (10 jobs) 38.15 39.35 (+3.15 %)

js2 (15 jobs) 55.45 59.14 (+6.91 %)

js3 (20 jobs) 56.03 62.59 (+12.07 %)

js4 (25 jobs) 92.73 103.42 (+11.74 %)

As already described in previous applications (Kim et al.

2007, Longo 2012), the experiments show that the

standard scheduling approach achieves better results than

the dispatching rules.

By analyzing the results of the executed runs, it appears

that the dispatching approach needs more adjustments to

produce more robust rules. In particular, we have a look

at the 10 best rules that were generated within the 10

repetitions, i.e. each best rule of each run. Figure 2 shows

a box-plot of these rules’ achieved set-up times, applied

to the 4 different job sets. Table 4 lists more detailed

measures.

Figure 2: Box plots of set-up times.

Table 4: Statistical overview of the achieved set-up times

for each job set.

Measure
Set-up Time [min]

js1 js2 js3 js4

Min 38.35 56.99 58.69 102.34

Max 44.26 62.91 107.06 144.12

Med 40.11 59.12 62.69 105.96

Avg 41.22 59.14 66.29 113.31

SD 2.50 1.59 14.41 16.51

Var 6.23 2.52 207.51 272.54

Q1 39.35 58.37 60.86 103.55

Q3 43.89 59.24 62.81 111.71

The rules are not totally stable, as the resulting set-up

times have a standard deviation between approximately

1.5 and 16.5 minutes, depending on the job set.

The average runtime of the standard scheduling runs was

around 3.5 hours with a minimum of 1.5 hours and a

maximum of 4.5 hours. Approximately the same time

was consumed on average by the runs of dispatching

approach. The execution time of an OSGA run can vary

because normally the number of generations is not

directly limited by the algorithm parameters itself, but

indirectly through the performance of the algorithm

during offspring creation.

7. CONCLUSION

We were able to generate rules that enable live

scheduling and therefore speed up the scheduling process

itself. By applying a predefined rule, respective

schedules can be calculated immediately, whereas the

standard scheduling approach must be executed

separately for each set of jobs. It is also possible to

generate multiple rules for a specific environment, which

can then be applied to a subset of jobs to generate

alternative sequences.

Looking at the results, it can be seen that the dispatching

approach cannot reach the quality levels of the standard

scheduling approach. This is expected and can be

explained by two facts. First of all, the scheduling

approach is purely designed to evaluate many different

sequences of the respective jobs, which in the end leads

to good scheduling qualities. The dispatching approach

is designed to evaluate many different dispatching rules.

Two distinct rules can however yield the same job

sequence. To get 𝑛 different job sequences, at least 𝑛

different rules have to be generated. Secondly, the

scheduling approach’s goal is to yield the best sequence

for a specific subset of jobs, whereas the dispatching

approach’s goal is to yield a general rule that is able

create a good schedule for any arbitrary subset of jobs

from the product catalog. Additionally, the dispatching

approach should be tuned to produce more robust rules.

This could be done by e.g. changing the allowed GP

symbols or identifying more significant features. Both

approaches consume a similar amount of runtime when

executed. The runtime-limiting factor is the OSGA’s

ability to produce better offspring.

Further research includes the generation of multiple

dispatching rules for a single product catalog and the

creation of a rule portfolio. This portfolio would add an

additional layer of optimization in which either multiple

rules are applied to create different job sequences to

choose from, or additional techniques for on-the-fly rule

selection could be implemented.

ACKNOWLEDGMENTS

The work described in this paper was conducted within

the NPS (Sustainable Production Steering) project and

funded by the Austrian Research Promotion Agency

(FFG).

REFERENCES

Affenzeller M., Wagner S., 2005. Offspring Selection: A

New Self-Adaptive Selection Scheme for Genetic

Algorithms. Proceedings of the 7th International

Conference on Adaptive and Natural Computing

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

120

Algorithms, pp.218-221. 21-23 March 2005,

Coimbra, Portugal

Beham A., Winkler S., Wagner S., Affenzeller M., 2008.

A Genetic Programming Approach to Solve

Scheduling Problems with Parallel Simulation.

Proceedings of the 22nd IEEE International

Symposium on Parallel and Distributed Processing,

pp.1-5. 14-18 April 2008, Miami, USA

Blackstone J.H., Phillips D.T., Hogg G.L., 1982. A state-

of-the-art survey of dispatching rules for

manufacturing job shop operations. International

Journal of Production Research, 20(1):pp.27-45

Cheng R., Gen M., Tsujimura Y., 1999. A tutorial survey

of job-shop scheduling problems using genetic

algorithms, part II: hybrid genetic search strategies.

Computers & Industrial Engineering, 36(2):pp.343-

364

Davis L., 1985, July. Job Shop Scheduling with Genetic

Algorithms. Proceedings of the First International

Conference on Genetic Algorithms and Their

Applications, pp.136-140. 24-26 July 1985,

Pittsburgh, USA

Holthaus O., Rajendran C., 1997. Efficient dispatching

rules for scheduling in a job shop. International

Journal of Production Economics, 48(1):pp.87-105

Kim I., Watada J., Shigaki I., 2008. A comparison of

dispatching rules and genetic algorithms for job

shop schedules of standard hydraulic cylinders.

Soft Computing, 12(2):pp.121-128

Kofler M., Wagner S., Beham A., Kronberger G.,

Affenzeller M., 2009. Priority Rule Generation

with a Genetic Algorithm to Minimize Sequence

Dependent Setup Costs. In: Moreno-Díaz R.,

Pichler F., Quesada-Arencibia A., eds. Computer

Aided Systems Theory - EUROCAST 2009.

Heidelberg, Germany:Springer, pp.817-824

Koza J.R., 1992. Genetic programming: On the

Programming of Computers by Means of Natural

Selection. Cambridge, USA:The MIT Press

Lenstra J.K., Kan A.R., Brucker P., 1977. Complexity of

Machine Scheduling Problems. Annals of Discrete

Mathematics, 1:pp.343-362

Longo F., 2012. On the short period production planning

in industrial plants: a real case study. International

Journal of Simulation and Process Modelling,

8(1):pp.17-28

Tay J.C., Ho N.B., 2008. Evolving dispatching rules

using genetic programming for solving multi-

objective flexible job-shop problems. Computers &

Industrial Engineering, 54(3):pp.453-473

Ullman J.D., 1975. NP-Complete Scheduling Problems.

Journal of Computer and System Sciences,

10(3):pp.384-393

Van Laarhoven P.J., Aarts E.H., Lenstra, J.K., 1992. Job

Shop Scheduling by Simulated Annealing.

Operations Research, 40(1):pp.113-125

Wagner S., Kronberger G., Beham A., Kommenda M.,

Scheibenpflug A., Pitzer E., Vonolfen S., Kofler

M., Winkler S., Dorfer V., Affenzeller M., 2014.

Architecture and Design of the HeuristicLab

Optimization Environment. In: Klempous R.,

Nikodem, J., Jacak W., Chaczko Z., eds. Advanced

Methods and Applications in Computational

Intelligence. Cham, Switzerland:Springer, pp.197-

261

AUTHORS BIOGRAPHIES

JOHANNES KARDER received his Master in software

engineering in 2014 from the University of Applied Sci-

ences Upper Austria and is a research associate at the Re-

search Center Hagenberg. His research interests include

algorithm theory and development as well as production

planning and logistics optimization. He is a member of

the HeuristicLab architects team.

ANDREAS SCHEIBENPFLUG received his Master in

software engineering in 2011 from the University of Ap-

plied Sciences Upper Austria and is a research associate

at the Research Center Hagenberg. His research interests

include parallel and distributed computing. He is a mem-

ber of the HeuristicLab architects team.

STEFAN WAGNER received his PhD in technical sci-

ences in 2009 from the Johannes Kepler University Linz,

Austria. He is a professor at the University of Applied

Sciences Upper Austria, Hagenberg Campus. He is the

project manager and head developer of the HeuristicLab

optimization environment.

MICHAEL AFFENZELLER has published several pa-

pers, journal articles and books dealing with theoretical

and practical aspects of evolutionary computation, ge-

netic algorithms, and meta-heuristics in general. In 2001

he received his PhD in engineering sciences and in 2004

he received his habilitation in applied systems engineer-

ing, both from the Johannes Kepler University of Linz,

Austria. Michael Affenzeller is professor at University of

Applied Sciences Upper Austria, Hagenberg Campus.

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

121

