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ABSTRACT 

A typical way to schedule a set of jobs is to evaluate and 

optimize different job sequences and then process them 

in the best found order. This global optimization 

approach can be applied for any set of jobs. 

Unfortunately, optimizing a subset of these jobs requires 

a new optimization run for this particular subsequence. 

In this paper we show the generation of dispatching rules 

that aid job sequencing in single machine environments 

using genetic programming and delta features. The rules 

are applied to sets of jobs and yield priorities depending 

on certain characteristics. These priorities are then used 

to create job orders dynamically depending on the last 

executed job. Once generated for specific scenarios, the 

rules provide on-the-fly sequence generation capability 

for queued subsets of jobs. Finally, we compare the 

performance and robustness of the generated rules 

against the scheduling approach. 

 

Keywords: dispatching rules, sequence optimization, 

scheduling, single-machine, genetic algorithms, genetic 

programming 

 

1. INTRODUCTION 

We can categorize manufacturing shops into two groups: 

Those that have a small product catalog, but produce 

items in very high lot sizes and those that produce in 

smaller lot sizes and have a large product catalog. A long 

list of distinct products combined with small lot sizes can 

lead to volatile production scenarios, because 

manufacturers offering a wide variety of products might 

not produce all of them at the same time, but rather work 

on-demand and only have to produce a certain subset of 

their product catalog. 

This paper focuses on low volume production scenarios 

where a single machine needs different tools to be set up 

to process a number of different jobs placed in a process 

queue. These jobs are a selection from a superset of jobs, 

namely the product catalog, based on existing orders. 

New orders and therefore additional jobs may be added 

to the process queue at any given time. The goal is to 

minimize production costs in terms of set-up time and 

engage in sustainable production steering to increase 

long term competiveness on the market. 

To enable live scheduling for known and newly added 

jobs, an approach that employs dispatching rules (i.e. 

priority rules) is investigated. We use the concept of delta 

features to create rules which take job similarities into 

account. Whenever new jobs are added to the process 

queue, a predefined dispatching rule can be used to 

schedule the jobs. Each rule is created by means of 

genetic programming (Koza 1992) and specifically 

designed for a certain environment, i.e. a machine that is 

used to create products from a certain product catalog. 

The rest of this paper is structured as follows: In Section 

2 we provide insights into others’ related work. Section 

3 gives a brief definition of the addressed scheduling 

problem. Our methodology is explained in Section 4. 

Experiments, including algorithm and problem 

parameters, are shown in Section 5. The final Sections 6 

and 7 show achieved results, as well as drawn 

conclusions and possible future research topics, 

respectively. 

 

2. RELATED WORK 

During the last centuries, scheduling problems have been 

widely discussed in literature. Ullman (1975) writes 

about NP-completeness of different scheduling 

problems, including the general scheduling problem and 

single execution time scheduling. Lenstra et al. (1977) 

classify scheduling problems on single, different and 

identical machines and experiment with various 

parameter to influence complexity. Both Davis (1985) 

and Van Laarhoven et al. (1992) use evolutionary 

concepts such as genetic algorithms or simulated 

annealing for problem solving. Cheng et al. (1999) 

created a tutorial survey of works on various hybrid 

approaches for job-shop scheduling practices using 

genetic methods. Dispatching rules itself have also been 

addressed numerous times, e.g. by Blackstone et. al 

(1982), Holthaus and Rajendran (1997) or Tay and Ho 

(2008). Beham et al. (2008) combines automated 

generation of dispatching rules and parallel simulation to 

solve scheduling problems. Comparisons between 

standard scheduling approaches using genetic algorithms 
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and the application of dispatching rules have been done 

by Kim et al. (2007), as well as Longo (2012). In both 

cases, it was concluded that scheduling performs better 

than dispatching. Previous work in the domain of 

dispatching rules for job scheduling was also done by 

Kofler et al. (2009), where sequence-dependent set-up 

costs were minimized using both scheduling and 

dispatching concepts. The authors suggested multiple 

simple priority rules and then used genetic programming 

to synthesize more complex rules which use different 

features from the specified jobs. The authors of this paper 

(Karder et al. 2015) also created a simulator for a specific 

kind of scheduling problem from scratch by using Sim# 

(Beham et al. 2014) with custom extensions. Experience 

gained from that work is used within this paper. 

 

3. PROBLEM DESCRIPTION 

The scheduling problem consists of a number of jobs that 

have to be scheduled on a single machine. Each job has 

a certain demand for tools that need to be set up inside 

the machine before the respective job can be processed 

by an operator. After the job has been processed, all tools 

are removed from the machine. A tool storage allows the 

machine to automatically load and unload most of the 

required tools without operator interaction. Since 

different jobs require different sets of tools and the 

storage capacity is limited, the storage layout can only be 

configured to support a certain number of jobs. Sets of 

jobs that can be executed with a particular storage 

configuration are referred to as job batches. When 

switching from one job batch to another, the operator has 

to manually alter the storage configuration to contain all 

required tools for the next batch. The time consumption 

of all manual tool changes is also included in the set-up 

time evaluation. The problem can be evaluated by using 

three different quality criterions: 

 

1. Set-up Time (ST) 

2. Batch Count (BC) 

3. Manual Tool Change Count (MTCC) 

 

Changing the quality criterion yields different quality 

values. ST and MTCC are highly correlating, meaning 

that lower set-up times lead to less manual tool changes 

and vice versa, whereas a lower set-up time usually also 

leads to a greater batch count. When a job sequence 

needs to be evaluated, a new storage layout is generated 

in the following way: All referenced tools (starting with 

job 1) are added to the storage as long as possible. If tools 

from a job cannot be added anymore, this job is used to 

start a new job batch and the storage will be altered to 

contain all tools for the new job batch. If replacing tools 

is not possible, e.g. because of storage constraints, all 

tools will be removed before the new ones are added. 

 

4. METHODOLOGY 

We use HeuristicLab (HL) (Wagner et al. 2014), a 

paradigm-independent and extensible environment for 

heuristic optimization, as the underlying software 

foundation. It features ready-to-use implementations of 

many different evolutionary algorithms and problem 

types, including special variants of genetic algorithms 

and basic problem implementations that can easily be 

adapted to specific needs. HeuristicLab’s plug-in concept 

allows to easily extend its functionality by implementing 

new plug-ins based on existing framework elements. 

Taking advantage of the plug-in system, we introduce a 

new problem type which employs a simulation model for 

evaluating the performance of the dispatching rules and 

uses its own solution encoding and respective algorithm 

operators to make it compatible with population-based 

evolutionary algorithms. To evaluate scheduling 

solutions, we employ a discrete-event simulation that is 

built upon the Sim# library. It is able to simulate every 

movement of the machine’s main mechanical parts, 

which allows us to accurately compute the set-up times 

of the real machine. 

Rule generation is done using genetic programming 

(GP), a concept introduced by John Koza in 1992. GP, 

which is included in the list of default HL plug-ins, is a 

method where objects in form of trees are built using 

evolutionary concepts such as selection, crossover and 

mutation. In our case, a tree represents a dispatching rule, 

i.e. a mathematical formula, in form of a syntax tree. This 

formula consists of different mathematical operations 

and operands, including variables and constants. An 

example of a simple tree is depicted in Figure 1. 

 

 
Figure 1: A random GP tree. 

 

The size of a tree is traditionally limited by a maximum 

length and depth. The tree length is the total number of 

nodes and the depth is the number of edges from a node 

to the root node. The tree shown in Figure 1 has a length 

of 6 and a maximum depth of 2. 

To evaluate formulas containing variables, it is necessary 

to supply a dataset which defines values for these 

variables. These values are also called features and a set 

of features supplied to a formula is called row or sample. 

Trees are therefore evaluated for rows in datasets. Our 

dataset contains one row for each job from the pool. 

Some features can be calculated immediately for each 

job. All other features – we call them delta features – 

must be calculated on-the-fly, because their values are 

state-dependent. All delta features are in a way similarity 

measures, which allow the rule to prioritize according to 

the current state. Each rule is applied 𝑚 times to a 

random subset of 𝑛 jobs from the pool. Out of this subset, 

one job is selected to be the first job processed by the 

machine. For all remaining (i.e. unprocessed) jobs of the 

subset, the delta features to the currently processed job 
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are calculated. Examples of such features would be the 

number of same tools, the number of same tool types or 

the number of same tool kinds the two jobs share. With 

these additional features, the rule can be used to calculate 

priorities for the remaining jobs. The job with the highest 

priority is selected to be processed next, the current job 

is updated and another iteration is executed until all jobs 

have been processed. The qualities of the resulting job 

sequence are calculated according to the selected quality 

criterion and summed up. The average quality – which 

should be minimized – makes up the quality of the rule. 

Pseudocode for this procedure can be seen in Listing 1. 

 
r := rule 
r_q := 0.0   // rule's summed quality 
P := product catalog   // all available jobs 
repeat m times 
  shuffle P 
  J := first n elements from P   // orders 
  S := empty list of jobs 
  c := first element from J   // current job 
  S.add(c) 
  repeat n - 1 times 
    R := J \ S 
    calc. delta features from jobs in R to c 
    b := best job from R according to r 
    S.add(b) 
    c := b 
  endrepeat 
  q := quality criterion for job sequence def. by S 
  r_q := r_q + q 
endrepeat 
return r_q / m   // rule's average quality 

Listing 1: Pseudocode describing the evaluation of a 

single dispatching rule. 

 

Consequently, the dispatching rule is trained to work for 

a certain product catalog. Subsets are used to simulate a 

daily or weekly amount of orders. It is important not to 

train with the whole catalog of products, since there will 

most likely never be an order containing every product 

and overfitting to the complete catalog itself should be 

avoided. Instead, more diverse batches of jobs should be 

used to mix different smaller orders and create a more 

general rule for the specific scenario. 

 

5. EXPERIMENTS 

To construct an exemplary production environment, we 

create a product catalog that contains 34 different jobs. 

These jobs are used to generate a dispatching rule. The 

evaluation parameters are set as follows: 

 

𝑚 = 5 (sample size) 

𝑛 = 18 (group size) 

 

Additionally, 4 random subsets of jobs containing 10, 15, 

20 and 25 jobs are created to reflect daily or weekly 

orders. The jobs are then scheduled by applying the best 

found rule. Afterwards, the same subsets are optimized 

with a standard scheduling approach using a 

combinatorial optimization problem, which is optimized 

by a genetic algorithm with offspring selection (OSGA) 

(Affenzeller and Wagner 2005). We then compare the 

best found job sequence with the sequence suggested by 

the rule. All problem instances for the standard 

scheduling approach and the dispatching approach have 

been configured as shown in Table 1. 

 

Table 1: Scheduling and dispatching problem 

parameters. 

Parameter Value 

Scheduling 

Optimization Target Job Order 

Quality Criterion Set-up Time 

Dispatching 

Allowed GP Symbols Add, Sub, Mul, And, Or, 

Not, Xor, GreaterThan, 

LessThan, IfThenElse, 

Variable, Constant 

Max. Tree Depth 17 

Max. Tree Length 100 

Sample Size 5 

Group Size 18 

Quality Criterion Set-up Time 

 

The OSGA configurations were similar for the both 

approaches. Multi-operators were used to induce 

different operator behaviors into the corresponding 

optimization procedure. Constant comparison factors 

were set to work with the concept of weak offspring 

selection, which means that children are included in the 

next population if they outperform their weaker parent. 

For the dispatching approach, the mutation rate was 

increased by 5 % and gender-specific selection was 

replaced with proportional selection. A list of algorithm 

parameters is shown in Table 2. 

 

Table 2: OSGA parameters for the scheduling (1) and 

dispatching (2) approach. 

Parameter Value 

Lower Comp. Factor 0 

Comp. Factor Modifier – 

Crossover Multiple(1) 

SubtreeSwapping(2) 

Elites 1 

Max. Generations 1000 

Max. Sel. Pressure 100 

Mutation Probability 10 %(1) 

15 %(2) 

Mutator Multiple 

OS Before Mutation False 

Population Size 100 

Selector Gender-specific(1) 

Proportional(2) 

Success Ratio 1 

 

All experiments have been conducted on a distributed 

optimization cluster (HeuristicLab Hive) with 10 

repetitions to produce valid empirical test results. 

 

6. RESULTS 

Table 3 shows a direct comparison between the 

scheduling and dispatching approaches. The scheduling 
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results are the set-up times of the best found job 

sequences. The dispatching results are the set-up times of 

the sequences that are generated by the best dispatching 

rules found for each job set. 

 

Table 3: Test result comparison between scheduling and 

dispatching approach. 

Job Set 
Set-up Time [min] 

Scheduling Dispatching 

js1 (10 jobs) 38.15 39.35 (+3.15 %) 

js2 (15 jobs) 55.45 59.14 (+6.91 %) 

js3 (20 jobs) 56.03 62.59 (+12.07 %) 

js4 (25 jobs) 92.73 103.42 (+11.74 %) 

 

As already described in previous applications (Kim et al. 

2007, Longo 2012), the experiments show that the 

standard scheduling approach achieves better results than 

the dispatching rules. 

By analyzing the results of the executed runs, it appears 

that the dispatching approach needs more adjustments to 

produce more robust rules. In particular, we have a look 

at the 10 best rules that were generated within the 10 

repetitions, i.e. each best rule of each run. Figure 2 shows 

a box-plot of these rules’ achieved set-up times, applied 

to the 4 different job sets. Table 4 lists more detailed 

measures. 

 

 
Figure 2: Box plots of set-up times. 

 

Table 4: Statistical overview of the achieved set-up times 

for each job set. 

Measure 
Set-up Time [min] 

js1 js2 js3 js4 

Min 38.35 56.99 58.69 102.34 

Max 44.26 62.91 107.06 144.12 

Med 40.11 59.12 62.69 105.96 

Avg 41.22 59.14 66.29 113.31 

SD 2.50 1.59 14.41 16.51 

Var 6.23 2.52 207.51 272.54 

Q1 39.35 58.37 60.86 103.55 

Q3 43.89 59.24 62.81 111.71 

 

The rules are not totally stable, as the resulting set-up 

times have a standard deviation between approximately 

1.5 and 16.5 minutes, depending on the job set. 

The average runtime of the standard scheduling runs was 

around 3.5 hours with a minimum of 1.5 hours and a 

maximum of 4.5 hours. Approximately the same time 

was consumed on average by the runs of dispatching 

approach. The execution time of an OSGA run can vary 

because normally the number of generations is not 

directly limited by the algorithm parameters itself, but 

indirectly through the performance of the algorithm 

during offspring creation. 

 

7. CONCLUSION 

We were able to generate rules that enable live 

scheduling and therefore speed up the scheduling process 

itself. By applying a predefined rule, respective 

schedules can be calculated immediately, whereas the 

standard scheduling approach must be executed 

separately for each set of jobs. It is also possible to 

generate multiple rules for a specific environment, which 

can then be applied to a subset of jobs to generate 

alternative sequences. 

Looking at the results, it can be seen that the dispatching 

approach cannot reach the quality levels of the standard 

scheduling approach. This is expected and can be 

explained by two facts. First of all, the scheduling 

approach is purely designed to evaluate many different 

sequences of the respective jobs, which in the end leads 

to good scheduling qualities. The dispatching approach 

is designed to evaluate many different dispatching rules. 

Two distinct rules can however yield the same job 

sequence. To get 𝑛 different job sequences, at least 𝑛 

different rules have to be generated. Secondly, the 

scheduling approach’s goal is to yield the best sequence 

for a specific subset of jobs, whereas the dispatching 

approach’s goal is to yield a general rule that is able 

create a good schedule for any arbitrary subset of jobs 

from the product catalog. Additionally, the dispatching 

approach should be tuned to produce more robust rules. 

This could be done by e.g. changing the allowed GP 

symbols or identifying more significant features. Both 

approaches consume a similar amount of runtime when 

executed. The runtime-limiting factor is the OSGA’s 

ability to produce better offspring. 

Further research includes the generation of multiple 

dispatching rules for a single product catalog and the 

creation of a rule portfolio. This portfolio would add an 

additional layer of optimization in which either multiple 

rules are applied to create different job sequences to 

choose from, or additional techniques for on-the-fly rule 

selection could be implemented. 
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