
INTERACTIVE DISTRIBUTED SIMULATION REALISED AS A WEB APPLICATION

Stepan Kartak

University of Pardubice, Faculty of Electrical Engineering and Informatics

stepan.kartak@student.upce.cz

ABSTRACT

This paper is focus on a practical use of a web browser

and its modern technologies for realisation of

distributed web-based simulations. A web application is

realised in the environment of a web browser, providing

basic software support and additional services for

a user-friendly, simple to realise (above all simply

programmable) interactive, distributed, discrete

simulation. The user is freed from having to deal with

the process of creating a simulation core,

synchronisation methods etc., and can fully concentrate

on the logic of the solved problem. The paper also

describes the realisation of the simulation in a web

browser, the appropriate classification and extent of

applications which are suitable for this service, as well

as the positives and negatives of a web-based

simulation realisation.

Keywords: Distributed Simulation, Web-based

simulation, HTML5, WebRTC

1. INTRODUCTION

This work focuses on use of a web browser to realise

a user-friendly distributed simulation. The aim is to

create a web-based application which would provide the

user with basic functionality (simulation core,

synchronisation, interactive approach …) for realisation

of logical processes, composition and configuration of a

distributed simulation model, central management and

record of data. The user is then freed from tackling the

aforementioned fundamental problems, allowing

concentration on programming which is the actual

problem to be solved.

Web browsers are more than suitable for such an

application. Browsers have contained functions

allowing solving problems of this classification without

third-party plugins since the year 2012 (Kartak, 2015).

However, in spite of the progress web browsers have

made in the last few years, creating distributed

simulation was only possible after making a number of

compromises. For this reason, we will operate with a

distributed discrete simulation made up of a maximum

of 20 logical processes (theoretically, the number is

unlimited).

A web browser is suitable for the realisation due to

many reasons – one of them being that it is available on

practically every device which can connect to

a computer network. Algorithms of the solution were

programmed in today’s well-known programming

language JavaScript. This fact is an advantage as well –

high availability.

The foundation of the solution is based on previous

work, covering distributed web-based simulation

(Kartak 2014; 2015). The previous work was aimed at

simulators (simulator applications for testing or

education, of workers / dispatchers). This solution

contained many compromises (e.g. unshared state

space), and is surpassed by the introduced work.

2. WEB APPLICATION CHARACTERISTICS

The web application allows the user to define

a distributed, synchronised space, made up of logical

processes available in the form of web pages.

There are three main parts of solution:

 Distributed and synchronised (memory) space:

visible to all logical processes it contains.

Configurable.

 Logical process type: prearranged web page,

which represents a logical process after it has

been configured

 Logical process: an instance of the logical

process type; a concrete webpage engaged in

the simulation.

The realisation itself presents a user with an editor (Fig.

1), i.e. a 2D area which represents a configurable,

shared, distributed space, into which logical processes

are incorporated. Any number of logical processes may

be placed here (realised as a placeholder icon in the

editor, with a practical maximum of 20 logical

processes). Every logical process represents

a workstation or user space. Every logical process has

access to the global state of the whole simulation. The

application itself provides services of a simulator and

automatic synchronisation of logical processes.

Furthermore also provides access to configuration of the

2D space, in which logical processes are placed, and in

which the simulation unfolds. All functionality has been

designed with interactive behaviour in mind.

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

78

mailto:stepan.kartak@student.upce.cz

The logic itself is programmed by the user alone (i.e.

the user programs the behaviour of logical processes).

Since the simulator itself and synchronisation methods

are prepared in the form of a library, the user must

create only discrete activities, and in some cases an

animated output.

Due to the limited computational capacity of web

browsers (see chapter 3) and high requirements on

network infrastructure, use on local networks for

discrete distributed simulation is expected.

Figure 1: Detail of idea of simulation editor, example of

simulation model (the road infrastructure) defined from

two logical processes with defined playground 2D area

(part of a map).

Considered application/simulation characteristics that

can be realised this way:

1. A foundation for „simulator applications“, i.e.

applications (interactive simulations) for

testing (training, education) of workers /

dispatchers. Dispatcher (i.e. one logical

process, serviced by a computer/workstation

operator). To illustrate, imagine a railway

station dispatcher in a region (where there are

more station dispatchers). In the same way,

a simulation of a technological process /

production can be realised. In this case, logical

processes represent work areas of individual

operators in the technological process. In this

scenario, the shared space would represent the

scheme of a production process, in which the

stations of dispatchers would be located (i.e.

logical processes).

2. A simple creation of a multiplayer game,

where logical processes represent the area for

individual players, and the allocated

(configurable) 2D space of simulation

represents the game area.

3. Distributed space for data exchange in the

frame of a workgroup. This case does not

represent an actual simulation. Only the

synchronisation methods would be utilised, to

keep the memory space for all logical

processes up to date.

The primary classification of a possible use can be

generally specified as a distributed system which

requires an interactive approach, which does not have

high computational requirements, and which is based on

discrete events.

Interactive approach is represented by user input

(keyboard, mouse), which alters the logical process (and

the distributed simulation as a whole). The execution of

the user input is realised in relation with the online

animation output, i.e. the user influences the immediate

state of the simulation that is displayed (see Image 9 -

screenshot of use case example).

The aim of this work is not to create competition for

extensive standards such as DIS, HLA, TENA etc.

(IEEE 1278.1-2012; Kuhl et al. 2007), and such a thing

is not even possible due to the limitations of a web

browser (see chapter 3). The aim is to utilise the

availability of a web browser to build a simple, yet

functional and rationally available (if we disregard the

programming of the necessary logical behaviour)

distributed interactive simulation.

3. WEB BROWSER ENVIRONMENT

SPECIFICATION

A contemporary web browser provides sufficient

functional support for the realisation of any application,

which would have been, until recently, considered

a solely desktop application. To illustrate, take working

with files, the 2D and 3D graphic drawing possibilities,

and direct server to client communication (WebSocket

technology), as well as direct peer-to-peer connection

between browsers (WebRTC, W3C 2016). This solution

is based on these features. All these new functions are

commonly denoted as HTML5.

In spite of the new functions mentioned above, web

browsers are still an imperfect platform for demanding

applications. The limiting factors essential for this work

are as follows:

JavaScript is a programming language which web

browsers use to add dynamic behaviour to web pages. It

is a weakly (loosely) typed, prototype language, which

is compiled at runtime of the script. JavaScript also

contains several functions, which complicate

optimisation of the compiled code, although this

condition is constantly improving with new versions of

web browsers. Libraries which compile C/C++ code

into a well-optimised JavaScript code also exist.

However, a second, greater problem persists – the

“single-threaded” (this term is only partially accurate,

but covers the essence of the problem, which is why the

term is used throughout the text) approach.

A single threaded event-based system of processing

user code is a critical problem for a distributed

simulation application. These characteristics of

JavaScript practically mean that all operations are

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

79

executed synchronously in a single thread. There is no

concurrent multithreaded solution available to users.

(Processes the user cannot influence, such as output

data rendering, network communication etc. are done

asynchronously by the browser.) This does not present

a problem to many algorithms that the browser usually

realises. But in general, this single-threaded situation

makes creating algorithms more difficult, because some

problems require parallel operation (in terms of both

multi-threaded and multi-processor processing), due to

effectivity or time requirements of individual tasks.

Specific reasons why this fact presents a serious

problem for the implementation distributed simulation

are defined in chapter 4.

4. IMPLEMENTATION OF A DISTRIBUTED

SIMULATION IN A WEB BROWSER

The previous chapter covers JavaScript and its

functionality. This chapter focuses on a specific

description of the simulator and simulation topology, in

relation to the previously mentioned problems, and

explains how the synchronisation was done.

4.1. Single-threaded web application

The simulator must process four independent critical

tasks that are constantly running: (i) simulation core

executing discrete events, (ii) network communication

(accepting and sending messages) with other members

of simulation, (iii) user input processing and (iv)

animation output.

These four tasks are usually realised as parallel tasks in

classic desktop applications. This is not possible in

JavaScript. Because of this fact, the simulator is realised

as a series of cyclically repeated instructions (only

essential steps are listed):

1. Evaluation of incoming messages.

2. User input processing.

3. Execution of available (especially in relation to

the logical process synchronisation) discrete

events.

4. Animation output calculation:

 entities’ position,

 collisions and other interactions between

entities,

5. The information about state changes are sent to

all other logical processes.

6. Situation rendering onto the animation output.

7. Cycle repeats from step 1.

The algorithm described hints at a problem, which

originates in the event-based nature of JavaScript. The

event-based approach means that any sequence of

commands may be interrupted by another task (user

simulation input, accepting messages, etc.). An event-

based approach is not a problem in itself, as after an

event is processed, the interrupted “main” algorithm

continues. The problem is, that these “unexpected”

events naturally take some time to be processed, and are

thus slowing down the computation, which negatively

influences the synchronisation of logical processes, and

the animation fluidity as well.

4.2. Logical process interconnection topology

Considering the above stated problems with

computational capacity of web browsers, realisation

takes place as a purely peer-to-peer simulation.

Communication between processes takes place directly,

without a server. This implementation was chosen in

order to: (i) minimise infrastructure expenses and (ii)

lower communication load (i.e. latency in

communication between individual browsers). The

server is used only for setting up the connection and

“bookkeeping” of the simulation state.

A one-on-one connection is realised between every

logical processes (with the WebRTC technology).

During the initialisation process of the simulation, a

connection is made between every logical process. The

connections are realised, above all, to establish and

ensure a global memory state. All changes of the state

of a logical process are sent to every other logical

process (in fact, changes are broadcasted), and it is up to

each individual logical process whether or not the

accepted data will be processed, and how. This

technique is inspired by the DIS standard.

These general broadcasts are also utilised for

synchronisation purposes.

4.3. Logical process synchronisation algorithm

The optimistic methods of synchronisation are usually

more suitable for interactive simulation, as they do not

require strict logical process runtime synchronisation.

This synchronisation in turn, makes the calculation

(and, by the same rule, animation as well) smoother (i.e.

there is no waiting for “slower” logical processes). To

ensure a fluent performance (with animation fluidity in

mind), the conservative approach is not effective, as it

requires a short lookout (look-ahead) to ensure a fluent

animation, which increases communication load.

The synchronisation solution was designed with

interactivity (the user influences the immediate state

displayed in the form of an animation – see chapter 2)

of the application in mind.

In the end, a “two-level” synchronisation method was

chosen:

1. For basic synchronisation, the Conservative

synchronization technique of sending null

messages with a look-ahead (Chandy-Misra-

Bryant Distributed Discrete-Event Simulation

Algorithm, Fujimoto 2000) is used – a specific

implementation is defined in the previous work

(Kartak 2015). This method is applied, above

all, to start the simulation, and to intercept

greater-than-average fluctuations (delays) in

network communication. Look-ahead of 120

ms is used.

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

80

2. For precise synchronisation, time readings of

state messages sent periodically (every 40 ms)

by every logical process to all other processes

in simulation (broadcast message sending).

These messages are labelled broadcast.

 The animation output displays

a continuous animation of the logical

process state. The animation is scaled in

terms of time, with 1 second of animation

corresponding to X seconds of real time.

Considering the user experience and

possibilities, a 1:1 ratio is used, where one

second of animation corresponds to one

second of real time.

 Considering point one, synchronisation of

animation outputs between individual

processes is not ensured (look-ahead 120

ms).

 Information from broadcast messages are

used for precise synchronisation (chapter

4.2), which are realised as discrete

activities (they are part of the basic

synchronisation).

The application allows two ways of synchronisation

(depends on the nature of the simulation), which differ

primarily in the animation – simulation core

relationship (executes discrete activities and

synchronisation):

1. Fully conservative synchronisation: Time

order of activities is strictly upheld, i.e. the

simulator awaits null messages if necessary.

Animation is executed only in the safe time

between discrete activities. This way of

synchronisation is completely safe from the

time perspective, and allows for acceptable

framerates of animation, considering the

network latency when transferring the null

message request and response averages

between 10 – 15 ms on a local area network,

and 25 FPS gives 40 ms between each

rendering of the animation scene. A

disadvantage is FPS limitation and slight

“slacking” of the simulation, caused by

necessary waiting for synchronisation (during

this wait, the animation may not proceed – the

simulation time is not advancing).

2. Minimal synchronisation: The animation

output is not fixed on animation activities. The

simulation core works with regard to the time

of the animation output, i.e. activities

corresponding to the time of the animation

output. In this case, the conservative

synchronisation method is used primarily for

preliminary synchronisation. This method of

synchronisation is still in development, but

provides more computing power to simulations

with focus on interactive behaviour instead of

on perfect synchronisation (there is no waiting

for synchronisation). As an example (see

chapter 6 - use case) the achieved framerate is

between 70 and 80 FPS (the minimalistic scene

- around 50 animation activities), three times

more than the first method. The user can then

observe a perfectly continuous animation,

eventually there is more space for demanding

calculations.

Due to the above stated facts, use only on local

networks is assumed, where the latency of WebRTC

messages varies between 10 and 20 ms, which is a state

allowing fluent operation, assuming the extent of the

application.

5. BASIC DESCRIPTION OF THE WEB

APPLICATION

The web application is divided into five parts. The

administrative interface is made up of four parts: (i)

model configuration, (ii) simulation management, (iii)

visualisation centre, and (iv) an initialisation (signaling

WebRTC server, W3C 2016) server. The fifth part is

represented by a software library for logical processes.

The individual parts are described in the following sub-

chapters.

5.1. Software library for logical process

implementation

The simulation model is made up of logical processes,

which are hereby represented by web pages. The logic

of these processes is implemented by users.

A JavaScript library is available, which provides:

 Connection of the logical process to the

administration interface.

 Synchronisation of a running simulation.

 Basic functional support for animation output.

 Auxiliary classes and functions extending the

standard JavaScript functions and commonly

available JS libraries with practical classes

(working with time) and data structures

(priority queues etc.)

5.1.1. Basic structure of logical processes

A logical process is made up of 6 parts (for an UML

diagram see Image 2, for graphic illustration of relations

see Image 3):

1. Simulation core: operates simulation activities,

ensures synchronisation. Includes:

 Calendar: priority queue for simulation

activity planning.

 Environment: contains environment and

state information related to the simulation

(primarily activity handler).

 Modules: any named data structure,

usually auxiliary, available to all

dependent parts (usually activity handler).

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

81

Used, among others, for the text report of

simulation states.

2. Simulation activity: specified the type of

activity, time of execution and any other

additional information

3. Activity Handler: execution of given activity

type

4. ConnectionRegister: logical process

communication realisation layer

5. Animation Activity: Described a graphic

element for animation rendering. One of the

modules of the simulation core.

6. AnimationManager: renders a scene based on

the animation activities

Other program parts that are not critical for the

execution of a logical process:

7. SettingsManager: contains a description of the

simulation configuration.

8. EntityManager: contains information about

entity types and individual entities.

9. ActionManager: describes interactions and

eventual reactions of individual entity types.

The solution as a whole works under several basic

premises:

 All simulation and animation activities can be

serialised.

 All simulation and animation activities can be

interrupted at any time (removed from the

queue or scene).

Figure 2: Basic UML schema of logical process (the

simulator itself)

5.2. Model configuration

This administrative interface serves to register

individual types of logical processes, and allows their

subsequent use when building the distributed simulation

model.

The basic approach to create a distributed simulation is

as follows:

1. A user registers a custom logical process type.

2. The visual editor provides a 2D space (the

distributed simulation space). Figure 3.

3. In this area, the chosen logical process types

are placed (the logical process types are

reusable in the frame of a simulation model,

i.e. one type of a logical process can be used

several times in a single distributed

simulation).

The user configures logical processes, and

eventually the simulation itself (i.e.

configuration of the 2D shared space) – the

specification is done by XML for testing

purposes at the moment.

4. Simulation is ready to run. Every logical

process has a unique link, which can be sent to

a user, who will then operate it (dispatcher,

production operator, player, etc.).

Figure 3: Administration web interface, visual editor;

blue lines are network connections between logical

processes

5.3. Simulation management

To simplify the organisation and launch of a distributed

simulation, a module for central management of all

logical processes is available (realised as a standalone

application).

5.3.1. Application characteristic

JavaScript Remote control (JSRC) is an application

generally designed to control web pages by text

commands in bulk. In this case, it serves to control

logical processes. Primarily, it is used to load a logical

process, create individual WebRTC connections

between all logical processes and launch of all logical

processes. It is also used for simulation state

accounting. A detailed description of this application is

published in previous paper (Kartak, 2015). A brief

description follows.

Web pages are identified as workstations within JSRC.

Workstations are defined by:

 name,

 initialization page (page that will be

controlled).

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

82

These workstations are grouped into categories of

workstations (workstation groups). And just within

these groups it is possible to enter mass commands

(nevertheless it is possible to specify a workstation

subset that will receive the command).

Really the workstation corresponds to the logical

process and one group of workstations corresponds to

the whole model.

The commands are entered by text form (figure 4,

Kartak 2015), moreover there is an option to create

advance prepared command sets at “one click”

(figure 5, Kartak 2015).

Figure 4: JSRC: Prepared command set, one square is

user-defined command (or commands), prepared for

touch-devices

The commands are user-defined JS functions of any

kind. The use is virtually unlimited. Commands are

easily and quickly extensible.

5.3.2. Incorporation in the application, API

description

In reality, a workstation corresponds to a logical

process, and a whole model corresponds to a

workstation group.

As stated before, JSRC is an independent application on

an independent server, with other applications (here:

administrative interface, logical processes, central

visualisation) communicating through API, which

allows:

 add groups of stations (WG_ADD),

 add stations to groups (WE_ADD),

 add commands (COMMAND_ADD),

 remove commands for processing

(COMMAND_FETCH),

 send responses (results) of commands

(COMMAND_RESULT),

 get information about commands (primary

results, COMMAND_GET),

 get information about station groups

(WG_INFO),

 get information about very stations

(WE_INFO).

An usage scheme in the simulation is displayed at

figure 6, Kartak 2015.

Figure 5: Remote Control web interface

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

83

Figure 6: The scheme of usage JSRC API in the

simulation

A JS library is available, which implements API calls,

which then in turn executes specified actions on the

client side (e.g. „Launch logical process“) or on the

server side (e.g. „Add Workstation“).

5.4. Central visualisation

The administration interface is extended by the central

visualisation (CV). This module allows (i) recording of

animation output (Image 7) and (ii) capture screenshots

for static preview of logical process state (Image 8).

Figure 7: Logical process animation replay in central

visualisation

Figure 8: Overview of logical process in simulation in

central visualisation

Animation output recording is realised as a recording of

the animation activities. These activities are distributed

in batch into a player (see Image 7). Due to time delays

lower server load with increased number of logical

processes, it is possible to:

 Observe the animation output of a chosen

logical process “on-line” with a 0 to 2 second

delay (batch update of the player). Due to

conservative method of synchronisation and

used look-ahead, it is possible to observe the

same scene as the workplace operator (under

optimal conditions). Appropriate for e.g.

supervising worker during dispatcher training

etc.

 Run an animation recording at any time.

Detailed description is stated in previous paper (Kartak

2015).

5.5. Initialisation server

The initialisation (signaling) server is designed to

establish a peer-to-peer connection between all logical

processes. It is a simple web application, which allows

monitoring of connection state (unconnected,

negotiation, connected). Meaningful only before a

simulation starts.

6. TESTING AND USE CASE

For testing, a scenario from previous developing

activities was chosen (Kartak 2015). For a logical

process scene (screenshot) see Image 9. It is a typical

two-level cloverleaf highway interchange).

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

84

Figure 9: Screenshot of simulation, the scene of two-

level cloverleaf highway interchange is consist from

work of 8 logical processes, debug level

The scene is shared between all logical processes, with

every logical process generating „its own“ vehicles at

driveways. All vehicles are displayed in all other logical

processes. There are several vehicle types, differentiated

by colour, speed and appearance. All of the

aforementioned elements are used to create an

environment that generates activities and tasks for

processing, but are still considered to be „static“, non-

interactive parts (the user cannot influence them).

The interactive element is represented by a single

vehicle, which reacts to user input (keyboard – cursor

arrows – changing directions, spacebar – stopping the

car, mouse click – sets a specific destination). All

changes are transferred to all logical processes, and all

logical processes display the shared scene. To further

test the dynamic behaviour and possible interactions

between individual entities, mouse-based controls check

for eventual collisions with other entities at the given

destination. The solution was tested on a configuration

of 8, 12 and 24 logical processes (each on an individual

PC) on a company local area network. The critical

computing power pointers are stated in table 1.

Measurements took place on identically configured PCs

(Intel® Core™ i3-3240 CPU @ 3.40 GHz, 4 GB RAM,

Windows 7 64bit, only one application running –

Google Chrome browser, version 51).

Table 1: Results of tested use case, lookead 120 ms, critical data for simulation run with focusing on animation output

and interactive approach

Test #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13

LP count 8 8 8 8 12 12 12 12 20 20 20 20 20

Sync method CONS CONS TIME TIME CONS CONS TIME TIME CONS CONS TIME TIME TIME

User

interaction

NO YES NO YES NO YES NO YES NO YES NO NO YES

Animation

FPS

23 23 29 27 24 21 27 25 6 8 8 13 21

Sync request

count

1256 675 186 142 161 321 137 44 6123 4820 108 119 22

Sync waiting

time [ms]

9 8 8 8 8 9 8 8 9 9 8 8 10

Animation 1

frame draw

time (AVG)

[ms]

31 42 34 36 38 40 40 45 182 195 119 54 49

Animation 1

frame draw

time (MAX)

[ms]

60 62 37 51 55 62 70 68 383 360 150 71 56

Animation

activity count

in animation

scene

266 292 215 245 270 245 278 266 1050 1120 758 480 300

FPS per

animation

activity

0,08 0,08 0,13 0,11 0,08 0,08 0,08 0,07 0,005 0,007 0,1 0,03 0,07

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

85

Result notes (table 1):

 Two types of synchronization were tested (see

chapter 4.3) - marked as CONS and TIME.

 User interaction (mouse click) was

programmatically generated. Calculated by

uniform distribution (min 400 ms, max

3000ms) between simulated interactions.

 One animation activity is consists from 10

graphics base elements / primitives in average.

 Results were collected after 5 minuts (real

time) run.

Summary of results:

 Sync waiting time [ms]: The time required to

send a request for synchronization and recieve

all required data is almost constant.

 User interaction generated broadcast messages

and this is reason of decreasing number of

synchronization requests. Negative is lower

FPS, becouse every interaction must be

handled.

 Critical for fluent performance (with animation

fluidity in mind) is count of animation

activities. FPS is directly dependent on their

number (row FPS per animation activity).

7. CONCLUSION

The presented solution is still being developed, but the

class of applications, for which it will be beneficial, can

already be defined. Specifically, interactive distributed

simulations, which do not require calculation-heavy

operations (e.g. real-life object representing entity

movement dynamic calculations, expansive animation

scenes). Due to the single-thread nature of JavaScript,

simulations with large amounts of user input in short

time intervals (generally tens in a second) are not

suitable, because JavaScript will be busy with

dispatching these events, and will not have time left for

calculation of other critical parts (activity calculation,

animation).

Considering the aforementioned facts, the primary

motivation for use of web-based simulation is the

availability of the runtime environment – web browser –

on any computer or modern device connected to a

computer network. JavaScript is very well supported by

modern-day browsers, and is extensible and well

known. This comfort of availability and simplicity is

not without a cost – when compared to native

applications, the scripts are slow.

The solution as a whole is still not finished, Lots of

optimisations could be done on the administrative

interface, and integration of the individual parts of the

solution, which are at this time resolved by external

applications (JSRC, RTCC, VC), primarily because of

ongoing development. Also, if the JavaScript runtime

seems too slow, the logical process software library can

always be optimised at source code level.

REFERENCES

Fujimoto, Richard M. Parallel and distribution

simulation systems. New York: Wiley, 2000.

Print.

Kartak, Stepan, and Antonin Kavicka. “WebRTC

Technology as a Solution for a Web-Based

Distributed Simulation”. Proceedings of the

European Modeling and Simulation Symposium

2014. Genova: Università di Genova, 2014, s. 343-

349.

Kartak, Stepan. “Web Simulation as a Platform for

Training Software Application”. Proceedings of

the European Modeling and Simulation

Symposium 2015. Genova: Università di Genova,

2014, s. 70-78.

Kuhl, Frederick, Judith Dahmann, and Richard

Weatherly. Creating computer simulation system:

an introduction to the high level architecture.

Upper Saddle River, NJ: Prentice Hall PTR, 2000.

Print.

Tropper, Carl. Parallel and distributed discrete event

simulation. New York: Nova Science, 2002. Print.

Hridel, Jan, and Stepan Kartak. “Web-based simulation

in teaching”. The European Simulation and

Modelling Conference 2013. EUROSIS-ETI,

2013. Print.

The Institute Of Electrical And Electronics Engineers,

Inc, 2012, 1278.1-2012: IEEE Standard for

Distributed Interactive Simulation - Application

Protocols. New York; IEEE. 2012.

W3C, 2016. WebRTC 1.0: Real-time Communication

Between Browsers. Available from:

https://www.w3.org/TR/webrtc/ [Apr 2016].

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

86

