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ABSTRACT
Computing  with  words  applications  are  mostly  built
using  rule  based  systems,  which  have  two  important
lacks:  first,  it  is  not  possible  to  deal  with  high
dimension problems because the size of the rule base
increases exponentially; and second, there are no way
two compute inputs from outputs. In this paper we show
an alternative kind of system that remedy those lacks in
some applications. It is based on fuzzy arithmetic rather
than fuzzy logic. We also show a web application tool
for the environmental impact assessment.

Keywords: Computing with words, Fuzzy arithmetic, 
Inverse Reasoning, environmental impact assessment

1. INTRODUCTION
Fuzzy sets are an useful tool for representing linguistic
concepts,  as  has  been  recognized  from  the  earliest
Zadeh's papers. The concept of linguistic variable was
established by  Zadeh (1975a, 1975b and 1976), and it
has been the keystone of further developments, such as
the computing with words (CW) paradigm  shown by
Zadeh (1999).
In  the  CW paradigm,  a  system compute  words  from
words using words. Words involved here must be well
defined in the context of a Precisiated Natural Language
(PNL),  that  most  of  times  is  a  set  of  Linguistic
Variables, Modifiers and Semantic Rules.
Figure  1  shows  the  structure  of  a  Rule  Based  CW
system. The inputs and outputs are words (it computes
words from words); the main block is the Approximate
Reasoning block, a typical  Mamdani inference engine
whose rule base is a linguistic one (it uses words in the
computation).
The Linguistic Interpretation block translates words into
fuzzy sets, the Inference Engine calculates fuzzy sets,
and the Linguistic Approximation block translates fuzzy
sets into words.
A  simple  Linguistic  Interpretation  block  just  can
process labels of the PNL; its output is a the fuzzy set
that is related with the label in a Linguistic Variable.
A simple Linguistic Approximation block compares the
output  of  the Inference  Engine with the labels  of  the
Linguistic Output Variable, and selects the most similar.
Comparison  is  made  with  any  kind  of  similarity
measure, for example the consistency:

The consistency between two fuzzy  sets  x,  y over  de
same Universe  of  Discourse  U  and with  membership
functions x(u) and y(u) respectively is:

cons(x,y)=supu (min(x(u),y(u))

A Rule Based CW system has two major lacks:
1. It  is  not  possible  to  use  a  Rule  Based  CW

systems  in  high  dimension  applications.  The
rule base has a combinatorial complexity, and
as a consequence we just can manipulate a low
number of variables and labels. For a simple 7
inputs  and 5 labels in each input,  we should
define  up  to  57 =  78,125  rules.  Even  if  we
would be able to do it, the linguistic meaning
of  that  amount  of  rules  is  unintelligible.  A
single rule whose antecedent has seven atomic
expressions is also not easy to understand.

2. It is not possible to make inverse reasoning. By
Inverse  Reasoning  we  mean  the  process  of
computing  inputs  from  outputs.  With  a
Mamdani Inference Engine we cannot make it.

Figure 1: Rule Based CW system

2. ARITHMETIC BASED CW SYSTEMS
In  this  paper  we  propose  an  Arithmetic  Based  CW
system: we propose to compute words from words using
fuzzy  numbers (In  fact  inputs  and  outputs  are  not
restricted  to  words,  as  we  will  show later).  Figure  2
shows  the  system  structure:  The  main  block  is  the
Approximate  Reasoning  block  that  calculates  fuzzy
numbers  from  fuzzy  numbers  using  an  approximate
reasoning function (fra) instead of a rule base.
In the following, we assume:

• The system has  n inputs  x1,  x2,···,  xn and one
output  y.  Multiple  output  systems  are  not
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presented here for simplicity reasons, but can
be easily built.

• Every input variable xi is defined over Ui=[0,1]
and  the  output  variable  y is  defined  over
V=[0,1].  The sets of all fuzzy sets and fuzzy
numbers over  Ui are  FUi and  NUi respectively,
and  the  sets  of  all  fuzzy  sets  and  fuzzy
numbers  over  V are  FV and  NV respectively.
We  define  FU=FU1 x FU2 x …  x FUn and
NU=NU1 x NU2 x … x Nun.

• For every input variable xi there is a linguistic
variable Xi with a set of qi linguistic labels Lxi-1,
Lxi-2,  ···,  Lxi-qi. Every linguistic label  Lxi-j has a
related fuzzy set fxi-j.

• Analogously,  the  output  variable  y has  a
linguistic variable  Y with a set of  r linguistic
labels Ly-1, Ly-2,···, Ly-r and every linguistic label
Ly-i has a related fuzzy set fy-i.

• Every  fuzzy  set  fxi-j and  fy-i has  a  trapezoidal
shape. We will use the notation f = T (a, b, c,
d) in order to indicate that fuzzy set  f has the
membership function shown in figure 3.

Figure 2: Arithmetic Based CW system

Figure 3: Trapezoidal fuzzy number f = T (a, b, c, d)

We will use the usual fuzzy number definition (a normal
fuzzy  set  over  R with  the  upper  semicontinuous
property). Note that f = T (a, b, c, d) implies that f is a
fuzzy number. Now we are ready to explain the blocks
shown in figure 2.

2.1. Linguistic Interpretation
The objective of the Linguistic Interpretation block is to
translate the inputs into fuzzy numbers. The inputs may
be of different  types and the output will  be always a
trapezoidal  fuzzy  number  fni for  every  input.  The
following are valid types of inputs:
Crisp  numbers: if  the  actual  input  xi is  the  crisp
number a, the output will be the singleton fuzzy number
fni=T(a,a,a,a).
Intervals: if the actual input xi is the interval [a,b], the
output  will  be  the  rectangular  fuzzy  number
fni=T(a,a,b,b).

Trapezoidal fuzzy numbers: if the actual input xi is the
trapezoidal fuzzy number  T(a,b,c,d) the output will be
the same input, fni=T(a,b,c,d)
Linguistic Labels: if the actual input xi is the linguistic
label Lxi-j the output will be its related fuzzy set fxi-j.
Modified  Linguistic  Labels: valid  modifiers  are  “at
least” and “at most” Table 1 shows the corresponding
output. In Table 1 we assume the linguistic label Lxi-j has
a related fuzzy set fxi-j=T(a,b,c,d)
Simple words: simple valid words are “nothing” and
“anything” Table 1 shows the corresponding output.

Table 1: Valid inputs of the types “Modified Linguistic
Labels” and “Simple Words”

Input Output

“at least”  Lxi-j fni=T(a,b,1,1)

“at most”  Lxi-j fni=T(0,0,c,d)

“nothing” fni=T(0,0,0,0)

“anything” fni=T(0,0,1,1)

2.2. Approximate Reasoning
A typical Mamdani Inference Engine may be viewed as
an application AR :FU→FV . However, as typical
inputs  of  this  block  come  from  a  Linguistic
Interpretation  block  (or  from  a  fuzzyfier  block  in  a
fuzzy controller)  they are  really  fuzzy  numbers.  As a
result,  we  may view the   typical  Mamdani  Inference
Engine as an application  AR :NU→FV (note that

NU⊂FU ).

We propose a different  kind of  Inference  Engine that
may be viewed as an application ARF :N U→N V .
In other words, the input of the approximate reasoning
block will  be  the fuzzy  numbers  fn1,fn2,...,fnn and the
output will be the fuzzy number O:

O=ARF(fn1,fn2,...,fnn)   (1)

ARF is  an  Approximate  Reasoning  Function whose
objective is analogous to that of the rule base in a rule
based system: it must capture the knowledge about the
system.
We argue that in some applications the knowledge about
the system is too poor and it has no sense to make a rule
base with it. There are some situations in which the only
knowledge available is something like:

• “Every  time  input  i increases  the  output
increases (or decreases)”'.

• “Input i is more important than input j ”
Of  course,  we  could  build  a  rule  base  with  that
knowledge, but a simple crisp arithmetic function can
also capture that knowledge. As an example,  consider
the weighted average function
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y=∑
i=1

n

wi xi ∑
i=1

n

w i=1 wi≥0          (2)

Equation (2) tell us that output  y increases as well as
any of the inputs xi increases. If  wi > wj we also know
that  the  effect  of  varying  xi is  greater  than  that  of
varying xj, in other words, we know that input i is more
important than input  j. Suppose (2) refers to a system
with 7 inputs every one with 5 labels. Instead of a rule
base of 78.125 rules we just need a single equation.
We propose to build (1) using simple crisp arithmetic
functions that we will  note as  arf ,  and the extension
principle.
We list  some  good  arf of  general  application.  In  all
cases  wi is a weight variable that let us manipulate the
relative  importance  of  every  input;  it  is  restricted  by

0≤wi≤1 and ∑
i=1

n

wi=1 . 

We also define si as an auxiliary variable that define the
sense of the effect of input i over the output:

• si=1 if y increases as xi increases
• si=0 if y decreases as xi increases

Option 1: A weighted average that includes the sense of
the effect of every input:

arf 1=∑
i=1

n

s iwi xi+∑
i=1

n

(1−si)wi(1−x i)

Option 2: A modified weighted average in which the
importance of every input may be varying:

arf 2=∑
i=1

n

siwi g i(xi)+∑
i=1

n

(1−si)wi g i(1−xi)

where  gi : [0,1]→[0,1] is  a  monotone  increasing
function such that  g(0)=0 and  g(1)=1. As an example,
suppose  gi(xi)=xi

r;  if  r>1 then the lowest  values  of  xi

will be undervalued, and the highest will be overvalued.
Option 3: A weighted average with an offset:

arf 3=0.5+[1+∑
i=1

n

(−1)si+1w i xi ]

2.3. Linguistic Approximation
The objective of the Linguistic Approximation block is
to  translate  the output  of  the Approximate  Reasoning
block (the fuzzy number  O) into words. However, we
propose  different  types  of  outputs  for  different
applications: 
A single word: We compute the consistence between O
and every fuzzy set fi of the linguistic variable Y

c i=cons ( f i ,O) i=1,2,⋯,r
Then we select the label with maximum consistency as
the output of the system.
A  descriptive  sentence: We  also  compute  ci for
i=1,2,...,r and then construct a sentence such as

“Output is P1 Ly1, is P2 Ly2, … ,and is Pr Lyr”

where Pi is one of the following modifiers:

• “very possibly” if 0≤c i<1 /3
• “possibly” if 1/3≤ci<2 /3
• “low possibly” if 2/3≤ci<1

A fuzzy number: A valid output is the fuzzy number  O
without any change.
A  crisp  number: Another  valid  output  is  a  crisp
number  representing  the  central  value  of  the  fuzzy
number O. We use the value of fuzzy numbers defined
by Delgado (1988)
A pair of crisp numbers: Another valid output is a pair
of crisp numbers representing the central value and the
fuzzyness of the fuzzy number O. We use the value and
ambiguity of fuzzy numbers defined by Delgado (1988) 

2.4. Remarks
We  want  to  remark  some  important  aspects  of  the
Arithmetic Based CW systems:

1. Inputs and Outputs are not restricted to words.
We  can  compute  words  from  a  set  of
heterogeneous  variables  (words,  numbers,
intervals, fuzzy numbers).

2. As fuzzy numbers are valid input and output
variables, it is easy to concatenate two or more
Arithmetic Based CW systems without loosing
information about uncertainty.

3. Using Arithmetic Based CW systems we can
design systems of high dimensionality because
there are no rule base explosion. But we pay
for  it:.  we  must  find  a  crisp  function  that
captures the input-output relationships.

4. There  are  some  applications  in  which
knowledge is enough to construct the arf with
simple weighted averages; This could be more
simple than finding a Rule Base.

5. In low dimensionality problems we can design
either Rule or Arithmetic Based CW systems;
in section 3 we make a numerical comparison.

6. In  section  4  we  will  show  how to  compute
inputs from outputs using fuzzy arithmetic.

3. RULE BASED VS. ARITHMETIC BASED CW
SYSTEMS

Our  aim  in  this  section  is  to  make  a  numerical
comparison  between  Rule  and  Arithmetic  Based  CW
systems. As we can not design RBCW systems of high
dimensionality  we  limit  our  experiments  to  2  simple
cases: a) 1 input - 1 output system and b) 2 inputs - 1
output system.

Our  numerical  comparison  must  be  done  (obviously)
between numbers, but RBCW systems can not compute
numbers,  just  words.  As  both,  ABCW  and  RBCW
systems, use the consistency to perform the Linguistic
Interpretation  we  have  selected  it  as  the  comparison
variable. Two types of inputs have been proven: words
and numbers. As RBCW systems can not operate with
numbers,  we have  simulated  them with words  whose
associated fuzzy sets are singletons.

Proceedings of the European Modeling and Simulation Symposium, 2017 
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds. 

277



Input and Output Linguistic Variables have been always
equal:  three  labels  (LOW,  MEDIUM,  HIGH)  with
trapezoidal  fuzzy  sets  TL(0.0,0.0,0.2,0.4),
TM(0.2,0.4,0.6,0.8) and TH(0.6,0.8,1.0,1.0)

3.1. 1 input - 1 output
In this case we have an input x1 and an output y, whose
relationship is increasing. The Rule Base for the RLCW
system is:

• R1: IF x1 is LOW THEN y is LOW
• R2: IF x1 is MEDIUM THEN y is MEDIUM
• R3: IF x1 is HIGH THEN y is HIGH

A  suitable  Approximate  Reasoning  Function  for  the
ABCW system is

fra:  y=x1

Tables 2 and 3 show the consistency of the output of the
systems when inputs are words. There is no difference
between  them,  and  we  can  conclude  that  the  RBCW
system is as good as the ABCW system.

Table 2: Consistency of the output of a RBCW system
when inputs are words

Input cons(O,L) cons(O,M) cons(O,H)

LOW 1.0 0.5 0.0

MEDIUM 0.5 1.0 0.5

HIGH 0.0 0.5 1.0

Table 3: Consistency of the output of a ABCW system
when inputs are words

Input cons(O,L) cons(O,M) cons(O,H)

LOW 1.0 0.5 0.0

MEDIUM 0.5 1.0 0.5

HIGH 0.0 0.5 1.0

Figures 4 and 5 show the consistency of the output of
the  systems  when  inputs  are  numbers.  Note  the
consistency of the output when input is  x1=0.3: In the
RBCW  system  the  output  has  the  same  consistency
(0.5)  with  the  three  labels,  meaning  that  it  can  not
distinguish if  it  is  LOW, MEDIUM or  HIGH;  in  the
other  hand,  the  ABCW  system  the  output  has
consistency 0.0 with the  third,  meaning that  it  is  not
HIGH. We must conclude that the ABCW performs a
better discrimination of the output.

3.2. 2 input2 - 1 output
In this case we have two inputs  x1, x2 and an output  y.
The  relationship  between  y and  x1 is  increasing,  but
between  y and  x2 is decreasing. The Rule Base for the
RLCW  system  is  described  in  table  4,  where  as  a
suitable  Approximate  Reasoning  Function  for  the
ABCW system we design

fra: y=0.5(1+x1-x2)

Figure 4: Consistency of the output of a RBCW system
when inputs are numbers

Figure 5: Consistency of the output of a ABCW system
when inputs are numbers

Table 4: Rule Base for a RBCW system with 2 inputs

x2

x1 LOW MEDIUM HIGH

LOW MEDIUM HIGH HIGH

MEDIUM LOW MEDIUM HIGH

HIGH LOW LOW MEDIUM

Tables 5 and 6 show the consistency of the output of the
systems  when  inputs  are  words.  Every  cell  in  those
tables has three numbers, the consistency of the output
with every one of the three labels LOW, MEDIUM and
HIGH.  Note  that  every  label  that  has  maximum
consistency  in  the  RBCW system also has  maximum
consistency in the ABCW system.
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Table 5: Consistency of the output of a 2 inputs RBCW
system when inputs are words

x2

x1 LOW MEDIUM HIGH

LOW 0.5/1.0/0.5 0.5/0.5/1.0 0.0/0.5/1.0

MEDIUM 1.0/0.5/0.5 0.5/1.0/0.5 0.5/0.5/1.0

HIGH 1.0/0.5/0.0 1.0/0.5/0.5 0.5/1.0/0.5

Table 6: Consistency of the output of a 2 inputs ABCW
system when inputs are words

x2

x1 LOW MEDIUM HIGH

LOW 0.25/1.0/0.25 0.0/1.0/0.0 0.0/0.5/1.0

MEDIUM 1.0/0.5/0.5 0.5/1.0/0.5 0.0/1.0/1.0

HIGH 1.0/0.5/0.0 1.0/1.0/0.0 0.25/1.0/0.25

Figures 6 and 7 show the consistency of the output of
the systems when inputs are numbers. We have assumed
a monotone relationship between every  input  and  the
output;  however,  the  RBCW  system  produces  non-
monotone surfaces  of  the  consistencies  while  thos  of
ABCW systems are monotone. We argue  that  ABCW
systems  represent  better  than  RBCW  system  the
previous knowledge.

Figure 6: Consistency of the output of a  2-inputs
RBCW system when inputs are numbers

Figure 7: Consistency of the output of a 2-inputs
ABCW system when inputs are numbers

4. INVERSE REASONING

CW systems as those of figures 1 and 2 are designed to
compute outputs from inputs; however, sometimes we
need to perform the inverse calculus: to compute one or
more inputs from the remaining inputs and the outputs.

In order to precise the above paragraph, suppose a CW
system  with  three  inputs  x1,  x2,  x3 and  an  output  y.
Suppose  also  we  know  the  actual  values  (words  or
numbers) of the first two inputs, and we want  y to get
some desired value; the question is ¿which value must
have x3?

If  the  CW system is  Rule  Based,  we  do  not  have  a
procedure to compute  x3. If it is Arithmetic Based, we
must deal we the lack of invertibility of fuzzy arithmetic
(see Yager (1980) and Bouchon (1997)). We propose to
use  the  Algorithm  that  computes  the  Necessary
Extension of Inverse Functions (see Duarte (2003) and
Duarte (2000)).
In few words, the algorithm verifies if exists a suitable
value of x3 (verifies the invertibility). If it does not exist,
the algorithm modifies the desired output  y in such a
way that the inverse exists. The algorithm is valid for
monotone decreasing or increasing functions.  arf listed
in section 2.2 are of this type.

Figure  8  shows  the  proposed  system:  We  want  to
compute xk; Inputs are Xk and y, where Xk is the vector
of known x inputs; outputs are xnec

k, the necessary value
of xk, and ~y , the value of y that we can get with Xk

and  xnec
k. The inverse reasoning is performed with the

Algorithm that  computes  the  Necessary  Extension  of
Inverse  Functions.  Linguistic  Interpretation  and
Approximation blocks are analogous to those of ABCW
systems.  We  call  such  system  an  Arithmetic  Based
Computing with Words Inverse (ABCWI) system.

Figure 8: Arithmetic Based Computing with Words
Inverse (ABCWI) system

5. AN APPLICATION EXAMPLE

We show in this section an example of risk analysis. It
is an ABCW system that computes the risk of damage
caused  by  an  atmospheric  electrical  discharge
(lightning)  in  a  specific  building  (figure  9).  A more
detailed use of fuzzy techniques for this problem can be
found in Gallego (2003); simplification is made here for
ilustration proposes. Inputs and outputs are:

• I: it is the Lightning Intensity, the peak current
of the ligthning.

• D:  it  is the  Lightning Density,  the number of
ligthning  per  square  kilometer  that  are
expected  in  a  year  where  the  building  is
placed.

• P: it is the  Level of Protection defined by the
type  of  protection  apparatus  in  the  electrical
network of the building

• M: it is the Importance Index of the facilities in
the building.

• R: it is the Risk of Damage caused by lightning
in the building.
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Figure 9: ABCW system of the application example

Note that the relationship between the output $R$ and
the inputs I, D and $M$ is increasing, whereas between
R and P is decreasing (more Level of Protection implies
less Risk of  Damage).  We should study the electrical
effects of direct and indirect lightning over the specific
electrical  network,  but  this  is  just  an  example  for
illustration,  so  we  omit  it.  We  will  use  as  inputs:
numbers  for  I and  D and  words  for  P and  M.  All
variables  are  defined  over  [0,1]  whose  linguistic
variables are as those of examples in section 3; I is the
most important variable, so we weight it the double of
the others.
In such a situation, we can define arf as

arf: R= 0.4I+0.2D+0.2(1-P)+0.2M

Now  suppose  the  inputs  are:  I=T(0.5,0.6,0.7,0.8),
D=T(0.2,0.3,0.4,0.5),  P=MEDIUM,  M=LOW.  The
output  of  the  Approximate  Reasoning  block  is  a
trapezoidal fuzzy number O=T(0.28,0.38,0.52,0.66). 
Consistency between O and the three labels are:

cons(O,L)=0.40
cons(O,M)=1.00
cons(O,H)=0.18

Meaning that the risk of damage is MEDIUM. Now we
can compute what kind of Level of Protection we need
if  we  want  to  have  a  LOW  Risk  of  Damage.  The
ABCWI  system  calculates  Pnec=T(1.0,1.0,1.0,1.0) and
the Risk of Damage with that Level of Protection would
be 

R̂=T (0.24,0 .30,0 .40,50)
whose consistency with the three labels is

cons(O,L)=0.62
cons(O,M)=1.00
cons(O,H)=0.00

We must  conclude  that  even  with  the  best  Level  of
Protection  Pnec we  cannot  obtain  a  LOW  Risk  of
Damage.

6. CONCLUSIONS

We can use Fuzzy Arithmetic to design CW systems.
Those  systems  avoid  rule  explosion  for  high
dimensionality  problems;  in  low  dimensionality
problems they also have  performance as good as the
performance  of  the  RBCW  systems  or  even  better.
Moreover,  we  can  compute  inputs  from  outputs  in

ABCWI  systems  that  are  implemented  using  the
Algorithm that  computes  the  Necessary  Extension  of
Inverse Functions.
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