
AVOIDING RULE EXPLOTION AND MAKING APPROXIMATE INVERSE REASONING
IN COMPUTING WITH WORDS APPLICATIONS

Oscar G. Duarte(a)

(a)Universidad Nacional de Colombia

(a)ogduartev@unal.edu.co

ABSTRACT
Computing with words applications are mostly built
using rule based systems, which have two important
lacks: first, it is not possible to deal with high
dimension problems because the size of the rule base
increases exponentially; and second, there are no way
two compute inputs from outputs. In this paper we show
an alternative kind of system that remedy those lacks in
some applications. It is based on fuzzy arithmetic rather
than fuzzy logic. We also show a web application tool
for the environmental impact assessment.

Keywords: Computing with words, Fuzzy arithmetic,
Inverse Reasoning, environmental impact assessment

1. INTRODUCTION
Fuzzy sets are an useful tool for representing linguistic
concepts, as has been recognized from the earliest
Zadeh's papers. The concept of linguistic variable was
established by Zadeh (1975a, 1975b and 1976), and it
has been the keystone of further developments, such as
the computing with words (CW) paradigm shown by
Zadeh (1999).
In the CW paradigm, a system compute words from
words using words. Words involved here must be well
defined in the context of a Precisiated Natural Language
(PNL), that most of times is a set of Linguistic
Variables, Modifiers and Semantic Rules.
Figure 1 shows the structure of a Rule Based CW
system. The inputs and outputs are words (it computes
words from words); the main block is the Approximate
Reasoning block, a typical Mamdani inference engine
whose rule base is a linguistic one (it uses words in the
computation).
The Linguistic Interpretation block translates words into
fuzzy sets, the Inference Engine calculates fuzzy sets,
and the Linguistic Approximation block translates fuzzy
sets into words.
A simple Linguistic Interpretation block just can
process labels of the PNL; its output is a the fuzzy set
that is related with the label in a Linguistic Variable.
A simple Linguistic Approximation block compares the
output of the Inference Engine with the labels of the
Linguistic Output Variable, and selects the most similar.
Comparison is made with any kind of similarity
measure, for example the consistency:

The consistency between two fuzzy sets x, y over de
same Universe of Discourse U and with membership
functions x(u) and y(u) respectively is:

cons(x,y)=supu (min(x(u),y(u))

A Rule Based CW system has two major lacks:
1. It is not possible to use a Rule Based CW

systems in high dimension applications. The
rule base has a combinatorial complexity, and
as a consequence we just can manipulate a low
number of variables and labels. For a simple 7
inputs and 5 labels in each input, we should
define up to 57 = 78,125 rules. Even if we
would be able to do it, the linguistic meaning
of that amount of rules is unintelligible. A
single rule whose antecedent has seven atomic
expressions is also not easy to understand.

2. It is not possible to make inverse reasoning. By
Inverse Reasoning we mean the process of
computing inputs from outputs. With a
Mamdani Inference Engine we cannot make it.

Figure 1: Rule Based CW system

2. ARITHMETIC BASED CW SYSTEMS
In this paper we propose an Arithmetic Based CW
system: we propose to compute words from words using
fuzzy numbers (In fact inputs and outputs are not
restricted to words, as we will show later). Figure 2
shows the system structure: The main block is the
Approximate Reasoning block that calculates fuzzy
numbers from fuzzy numbers using an approximate
reasoning function (fra) instead of a rule base.
In the following, we assume:

• The system has n inputs x1, x2,···, xn and one
output y. Multiple output systems are not

Proceedings of the European Modeling and Simulation Symposium, 2017
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds.

275

mailto:mail@uni.edu

presented here for simplicity reasons, but can
be easily built.

• Every input variable xi is defined over Ui=[0,1]
and the output variable y is defined over
V=[0,1]. The sets of all fuzzy sets and fuzzy
numbers over Ui are FUi and NUi respectively,
and the sets of all fuzzy sets and fuzzy
numbers over V are FV and NV respectively.
We define FU=FU1 x FU2 x … x FUn and
NU=NU1 x NU2 x … x Nun.

• For every input variable xi there is a linguistic
variable Xi with a set of qi linguistic labels Lxi-1,
Lxi-2, ···, Lxi-qi. Every linguistic label Lxi-j has a
related fuzzy set fxi-j.

• Analogously, the output variable y has a
linguistic variable Y with a set of r linguistic
labels Ly-1, Ly-2,···, Ly-r and every linguistic label
Ly-i has a related fuzzy set fy-i.

• Every fuzzy set fxi-j and fy-i has a trapezoidal
shape. We will use the notation f = T (a, b, c,
d) in order to indicate that fuzzy set f has the
membership function shown in figure 3.

Figure 2: Arithmetic Based CW system

Figure 3: Trapezoidal fuzzy number f = T (a, b, c, d)

We will use the usual fuzzy number definition (a normal
fuzzy set over R with the upper semicontinuous
property). Note that f = T (a, b, c, d) implies that f is a
fuzzy number. Now we are ready to explain the blocks
shown in figure 2.

2.1. Linguistic Interpretation
The objective of the Linguistic Interpretation block is to
translate the inputs into fuzzy numbers. The inputs may
be of different types and the output will be always a
trapezoidal fuzzy number fni for every input. The
following are valid types of inputs:
Crisp numbers: if the actual input xi is the crisp
number a, the output will be the singleton fuzzy number
fni=T(a,a,a,a).
Intervals: if the actual input xi is the interval [a,b], the
output will be the rectangular fuzzy number
fni=T(a,a,b,b).

Trapezoidal fuzzy numbers: if the actual input xi is the
trapezoidal fuzzy number T(a,b,c,d) the output will be
the same input, fni=T(a,b,c,d)
Linguistic Labels: if the actual input xi is the linguistic
label Lxi-j the output will be its related fuzzy set fxi-j.
Modified Linguistic Labels: valid modifiers are “at
least” and “at most” Table 1 shows the corresponding
output. In Table 1 we assume the linguistic label Lxi-j has
a related fuzzy set fxi-j=T(a,b,c,d)
Simple words: simple valid words are “nothing” and
“anything” Table 1 shows the corresponding output.

Table 1: Valid inputs of the types “Modified Linguistic
Labels” and “Simple Words”

Input Output

“at least” Lxi-j fni=T(a,b,1,1)

“at most” Lxi-j fni=T(0,0,c,d)

“nothing” fni=T(0,0,0,0)

“anything” fni=T(0,0,1,1)

2.2. Approximate Reasoning
A typical Mamdani Inference Engine may be viewed as
an application AR :FU→FV . However, as typical
inputs of this block come from a Linguistic
Interpretation block (or from a fuzzyfier block in a
fuzzy controller) they are really fuzzy numbers. As a
result, we may view the typical Mamdani Inference
Engine as an application AR :NU→FV (note that

NU⊂FU).

We propose a different kind of Inference Engine that
may be viewed as an application ARF :N U→N V .
In other words, the input of the approximate reasoning
block will be the fuzzy numbers fn1,fn2,...,fnn and the
output will be the fuzzy number O:

O=ARF(fn1,fn2,...,fnn) (1)

ARF is an Approximate Reasoning Function whose
objective is analogous to that of the rule base in a rule
based system: it must capture the knowledge about the
system.
We argue that in some applications the knowledge about
the system is too poor and it has no sense to make a rule
base with it. There are some situations in which the only
knowledge available is something like:

• “Every time input i increases the output
increases (or decreases)”'.

• “Input i is more important than input j ”
Of course, we could build a rule base with that
knowledge, but a simple crisp arithmetic function can
also capture that knowledge. As an example, consider
the weighted average function

Proceedings of the European Modeling and Simulation Symposium, 2017
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds.

276

y=∑
i=1

n

wi xi ∑
i=1

n

w i=1 wi≥0 (2)

Equation (2) tell us that output y increases as well as
any of the inputs xi increases. If wi > wj we also know
that the effect of varying xi is greater than that of
varying xj, in other words, we know that input i is more
important than input j. Suppose (2) refers to a system
with 7 inputs every one with 5 labels. Instead of a rule
base of 78.125 rules we just need a single equation.
We propose to build (1) using simple crisp arithmetic
functions that we will note as arf , and the extension
principle.
We list some good arf of general application. In all
cases wi is a weight variable that let us manipulate the
relative importance of every input; it is restricted by

0≤wi≤1 and ∑
i=1

n

wi=1 .

We also define si as an auxiliary variable that define the
sense of the effect of input i over the output:

• si=1 if y increases as xi increases
• si=0 if y decreases as xi increases

Option 1: A weighted average that includes the sense of
the effect of every input:

arf 1=∑
i=1

n

s iwi xi+∑
i=1

n

(1−si)wi(1−x i)

Option 2: A modified weighted average in which the
importance of every input may be varying:

arf 2=∑
i=1

n

siwi g i(xi)+∑
i=1

n

(1−si)wi g i(1−xi)

where gi : [0,1]→[0,1] is a monotone increasing
function such that g(0)=0 and g(1)=1. As an example,
suppose gi(xi)=xi

r; if r>1 then the lowest values of xi

will be undervalued, and the highest will be overvalued.
Option 3: A weighted average with an offset:

arf 3=0.5+[1+∑
i=1

n

(−1)si+1w i xi]

2.3. Linguistic Approximation
The objective of the Linguistic Approximation block is
to translate the output of the Approximate Reasoning
block (the fuzzy number O) into words. However, we
propose different types of outputs for different
applications:
A single word: We compute the consistence between O
and every fuzzy set fi of the linguistic variable Y

c i=cons (f i ,O) i=1,2,⋯,r
Then we select the label with maximum consistency as
the output of the system.
A descriptive sentence: We also compute ci for
i=1,2,...,r and then construct a sentence such as

“Output is P1 Ly1, is P2 Ly2, … ,and is Pr Lyr”

where Pi is one of the following modifiers:

• “very possibly” if 0≤c i<1 /3
• “possibly” if 1/3≤ci<2 /3
• “low possibly” if 2/3≤ci<1

A fuzzy number: A valid output is the fuzzy number O
without any change.
A crisp number: Another valid output is a crisp
number representing the central value of the fuzzy
number O. We use the value of fuzzy numbers defined
by Delgado (1988)
A pair of crisp numbers: Another valid output is a pair
of crisp numbers representing the central value and the
fuzzyness of the fuzzy number O. We use the value and
ambiguity of fuzzy numbers defined by Delgado (1988)

2.4. Remarks
We want to remark some important aspects of the
Arithmetic Based CW systems:

1. Inputs and Outputs are not restricted to words.
We can compute words from a set of
heterogeneous variables (words, numbers,
intervals, fuzzy numbers).

2. As fuzzy numbers are valid input and output
variables, it is easy to concatenate two or more
Arithmetic Based CW systems without loosing
information about uncertainty.

3. Using Arithmetic Based CW systems we can
design systems of high dimensionality because
there are no rule base explosion. But we pay
for it:. we must find a crisp function that
captures the input-output relationships.

4. There are some applications in which
knowledge is enough to construct the arf with
simple weighted averages; This could be more
simple than finding a Rule Base.

5. In low dimensionality problems we can design
either Rule or Arithmetic Based CW systems;
in section 3 we make a numerical comparison.

6. In section 4 we will show how to compute
inputs from outputs using fuzzy arithmetic.

3. RULE BASED VS. ARITHMETIC BASED CW
SYSTEMS

Our aim in this section is to make a numerical
comparison between Rule and Arithmetic Based CW
systems. As we can not design RBCW systems of high
dimensionality we limit our experiments to 2 simple
cases: a) 1 input - 1 output system and b) 2 inputs - 1
output system.

Our numerical comparison must be done (obviously)
between numbers, but RBCW systems can not compute
numbers, just words. As both, ABCW and RBCW
systems, use the consistency to perform the Linguistic
Interpretation we have selected it as the comparison
variable. Two types of inputs have been proven: words
and numbers. As RBCW systems can not operate with
numbers, we have simulated them with words whose
associated fuzzy sets are singletons.

Proceedings of the European Modeling and Simulation Symposium, 2017
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds.

277

Input and Output Linguistic Variables have been always
equal: three labels (LOW, MEDIUM, HIGH) with
trapezoidal fuzzy sets TL(0.0,0.0,0.2,0.4),
TM(0.2,0.4,0.6,0.8) and TH(0.6,0.8,1.0,1.0)

3.1. 1 input - 1 output
In this case we have an input x1 and an output y, whose
relationship is increasing. The Rule Base for the RLCW
system is:

• R1: IF x1 is LOW THEN y is LOW
• R2: IF x1 is MEDIUM THEN y is MEDIUM
• R3: IF x1 is HIGH THEN y is HIGH

A suitable Approximate Reasoning Function for the
ABCW system is

fra: y=x1

Tables 2 and 3 show the consistency of the output of the
systems when inputs are words. There is no difference
between them, and we can conclude that the RBCW
system is as good as the ABCW system.

Table 2: Consistency of the output of a RBCW system
when inputs are words

Input cons(O,L) cons(O,M) cons(O,H)

LOW 1.0 0.5 0.0

MEDIUM 0.5 1.0 0.5

HIGH 0.0 0.5 1.0

Table 3: Consistency of the output of a ABCW system
when inputs are words

Input cons(O,L) cons(O,M) cons(O,H)

LOW 1.0 0.5 0.0

MEDIUM 0.5 1.0 0.5

HIGH 0.0 0.5 1.0

Figures 4 and 5 show the consistency of the output of
the systems when inputs are numbers. Note the
consistency of the output when input is x1=0.3: In the
RBCW system the output has the same consistency
(0.5) with the three labels, meaning that it can not
distinguish if it is LOW, MEDIUM or HIGH; in the
other hand, the ABCW system the output has
consistency 0.0 with the third, meaning that it is not
HIGH. We must conclude that the ABCW performs a
better discrimination of the output.

3.2. 2 input2 - 1 output
In this case we have two inputs x1, x2 and an output y.
The relationship between y and x1 is increasing, but
between y and x2 is decreasing. The Rule Base for the
RLCW system is described in table 4, where as a
suitable Approximate Reasoning Function for the
ABCW system we design

fra: y=0.5(1+x1-x2)

Figure 4: Consistency of the output of a RBCW system
when inputs are numbers

Figure 5: Consistency of the output of a ABCW system
when inputs are numbers

Table 4: Rule Base for a RBCW system with 2 inputs

x2

x1 LOW MEDIUM HIGH

LOW MEDIUM HIGH HIGH

MEDIUM LOW MEDIUM HIGH

HIGH LOW LOW MEDIUM

Tables 5 and 6 show the consistency of the output of the
systems when inputs are words. Every cell in those
tables has three numbers, the consistency of the output
with every one of the three labels LOW, MEDIUM and
HIGH. Note that every label that has maximum
consistency in the RBCW system also has maximum
consistency in the ABCW system.

Proceedings of the European Modeling and Simulation Symposium, 2017
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds.

278

Table 5: Consistency of the output of a 2 inputs RBCW
system when inputs are words

x2

x1 LOW MEDIUM HIGH

LOW 0.5/1.0/0.5 0.5/0.5/1.0 0.0/0.5/1.0

MEDIUM 1.0/0.5/0.5 0.5/1.0/0.5 0.5/0.5/1.0

HIGH 1.0/0.5/0.0 1.0/0.5/0.5 0.5/1.0/0.5

Table 6: Consistency of the output of a 2 inputs ABCW
system when inputs are words

x2

x1 LOW MEDIUM HIGH

LOW 0.25/1.0/0.25 0.0/1.0/0.0 0.0/0.5/1.0

MEDIUM 1.0/0.5/0.5 0.5/1.0/0.5 0.0/1.0/1.0

HIGH 1.0/0.5/0.0 1.0/1.0/0.0 0.25/1.0/0.25

Figures 6 and 7 show the consistency of the output of
the systems when inputs are numbers. We have assumed
a monotone relationship between every input and the
output; however, the RBCW system produces non-
monotone surfaces of the consistencies while thos of
ABCW systems are monotone. We argue that ABCW
systems represent better than RBCW system the
previous knowledge.

Figure 6: Consistency of the output of a 2-inputs
RBCW system when inputs are numbers

Figure 7: Consistency of the output of a 2-inputs
ABCW system when inputs are numbers

4. INVERSE REASONING

CW systems as those of figures 1 and 2 are designed to
compute outputs from inputs; however, sometimes we
need to perform the inverse calculus: to compute one or
more inputs from the remaining inputs and the outputs.

In order to precise the above paragraph, suppose a CW
system with three inputs x1, x2, x3 and an output y.
Suppose also we know the actual values (words or
numbers) of the first two inputs, and we want y to get
some desired value; the question is ¿which value must
have x3?

If the CW system is Rule Based, we do not have a
procedure to compute x3. If it is Arithmetic Based, we
must deal we the lack of invertibility of fuzzy arithmetic
(see Yager (1980) and Bouchon (1997)). We propose to
use the Algorithm that computes the Necessary
Extension of Inverse Functions (see Duarte (2003) and
Duarte (2000)).
In few words, the algorithm verifies if exists a suitable
value of x3 (verifies the invertibility). If it does not exist,
the algorithm modifies the desired output y in such a
way that the inverse exists. The algorithm is valid for
monotone decreasing or increasing functions. arf listed
in section 2.2 are of this type.

Figure 8 shows the proposed system: We want to
compute xk; Inputs are Xk and y, where Xk is the vector
of known x inputs; outputs are xnec

k, the necessary value
of xk, and ~y , the value of y that we can get with Xk

and xnec
k. The inverse reasoning is performed with the

Algorithm that computes the Necessary Extension of
Inverse Functions. Linguistic Interpretation and
Approximation blocks are analogous to those of ABCW
systems. We call such system an Arithmetic Based
Computing with Words Inverse (ABCWI) system.

Figure 8: Arithmetic Based Computing with Words
Inverse (ABCWI) system

5. AN APPLICATION EXAMPLE

We show in this section an example of risk analysis. It
is an ABCW system that computes the risk of damage
caused by an atmospheric electrical discharge
(lightning) in a specific building (figure 9). A more
detailed use of fuzzy techniques for this problem can be
found in Gallego (2003); simplification is made here for
ilustration proposes. Inputs and outputs are:

• I: it is the Lightning Intensity, the peak current
of the ligthning.

• D: it is the Lightning Density, the number of
ligthning per square kilometer that are
expected in a year where the building is
placed.

• P: it is the Level of Protection defined by the
type of protection apparatus in the electrical
network of the building

• M: it is the Importance Index of the facilities in
the building.

• R: it is the Risk of Damage caused by lightning
in the building.

Proceedings of the European Modeling and Simulation Symposium, 2017
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds.

279

Figure 9: ABCW system of the application example

Note that the relationship between the output R and
the inputs I, D and M is increasing, whereas between
R and P is decreasing (more Level of Protection implies
less Risk of Damage). We should study the electrical
effects of direct and indirect lightning over the specific
electrical network, but this is just an example for
illustration, so we omit it. We will use as inputs:
numbers for I and D and words for P and M. All
variables are defined over [0,1] whose linguistic
variables are as those of examples in section 3; I is the
most important variable, so we weight it the double of
the others.
In such a situation, we can define arf as

arf: R= 0.4I+0.2D+0.2(1-P)+0.2M

Now suppose the inputs are: I=T(0.5,0.6,0.7,0.8),
D=T(0.2,0.3,0.4,0.5), P=MEDIUM, M=LOW. The
output of the Approximate Reasoning block is a
trapezoidal fuzzy number O=T(0.28,0.38,0.52,0.66).
Consistency between O and the three labels are:

cons(O,L)=0.40
cons(O,M)=1.00
cons(O,H)=0.18

Meaning that the risk of damage is MEDIUM. Now we
can compute what kind of Level of Protection we need
if we want to have a LOW Risk of Damage. The
ABCWI system calculates Pnec=T(1.0,1.0,1.0,1.0) and
the Risk of Damage with that Level of Protection would
be

R̂=T (0.24,0 .30,0 .40,50)
whose consistency with the three labels is

cons(O,L)=0.62
cons(O,M)=1.00
cons(O,H)=0.00

We must conclude that even with the best Level of
Protection Pnec we cannot obtain a LOW Risk of
Damage.

6. CONCLUSIONS

We can use Fuzzy Arithmetic to design CW systems.
Those systems avoid rule explosion for high
dimensionality problems; in low dimensionality
problems they also have performance as good as the
performance of the RBCW systems or even better.
Moreover, we can compute inputs from outputs in

ABCWI systems that are implemented using the
Algorithm that computes the Necessary Extension of
Inverse Functions.

ACKNOWLEDGMENTS
If the paper requires an acknowledgements section it
can be placed after the main body of the text.

REFERENCES
Bouchon-Meunier B., Kosheleva O., Kreinovich V., and

Nguyen H.T.. 1997. Fuzzy numbers are the only
fuzzy sets that keep invertible operations
invertible. Fuzzy Sets and Systems, pages 155-
164, 1997.

Delgado M., Vila M.A., and Voxman W., 1988. On a
canonical representation of fuzzy numbers. Fuzzy
Sets and Systems, (93):205–216.

Duarte O. G., 2000. Técnicas Difusas En la Evaluación
de Impacto Ambiental. PhD thesis, Universidad de
Granada.

Duarte O. G., Requena I., and Delgado M., 2003
Algorithms to extend crisp functions and their
inverse functions to fuzzy numbers. International
Journal of Intelligent Systems, 18: 855–876.
doi:10.1002/int.10121

Gallego L. E., Duarte O. G., Torres H., et. al. 2004
Lightning risk assessment using fuzzy logic.
Journal of Electrostatics, 60:233–239, March
2004.

Yager R.R., 1980. On the lack of inverses in fuzzy
arithmetic. Fuzzy Sets and Systems, pages 73-82.

Zadeh L.A., 1975a. The concept of linguistic variable
and its applications to approximate reasoning, part.
Information Sciences, 8:199–249.

Zadeh L.A., 1975b. The concept of linguistic variable
and its applications to approximate reasoning, part
II. Information Sciences, 8:301–357.

Zadeh L.A., 1976. The concept of linguistic variable
and its applications to approximate reasoning, part
III. Information Sciences, 9:43–80.

Zadeh L.A., 1999. Computing with Words in
Information/Intelligent Systems. What is
Computing with Words? Physica Verlag.

AUTHORS BIOGRAPHY
Oscar Duarte was born in Bogotá, Colombia. He
received the Electrical Engineering degree and the
M.Sc. In Industrial Automation from Universidad
Nacional de Colombia and the Ph.D. in Computer
Science from Universidad de Granada (Spain). He
joined the Department of Electrical and Electronics
Engineering, Universidad Nacional de Colombia, as a
lecturer in 1994. His current research interests include
soft computing, modeling and simulation of dynamic
systems, control, and engineering education. He is the
author of 3 books and more than 40 papers of
conference and journals. He was also the Academic
Vicedean of the School of Engineering since 2012 to
2016.

Proceedings of the European Modeling and Simulation Symposium, 2017
ISBN 978-88-97999-85-0; Affenzeller, Bruzzone, Jiménez, Longo and Piera Eds.

280

