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ABSTRACT
The sequential ordering problem is a version of the asym-
metric travelling salesman problem where precedence
constraints on vertices are imposed. A tour is feasible
if these constraints are respected, and the objective is to
find a feasible solution with minimum cost.

The sequential ordering problem models many real
world applications, mainly in the fields of transportation
and production planning. In particular, it can be used to
optimise quay crane assignments.

In this paper we experimentally evaluate the contri-
butions of the basic ingredients of the state-of-the-art
algorithm for the sequential ordering problems: local
searches, ant colony and heuristic manipulation.

Keywords: quay crane optimization, sequential or-
dering, heuristic algorithm.

1. THE SEQUENTIAL ORDERING PROBLEM

1.1. Introduction
Maritime transport has been constantly increasing in the
past years. The Review of Maritime Transport published
by UNCTAD1 in 2007 reports an average increase of
13.52% in 2005 and 14.63% in 2006 for the top 20 ports.
Such double figures are correlated to the strong devel-
opment of trade with emerging countries such as China
and India, and the trend is expected to continue even in
the face of uncertainties in the world economic outlook.
Port infrastructures are also growing, but the investments
cannot keep up with the pace of the expansion of trade.
Problems related to port congestion and lack of storage
space are here to stay. The optimization of port terminal
resources is therefore a key tool for the success of port op-
erations. Optimization can also play a major role in min-
imizing the environmental impact of sea freight, since a
better usage of the existing resources can also have a sig-
nificant impact on the quantity of energy required to ef-
ficiently operate a large infrastructure such as a maritime
port terminal.

A maritime port terminal is a complex system, com-
posed of a number of parts, each one with its specific

1http://www.unctad.org.

purpose and characteristics. Steenken et al. (2004) de-
scribe it as an open system of material flow with two in-
terfaces, one on the quay-side, to the sea, and one on the
hinterland, to inland. The management of a terminal port
is obviously a complex decisional problem, due to the
multiple interactions which are present among the vari-
ous component processes of the port. Efforts have been
made towards the systematic classification and solution
of the various planning, management and control prob-
lems which are encountered in terminal systems. Of par-
ticular interest is the classification by Günther and Kim
(2006) who divide the problems according to the deci-
sional level (terminal design, operational planning, and
operational control) and to the subject of the decisional
problem. Thus, at the design level we encounter prob-
lems such as the design of the multi-modal interfaces, of
the terminal layout, the selection of equipment, while at
the planning level the focus is on the synthesis of storage
and stacking policies, assigning cranes to ships, planning
stowage and berth assignment. Finally, at the operational
control level, the terminal manager has to solve problems
such as land-side and quay-side transport and crane oper-
ations and scheduling.

Figure 1. Design, planning and control problems with
respect to the components of a maritime terminal (from
Günther and Kim 2006).

Given the complexity of the structure and of the pro-
cesses, may authors have attempted a “divide and con-
quer” approach. In this approach the global port opti-
mization problem is decomposed into a series of simpler
problems, which are solved independently, using bound-
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ary conditions to guarantee the overall feasibility of the
solution, as also shown by Gambardella et al. (2001),
and also by a number of other authors, as reported in the
recently updated comprehensive review by Stahlbock and
Voß(2008).

In this paper we focus our attention on the problem of
the optimisation of quay crane scheduling at the opera-
tional control level once the crane assignment and crane
split problem have been solved at the planning level. In
particular, we assume that a quay crane is dedicated to
loading and unloading a specific ship section, as happens
in the vast majority of cases, since two cranes serving the
same ship section would need interleaving, without any
clear advantage in performance. This assumption allows
us to formulate the crane scheduling problem as a sequen-
tial ordering problem, since we have one machine (the
crane) which must serve a number of jobs (the contain-
ers) which are subject to precedence constraints, which
are given by the stacking positions of the containers on
the terminal yard and by the loading/unloading lists of
the ship, which are set according to the final destination
of the containers.

1.2. Problem description
The Sequential Ordering Problem (SOP), also referred
to as the Asymmetric Travelling Salesman Problem with
Precedence Constraints, can be modelled in graph the-
oretical terms as follows. A complete directed graph
D = (V,A) is given, where V is the set of nodes and
A = {(i, j)|i, j ∈ V } is the set of arcs. A cost cij ∈ N
is associated with each arc (i, j) ∈ A. Without loss of
generality it can be assumed that a fixed starting node
1 ∈ V is given. It has to precede all the other nodes.
The tour is also closed at node 1, after all the other nodes
have been visited (ci1 = 0 ∀i ∈ V by definition). This
artifact creates an analogy with the asymmetric travelling
salesman problem. Such an analogy is exploited by many
known algorithms. Furthermore an additional precedence
digraph P = (V,R) is given, defined on the same node
set V as D. An arc (i, j) ∈ R, represents a precedence
relationship, i.e. i has to precede j in every feasible tour.
Such a relation will be denoted as i ≺ j in the remainder
of the paper. The precedence digraph P must be acyclic
in order for a feasible solution to exist. It is also assumed
to be transitively closed, since i ≺ k can be inferred from
i ≺ j and j ≺ k. Note that for the last arc traversed by
a tour (entering node 1), precedence constraints do not
apply. A tour that satisfies precedence relationships is
called feasible. The objective of the SOP is to find a fea-
sible tour with the minimal total cost.

It is interesting to observe that SOP reduces to the clas-
sical asymmetric travelling salesman problem (ATSP) in
the case where no precedence constraint is given. This
observation implies that SOP is NP-hard, being a gener-
alization of the ATSP.

1.3. Literature review
The SOP can model real-world problems such as produc-
tion planning (Escudero 1988 and Seo and Moon 2003),

single vehicle routing problems with pick-up and delivery
constraints (Pulleyblank and Timlin 1991, Savelsbergh
1990) and transportation problems in flexible manufac-
turing systems (Ascheuer 1995).

Sequential ordering problems were initially solved as
constrained versions of the ATSP, especially for the de-
velopment of exact algorithms. The main effort has
been put into extending the mathematical definition of
the ATSP by introducing new classes of valid inequali-
ties to model the additional constraints. The first mathe-
matical model for the SOP was introduced by Ascheuer
et al. (1993), where a cutting plane approach was pro-
posed to compute lower bounds on the optimal solution.
Escudero et al (1994), a Lagrangean relaxation method
was described and embedded into a branch and cut al-
gorithm. Ascheuer (1995) has proposed a new class of
valid inequalities and has described a new branch-and-cut
method for a broad class of SOP instances. This is based
on the polyhedral investigation carried out on ATSP prob-
lems with precedence constraints by Balas et al. (1995).
The approach by Ascheuer (1995) also investigates the
possibility of computing and improving sub-optimal fea-
sible solutions starting from the upper bound provided
by the polyhedral investigation. The upper bound is the
initial solution of a heuristic phase based on well-known
ATSP heuristics that are iteratively applied in order to im-
prove feasible solutions. These heuristics do not handle
constraints directly; infeasible solutions are simply re-
jected. A branch and bound algorithm with lower bounds
obtained from homomorphic abstractions of the original
search space has been presented by Hernàdvölgyi (2003,
2004). A genetic algorithm has been proposed in Chen
and Smith (1996). The method works in the space of fea-
sible solutions by introducing a sophisticated crossover
operator that preserves the common schemata of two par-
ents by identifying their maximum partial order through
matrix operations. The new solution is completed using
constructive heuristics. A hybrid genetic algorithm based
on complete graph representation has been discussed by
Seo and Moon (2003). A parallelised roll-out algorithm
has been described by Guerriero and Mancini (2003).
Gambardella and Dorigo (2000) presented an approach
based on Ant Colony System (ACS) enriched with so-
phisticated Local Search (LS) procedures. Montemanni
et al. (2007, 2008) built on top of this method, adding a
Heuristic Manipulation Technique (HMT) on top of the
original algorithm. This resulting method can be classi-
fied as state-of-the-art for the sequential ordering prob-
lem.

The contribution of the present article is an experimen-
tal study aiming at understanding the contribution of the
basic ingredients (LS, ACO, HMT) in the economy of
the composite method described by Montemanni et al.
(2008).

The paper is organized as follows: Sections 2, 3 and
4 describe local searches, ant colony optimization and
heuristic manipulation for the SOP, respectively. These
are the basic ingredients of the composite algorithm de-
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scribed by Montemanni et al. (2008). Extensive com-
putational experiments, aiming at understanding how the
algorithm performs when only a subset of the ingredients
is put in operation, are presented in Section 5. Conclu-
sions are drawn in Section 6.

2. LOCAL SEARCH (LS)
The extremely efficient SOP-3-exchange local search
routine (we will refer to it as LS in the reminder of the
paper) has been introduced by Gambardella and Dorigo
(2000). This local search routine is a specialization to
the sequential ordering problem of a known local search
method for the asymmetric travelling salesman problem
(Savelsbergh 1990). It is able to directly handle multiple
constraints without increasing the computational com-
plexity of the original local search.

SOP-3-exchange starts from a feasible solution, and
generates a new solution by replacing three edges (Fig-
ure 2) (h, h+ 1), (i, i+ 1), (j, j + 1) with another set of
improving three edges (h, i + 1), (j, h + 1), (i, j + 1).
This operation is iteratively executed until no additional
improving 3-exchange is possible. SOP-3-exchange ex-
plores the set of feasible edges using a lexicographic
approach. The lexicographic approach identifies step
by step the set of three edges and therefore two paths,
path left and path right, which once inverted give rise to
a new feasible solution. In the lexicographic search these
two paths are initially composed of one single node and
are incrementally expanded adding one node at each step.
This feature makes it possible to test feasibility easily be-
cause precedence conditions must be checked only for the
new added node.

Figure 2. SOP-3-exchange local search.

In fact SOP-3-exchange uses a new a labeling proce-
dure whose function is to check feasibility in constant
time. The solution is to keep updated a set of global vari-
ables that indicates, each time a new node is added to
path left or path right, if this insertion violates one of the
precedence constraints.

Other important SOP-3-exchange features are related
to the way node h is selected. The goal is to decrease
the number of visited nodes introducing two heuristics
that influence how node h is chosen: one is based on
the don’t look bit data structure introduced by Bentley
(1992), while the other is based on a data structure called
don’t push stack introduced by Gambardella and Dorigo
(2000). The don’t look bit is a data structure in which a
bit is associated with each node of the sequence. At the

beginning of the search all bits are turned off. The bit
associated with node h is turned on when a search for an
improving move starting from h fails. The bit associated
with node h is turned off again when an improving ex-
change involving h is executed. The use of don’t look bits
favors the exploration of nodes that have been involved in
a profitable exchange.

The don’t push stack is a data structure based on a
stack, which contains the set of nodes h to be selected.
At the beginning of the search the stack is initialized with
all the nodes in the sequence (that is, it contains n + 1
elements). During the search, node h is popped off the
stack and feasible 3-exchanges starting from h are inves-
tigated. In case a profitable exchange is executed the six
nodes involved in this exchange are pushed onto the stack
(if they do not already belong to it). Using this heuristic,
once a profitable exchange is executed starting from node
h, the top node in the don’t push stack remains node h.
In this way the search is focused on the neighborhood of
the most recent exchange: this has been experimentally
shown to result in a better performance than that obtained
using the don’t look bit alone.

3. ANT COLONY SYSTEM (ACS)
In this section the basic concepts of the ACS algorithm,
originally presented by Gambardella and Dorigo (2000),
are discussed. The Ant Colony System algorithm is an
element of the Ant Colony Optimization family of meth-
ods (Dorigo et al. 1999). These algorithms are based on a
computational paradigm inspired by real ant colonies and
the way they function.

ACS for the SOP is an adaptation to the problem of the
Ant Colony System algorithm (Dorigo and Gambardella
1997). Informally, ACS works as follows. Constructive
computational agents called ants (simulating real ants)
are sent out sequentially. Each ant iteratively starts from
node 1 and adds new nodes until all nodes have been vis-
ited. When in node i, an ant applies a so-called transition
rule, that is, it probabilistically chooses the next node j
from the set F (i) of feasible nodes. F (i) contains all
the nodes j still to be visited and such that all nodes that
have to precede j, according to precedence constraints,
have already been inserted in the sequence.

The ant in node i chooses the next node j to visit on the
basis of two factors: the heuristic desirability ηij here de-
fined as 1/cij , and the pheromone trail τij , that contains
a measure of how good it has been in the past to include
arc (i, j) into a solution. The next node to visit is chosen
with probability q0 as the node j, j ∈ F (i), for which the
product τij ·ηij is highest (deterministic rule), while with
probability 1− q0 the node j is chosen with a probability
given by pijj∈F (i) = τij ·ηijP

l∈F (i)(τil·ηil)
.

The value q0 is given by q0 = 1− s/|V |. The parame-
ter s represents the number of nodes it would be desirable
to choose using the probabilistic transition rule, indepen-
dently of the number of nodes of the problem, and is set
to 10 in the experiments reported here.
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In ACS-SOP only the best ant, that is the ant that
built the shortest tour since the beginning of the com-
putation, is allowed to deposit pheromone trail. If the
shortest path generated since the beginning of the com-
putation is referred to as OptPathBest, and its cost as
LBest, ∀{i, j} ∈ OptPathBest, the following formula
for pheromone update is used:

τij = (1− ρ) · τij +
ρ

Lbest
(1)

Notice that in case a local search is used inside ACS,
the updating rule (1) is run based on the solution obtained
after the application of the local search.

Pheromone is also updated during solution building.
In this case, however, it is removed from visited arcs.
In other words, each ant, when moving from node i to
node j, applies a pheromone updating rule that causes
the amount of pheromone trail on arc (i, j) to decrease.
This assures variety in the solutions generated. The rule
is:

τij = (1− ψ) · τij + ψ · τ0 (2)

where τ0 is the initial value of trails. It was found
that good values for the algorithm’s parameters are τ0 =
(FirstSolution · |V | )−1 and ρ = ψ = 0.1, where FirstSo-
lution is the length of the shortest solution generated by
the ant colony following the ACS-SOP algorithm with-
out using the pheromone trails. The number of ants in
the population was set to 10. Experience has shown the
chosen parameter settings to be robust.

4. HEURISTIC MANIPULATION TECHNIQUE
(HMT)
It is easy to observe that adding precedence constraints
to a given problem reduces its search space, making the
problem potentially easier to solve. The method de-
scribed in the remainder of this section is based on this
observation.

Having selected an underlying heuristic method, the
idea is to monitor the solutions generated by this method,
and to identify precedence patterns common to solutions
with a low objective value. Once such precedence pat-
terns are identified, they can be added to the original
problem as artificial precedence constraints. The manip-
ulated problem is likely to be easier than the original one,
as it has a reduced solution space.

Notice that any heuristic method that produces a se-
quence of feasible solutions to the problem (most of the
known methods work in this way) can be used as the un-
derlying method for the proposed manipulation approach.

Of course such a heuristic method may cut out all
the optimal solutions of the original problem, leading to
suboptimal solutions even when the best solution of the

modified problem is retrieved. To overcome this side ef-
fect, during the execution of the algorithm artificial prece-
dence constraints will not be added permanently, but will
also be retracted (and substituted by other constraints).

Formally, the proposed methodology is built on top of
an existing algorithm and makes use of an additional set
of variables {mij}. Variable mij will be an indicator for
the “quality” of the solutions in which node i is visited
before node j. The method is regulated by some parame-
ters. Parameter u regulates the number of solutions gen-
erated by the underlying heuristic method before the first
artificial precedence constraints are added to the problem;
parameter v regulates the number of solutions generated
by the underlying heuristic method between two consecu-
tive updates to the set of active artificial precedence con-
straints; parameter w regulates the (approximate) num-
ber of artificial precedence constraints active at each mo-
ment in time (after the first u solutions have been gen-
erated by the underlying heuristic approach); parameter
z finally regulates the (approximate) number of artificial
precedence constraints substituted after every v new solu-
tions have been generated by the underlying heuristic al-
gorithm (after the first u solutions have been generated).

The heuristic manipulation technique runs on top of
underlying optimization algorithm, and can be summa-
rized as follows.

Initialize mij = 0 ∀(i, j) ∈ A.
Each time a new solution OptPathk, with cost Lk, is

generated by the underlying heuristic algorithm, matrix
m = [mij ] is updated as described in (3) and (4), where
L1 is the cost of the very first solution generated by the
underlying heuristic algorithm and πk(i) is the index of
the position occupied by node i in solution OptPathk.
Notice that L1 plays here the role of a normalization fac-
tor, and is used to avoid numerical problems. The width
of the window considered for updates is taken to be 5.
According to Montemanni et al. (2008), some tests sug-
gests that the method is not very sensitive to changes to
this value, and that good values are however in the range
[4, 10].

The first update (equation (3)) reinforces the entry cor-
responding to a sequence which is in solutionOptPathk.
The update is proportional to the inverse of the cost of the
solution itself. Equation (4) decreases the value on arcs
that are traversed in the opposite direction in the current
solution. This second update has been inserted to make
those pairs of nodes that do not seem to have a clear or-
dering relationship less attractive. Notice that only pairs
with a positive entry in matrixmwill be potentially trans-
formed into artificial precedence constraints.

Notice that entries of the memory matrix m corre-
sponding to active artificial precedence constraints are
not updated. This will make a rotation of the active con-
straints more likely (see the remainder of this section).

Now that it has been clarified how the memory matrix
m is handled, it remains to clarify how artificial prece-
dence constraints are managed. After the first u solutions
are created by the underlying heuristic algorithm, a first
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mij = mij +
L1

Lk
∀i, j ∈ V, πk(i) < πk(j) ≤ πk(i) + 5, (i, j) /∈ R (3)

mji = mji −
L1

Lk
∀i, j ∈ V, πk(i) < πk(j) ≤ πk(i) + 5, (i, j) /∈ R (4)

set of (approximately) w artificial precedence constraints
are added to the set R. The new constraints are selected
as the ones not yet present in the precedence digraph P
with the highest entries in matrix m. If there are less than
w entries of m with a positive value, then only the prece-
dence constraints corresponding to them will be added to
P .

After the first artificial precedence constraints have
been added to the problem, every time v new solutions are
available, artificial precedence constraints are updated by
dropping z constraints, that are substituted by (approxi-
mately) z new constraints. The artificial precedence con-
straints to be dropped are selected as those with the small-
est entries in the memory matrix m. Conversely, the ones
added are those with the highest entries in the same ma-
trixm. Notice that, since entries of matrixm correspond-
ing to active constraints are not reinforced (see equation
(3)), it is likely that during the time they were active, en-
tries corresponding to other (non active) constraints have
reached higher values. Such a strategy leads to a mecha-
nism where artificial precedence constraints are activated
in turn. The mechanism should also prevent optimal so-
lutions of the original problem from being permanently
hidden by the active artificial precedence constraints.

5. EXPERIMENTAL RESULTS
The aim of the experiments reported in this section is to
understand the importance of the basic components (de-
scribed in Sections 2, 3 and 4) in the economy of the com-
posite method described by Montemanni et al. (2008).
Therefore, we run experiments with different combina-
tions of active components.

5.1. Benchmark problems
Benchmark problems are those already used by Monte-
manni et al. (2007, 2008). They are publicly available2,
and are named n-r-p, where the meaning of each element
is as follows:

• n: the number of nodes of the problem, i.e.
V = {1, 2, . . . , n};

• r: the cost range, i.e. 0 ≤ cij ≤ r ∀i, j ∈ V ;

• p: the approximate percentage of precedence con-
straints, i.e. the number of precedence constraints of
the problem will be about p

100 ·
n(n−1)

2 .

The following values for the parameters above were
used, and problems were generated for all possible com-
binations of them:

2http://www.idsia.ch/˜roberto/SOPLIB06.zip.

• n ∈ {200, 300, 400, 500, 600, 700};

• r ∈ {100, 1000};

• p ∈ {1, 15, 30, 60}.

The resulting set of problems covers a wide range of
situations, with different sizes, different granularity for
costs, and with radically different percentages of prece-
dence constraints. The set appears to provide a good test-
bed for modern SOP heuristic algorithms, and are there-
fore particularly indicated for our purpose.

5.2. Comparison of the different combinations
All the methods considered have been coded in C++. The
experiments have been run on a Dual AMD Opteron 250
2.4GHz / 4GB computer. The maximum computation
time was set to 600 seconds for all the problems. This
computation time is long enough to let all the methods
reach a steady state, where further improvements are un-
likely to be found. Ten runs are considered for each pos-
sible problem/method combination. The results of the
experiments are reported in Tables 1-3. The first three
columns are parameters of the problems, while the re-
maining columns are devoted, depending on the table, to
the presentation of the average, best and worst results ob-
tained by the following methods:

• LS: iterative application of the Local Search routine
described in Section 2, starting from random feasi-
ble solutions;

• LS+HMT: the Heuristic Manipulation Technique
described in Section 4 is run on top of the local
search algorithm LS;

• ACS+LS: the local search algorithm LS is embed-
ded in the Ant Colony System described in Section
3. Notice that in this case LS is run on the solutions
built by ACS. This is the method presented by Gam-
bardella and Dorigo (2000);

• ACS+LS+HMT: HMT is run on top of the ACS,
which in turn embeds LS. This is the method pre-
sented by Montemanni et al. (2008).

Parameters of all the algorithms have been set accord-
ing to Gambardella and Dorigo (2000) and Montemanni
et al. (2008), where parameter tuning is accurately docu-
mented.

In all the tables bold text is used to highlight the best
entry (entries) for each line. Accordingly, italic text is
adopted for the worst entry (entries).

The results of Table 1 (average results) confirm that
- apart from some sporadic cases - the best results are
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Table 1. Average results over ten runs.
Problem Results

n r p LS LS+HMT ACS+LS ACS+LS+HMT
200 100 1 102.5 103.1 90.3 88.4
300 100 1 87.0 85.3 76.4 71.9
400 100 1 75.8 72.6 64.1 61.7
500 100 1 64.3 62.0 55.0 55.1
600 100 1 57.6 57.2 49.8 47.6
700 100 1 50.8 46.6 42.6 39.5
200 1000 1 1773.7 1757.9 1549.5 1551.5
300 1000 1 1878.6 1837.7 1586.7 1584.9
400 1000 1 2064.8 2065.7 1811.1 1773.1
500 1000 1 2172.1 2151.4 1877.4 1838.4
600 1000 1 2306.5 2132.3 1986.7 1957.6
700 1000 1 2272.5 2092.7 1969.2 1943.1
200 100 15 2373.2 2337.3 2066.0 2025.1
300 100 15 4108.7 4098.9 3738.6 3648.2
400 100 15 5215.7 5183.9 5087.1 4917.7
500 100 15 7005.0 6987.3 6931.5 6826.4
600 100 15 7764.3 7660.1 7806.6 7733.0
700 100 15 9640.5 9507.1 9573.0 9453.7
200 1000 15 25791.3 25628.4 22602.9 22419.2
300 1000 15 38204.1 37939.3 34447.9 34215.0
400 1000 15 51439.7 51111.4 46638.6 46183.2
500 1000 15 66344.8 65635.0 62693.7 61675.7
600 1000 15 76741.6 76294.1 72701.1 70136.9
700 1000 15 90514.0 89973.7 85177.7 82697.0
200 100 30 4454.3 4430.8 4254.6 4236.0
300 100 30 6476.2 6469.6 6228.2 6180.2
400 100 30 8747.3 8718.3 8476.5 8395.3
500 100 30 10508.2 10432.0 10333.2 10108.6
600 100 30 13277.2 13215.0 13001.8 12858.7
700 100 30 15808.7 15810.0 15905.8 15654.8
200 1000 30 42930.0 42685.3 41371.6 41315.2
300 1000 30 58099.5 57710.0 55013.4 54448.5
400 1000 30 90922.9 90320.5 85979.6 85922.9
500 1000 30 105970.0 106018.0 101751.8 100973.3
600 1000 30 136792.7 136948.8 132314.3 131733.7
700 1000 30 146869.5 146000.0 141557.9 141012.6
200 100 60 71749.0 71749.0 71749.0 71749.0
300 100 60 9732.9 9731.1 9726.0 9726.0
400 100 60 15242.1 15250.4 15232.4 15230.2
500 100 60 18316.5 18312.6 18260.4 18251.3
600 100 60 23427.0 23388.6 23357.4 23336.7
700 100 60 24244.5 24218.3 24192.3 24181.6
200 1000 60 71556.0 71556.0 71556.0 71556.0
300 1000 60 109796.5 109750.3 109530.5 109494.8
400 1000 60 141253.7 141174.7 140994.9 140936.9
500 1000 60 178953.5 178803.5 178478.1 178500.4
600 1000 60 215918.7 215851.4 214970.2 214875.1
700 1000 60 246983.5 247031.1 246489.6 246458.9
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Table 2. Best results over ten runs.
Problem Results

n r p LS LS+HMT ACS+LS ACS+LS+HMT
200 100 1 94 96 88 83
300 100 1 79 78 74 65
400 100 1 69 63 59 54
500 100 1 57 57 51 51
600 100 1 47 46 44 42
700 100 1 41 41 41 32
200 1000 1 1750 1722 1532 1525
300 1000 1 1836 1730 1536 1518
400 1000 1 2032 1989 1783 1714
500 1000 1 2028 2021 1840 1770
600 1000 1 2248 2055 1936 1922
700 1000 1 2199 2050 1912 1873
200 100 15 2307 2243 2002 1926
300 100 15 4056 3991 3520 3383
400 100 15 5149 5110 4838 4735
500 100 15 6897 6875 6584 6536
600 100 15 7700 7565 7610 7217
700 100 15 9538 9229 9383 9124
200 1000 15 25622 24810 21775 21654
300 1000 15 37350 37049 33533 33148
400 1000 15 50890 50614 45055 44749
500 1000 15 65699 63847 60175 58316
600 1000 15 74437 74825 70454 68219
700 1000 15 89506 88474 81439 80887
200 100 30 4406 4408 4247 4216
300 100 30 6406 6428 6151 6148
400 100 30 8680 8589 8289 8276
500 100 30 10365 10228 10047 9974
600 100 30 13123 13138 12810 12689
700 100 30 15695 15611 15733 15180
200 1000 30 42300 41835 41278 41196
300 1000 30 56901 56824 54367 54278
400 1000 30 90212 89383 85579 85288
500 1000 30 105674 105500 100453 100112
600 1000 30 136386 135077 130244 130541
700 1000 30 146437 143887 139769 138695
200 100 60 71749 71749 71749 71749
300 100 60 9726 9726 9726 9726
400 100 60 15238 15228 15228 15228
500 100 60 18271 18282 18246 18240
600 100 60 23370 23374 23342 23259
700 100 60 24191 24192 24151 24149
200 1000 60 71556 71556 71556 71556
300 1000 60 109590 109514 109471 109471
400 1000 60 141096 141021 140862 140816
500 1000 60 178650 178464 178323 178212
600 1000 60 215650 215469 214724 214608
700 1000 60 246611 246477 246128 245753
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Table 3. Worst results over ten runs.
Problem Results

n r p LS LS+HMT ACS+LS ACS+LS+HMT
200 100 1 109 107 93 94
300 100 1 93 89 79 76
400 100 1 82 79 67 67
500 100 1 70 67 62 58
600 100 1 64 62 54 53
700 100 1 61 48 44 44
200 1000 1 1809 1798 1572 1576
300 1000 1 1940 1856 1604 1633
400 1000 1 2096 2094 1864 1816
500 1000 1 2238 2217 1921 1888
600 1000 1 2419 2181 2025 2001
700 1000 1 2348 2139 2013 2013
200 100 15 2426 2378 2186 2182
300 100 15 4156 4126 4013 3883
400 100 15 5287 5231 5292 5135
500 100 15 7074 7074 7146 7013
600 100 15 7877 7715 7992 8030
700 100 15 9704 9628 9949 9762
200 1000 15 25944 25877 24211 22931
300 1000 15 38632 38608 36808 35687
400 1000 15 51999 51598 51051 49220
500 1000 15 66774 66637 65177 64765
600 1000 15 77807 76582 75082 72542
700 1000 15 91377 91037 90808 84321
200 100 30 4488 4451 4269 4256
300 100 30 6536 6497 6338 6257
400 100 30 8783 8787 8697 8639
500 100 30 10574 10506 10845 10362
600 100 30 13381 13297 13311 13084
700 100 30 15920 15889 16135 15968
200 1000 30 43178 42831 41544 41516
300 1000 30 59283 58338 56606 54725
400 1000 30 91210 90931 86918 86487
500 1000 30 106507 106568 104420 102118
600 1000 30 137492 137513 135642 133236
700 1000 30 147098 146918 148310 143460
200 100 60 71749 71749 71749 71749
300 100 60 9745 9737 9726 9726
400 100 60 15253 15262 15250 15250
500 100 60 18332 18329 18303 18278
600 100 60 23475 23402 23370 23440
700 100 60 24271 24230 24249 24238
200 1000 60 71556 71556 71556 71556
300 1000 60 109940 109849 109590 109590
400 1000 60 141418 141251 141118 141118
500 1000 60 179219 179057 178679 178840
600 1000 60 216294 216093 215389 215348
700 1000 60 247296 246902 247045 247045
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obtained when all the components are active (last col-
umn). As already observed by Montemanni et al. (2008),
the improvements guaranteed by the use of HMT on top
of ACS+LS are marginal, but exist. Analogously, we
can observe how ACS+LS obtain far better results than
LS alone. This phenomenon had already been observed
by Gambardella and Dorigo (2000), but in our case the
results obtained by the two methods appear much fur-
ther apart than in the paper by Gambardella and Dorigo
(2000). This suggests that the use of more difficult bench-
marks amplifies the phenomenon.

It is also interesting to observe that HMT is able to
improve the results of LS (column HMT+LS vs column
LS) even though the results are worse than those achieved
by method ACS+LS. Therefore there is a clear indication
that HMT does its job, but it needs a strong underlying
method in order to achieve really good results. Another
indication is that most of the work done by the whole
composite algorithm (last column) is hidden in the com-
bination of ACS and LS methods. Notice, finally, that the
worst results are consistently obtained by method LS.

The study of Tables 2 (best results) and 3 (worst re-
sults) leads to conclusions that are analogous to those in
the comment in Table 1. It is however interesting to ob-
serve that the advantages of the use of HMT seems to be
amplified in Table 2 and reduced in Table 3. This means
that the results of HMT have a higher standard deviation
over the ten runs considered. This is due to the heuris-
tic nature of the rules used to select the active artificial
constraints: it can lead to very good results in case of a
happy choice, or to worse results in case of an unlucky
selection.

6. CONCLUSIONS

The sequential ordering problem, which is faced in many
practical applications, has been studied. The state-of-the-
art algorithm for this problem is composed of different
components, namely local searches, an ant colony system
and a heuristic manipulation technique.

In this paper we have studied - from an experimental
point of view - the impact of the different components on
the performance of the full method. Specifically, we have
run experiments with different combinations of compo-
nents switched off, and we have analyzed how the results
of the method were affected.

The conclusion was that the heuristic manipulation
technique is able to slightly improve the results achieved
by both the local searches alone, and the combination
of local searches and the ant colony system. However,
what appears to be crucial is the interaction between the
ant colony system and the local search routines. This
results was expected. Heuristic manipulation can be seen
as a tool useful to further refine already good results, but
here it is shown that it needs to be run on a very efficient
underlying heuristic method (ant colony system plus
local search, in our case) in order to obtain good results.
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