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ABSTRACT
In  this  paper  we  present  a  continuous  nonlinear 
programming approach to crude oil scheduling on ports. 
The main idea is to consider the schedule as a dynamic 
system which must operate under certain constraints. As 
the optimal control theory is well-fit for optimizing the 
operation of dynamic systems, our scheduling problem 
is  modeled  as  an  optimal  control  problem,  where 
transfer  operations  are  carried  out  by flows from the 
ships  to  the  port  facilities  (tanks).  Such  flows  are 
mapped as control variables, whilst equipment contents 
(volume and properties) are mapped as state variables. 
Yes-No  decisions  are  modeled  as  complementarity 
constraints, instead of with the use of discrete variables, 
allowing  a  continuous  nonlinear  model.  We  illustrate 
this approach with computational examples, which were 
solved to local optimality in reasonable computational 
time. 

Keywords: port scheduling, crude oil scheduling, 
mathematical programming

1. INTRODUCTION
The  maritime  transportation  is  responsible  for  an 
almost-monopoly on the Import & Export international 
good transactions,  with an increasing importance year 
after year. During the last decade, this industry has been 
pressured to adopt modern management techniques, in 
order  to  succeed in  face  of  new challenges  posed by 
global  commerce,  market  deregulamentation,  and 
companies'  merges (Christiansen et al.  2004). On one 
hand, shippers must use the full capacity of their fleets, 
as they cannot afford having empty vessels laying still 
in ports, waiting for new customers. On the other hand, 
customers who rent  or hire  ships must  know that  the 
vessels  will  be  available  in  time  to  attend  their 
contracts. This complex fleet management is a rich field 
for optimization techniques. One of the bottlenecks of 
maritime transportation is the handling of ships in ports, 
considering  the  berthing  and  cargo  loading/unloading 
processes:  a  vessel  must  be  handled  within  a  given 
time-frame, in order to minimize demurrage fees. There 
is a limited number of berth places and the port storage 
must be ready to handle the ship without incurring in 
delays.  For  instance,  in  2006,  the  maritime 
transportation  costs  in  Brazil  ammounted  to  US$  7 
billions, from which US$ 1.5 billions were spent with 

demurrage fees only, caused by delays in ports (Collyer 
2006).

This work addresses the schedule of ships in ports, 
considering the storage facilities, jetties and operational 
constraints,  such  as  jetty  unavailability  and 
load/unloading limitations. A widespread approach for 
scheduling  problems  is  the  use  of  mixed-integer 
programming  models,  which  formulate  discrete 
decisions as 0-1 variables. The main advantage of this 
approach  is  that,  in  the  case  of  mixed-integer  linear 
programming  (MILP)  problems,  when  an  optimal  is 
found, there is a guarantee that it is a global optimum – 
as  in  the  Linear  Programing  case.  The  main 
disadvantage  of  such  models  is  the  computational 
burden on real-world instances,  which usually  end in 
huge MIP models that may not be solved to optimality 
in reasonable time. Bearing that in mind, we decided to 
model the problem from a different angle, noticing that 
a  scheduling  system  is  actually  a  dynamic  system, 
susceptible to an optimal (controlled) operation. Control 
variables  are  the  loading/unloading  flows,  and  state 
variables are the inventory on ships and port facilities. 
Moreover,  schedule  decisions  can  be  modeled  as 
complementarity  constraints  on  the  control  variables. 
The  main  advantage  of  this  formulation  is  that  the 
problem does  not  suffer  from an  exponential  growth 
with the addition of  time intervals,  whereas the main 
disadvantage is that the problem, although continuous, 
becomes nonconvex (with many local minima). 

We  tested  the  proposed  approach  with  crude  oil 
scheduling in ports problems (Figure 1), and compared 
to  an  alternative  MILP  formulation,  based  on  the 
literature.

Figure 1: Crude Oil Scheduling
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2. CRUDE OIL SCHEDULING  ON PORTS
Planning  and  scheduling  are  activities  of  major 
economic  importance.  Efficient  planning  and 
scheduling can optimize resources usage, reduce waste 
and increase operational profits. They can avoid delays 
and assure that demands are supplied without degrading 
the quality of services. It is well-known that to find an 
optimal schedule is a NP-Complete problem (Más and 
Pinto,  2003).  Therefore,  many companies  build  some 
feasible  schedules  only  and  then  make  comparisons 
among them. The use of computational techniques such 
as simulation and mathematical optimization can help 
the decision-maker, as they can fasten the evaluation of 
different  scenarios  and  find  optimal  or  sub-optimal 
schedules. In this paper we propose a dynamic optimal 
control model that can be used in schedule simulations 
as well as in scheduling optimization.

Amid various planning  and scheduling problems, 
we focus on the scheduling of crude oil on ports. This 
problem is of major importance for oil companies, as it 
directly affects the refineries' production plan. One can 
divide  the  logistic  system  related  to  crude  oil  and 
derivatives  production  and  distribution  in  three 
subsystems:  harbor,  distribution  center  (intermediate 
storage),  and  plants  or  refineries  (Figure  1).  Each 
subsystem is connected to the others by pipelines, and 
the sequence of transferred material in the pipelines is 
how a subsystem affects the scheduling of the others. 

The plant  or refinery subsystem is very complex, 
while distribution centers coordinate the distribution of 
crude oil among different refineries. One example is the 
problem studied in (Más and Pinto,  2003),  where the 
center acts as a buffer between the maritime terminals 
and four refineries. Depending on the desired scope, it 
is  possible  to  consider  each  subsystem  separately  as 
subject to optimization, and to represent the others as 
external inputs to the problem. 

Our objective is  to schedule the ships within the 
port, and the subsequent port tank operations to unload 
their cargoes. Therefore, we detail the port subsystem 
only,  considering  planned  crude  oil  volumes  on  the 
pipelines – to meet the refineries' demand – and known 
estimated time of arrival (ETA) for all ships. In many 
companies  this  is  actually  the  case  (Más  and  Pinto, 
2003). 

The port has its own park of tanks, large enough to 
store  material  pumped  to  or  from  the  vessels  for  a 
certain number of days. The tanks may belong to the 
same company of the materials or may be hired from 
third parties. Even if the renting costs are negligible, the 
cost  of  immobilized  capital  is  not.  Therefore,  stocks 
represent losses of interests on the value of the stored 
material, and stocking costs have to be considered in the 
problem formulation. 

Tanks  are  dedicated  to  certain  kind  of  materials, 
which can be crude oil or finished products. In the case 
of  finished  products,  it  is  common  to  inspect  the 
product’s quality inside the tank, and to seal the tank to 
assure that no new product is going to be blended and 
modify  its  quality.  In  the  case  of  crude  oils,  it  is 
common to find impurities in the oil, such as salt, water 

and minerals. Therefore, tanks must let the oil (which 
they had received) to settle during a certain period of 
time in  order  to  segregate the  impurities.  From these 
two examples, an operational rule is inferred: no tank in 
the  harbor  should  be  able  to  start  a  new  delivering 
transfer if it had not been idle for a certain amount of 
time.  This  time  is  usually  called  “settling  time”  or 
simply “idle time”. Another rule to operate tanks is not 
to use two tanks in parallel, transferring to a common 
final destination as it would cause blending inside the 
pipes.

The  port  is  composed  by  a  certain  number  of 
jetties,  each  one  with  defined  draught  and  extension, 
and pumps that may be restrictive on what material to 
transfer. Therefore, ships can berth only on a restricted 
set  of  jetties,  defined  by  their  cargo  or  physical 
dimensions. The period of time that a vessel occupies a 
jetty is calculated as the following: time to approach the 
berthing place, plus the pumping time to the tanks, plus 
the time to leave the jetty. Therefore, the jetty will be 
available  for  another  ship  only  a  few hours  after  the 
previous ship stopped pumping. If the vessel cannot be 
completely processed until its contractual leaving date, 
the  contractor  is  penalized  (demurrage).  One  of  the 
main goals of this scheduling problem is to minimize 
the demurrage.

3. THE MODEL
The  fundamental  scheduling  activity  is  the  transfer 
operation, defined by a single source equipment and a 
single  destination  equipment,  and  a  flow  of  material 
from the source to the destination. The control vector 
u(ti) is the vector whose each entry stands for a possible 
flow rate  between two equipments at  a given time ti, 
subject  to  upper  and  lower  bounds  and  operational 
constraints.  Basically,  one  can  consider  a  schedule 
infrastructure  as  a  graph  (Figure  2),  whose  arcs  are 
possible  flows,  and  whose  nodes  are  equipments. 
Therefore,  every  positive  entry  uj(ti)  stands  for  the 
scheduled flow rate of a transfer operation at time ti, in 
arc  j,  which  connects  a  pair  of  equipments.  The 
optimization problem is to define a feasible sequence of 
u(ti),  for  all  time  instants  ti,  which  minimizes  an 
objective  function  J.  Operational  constraints,  such  as 
“One  equipment  cannot  be  the  destination  of  two 
transfer operations at the same time, in order to avoid 
blending in the inlet lines” can be modeled in different 
manners. 

Figure 2: Problem structure as a graph
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Table  1  presents  two  possible  approaches:  (a) 
MILP, and (b) complementarity based (NLP). AN is the 
set  of  indexes  for  all  arcs  whose  destination  is 
equipment  N.  As  N  can  participate  in  at  most  one 
transfer operation at time ti,  either all flows in the AN 

arcs are zero at ti (no transfer happens with destination 
N at time ti), or only one flow is greater than zero at ti 

(N is the destination of only one transfer operation at 
time ti).

Table 1: Modeling Approaches
Type Model

MILP

∑j bj(ti) ≤ 1

0 = bj(ti) uj
min ≤ uj(ti) ≤ bj(ti) uj

max(ti)

uj(ti) є Rn, bj(ti) є {0, 1}, j є AN

NLP

∑k є AN ∑j > k є AN uk(ti) uj(ti)  = 0

0 = uj
min ≤ uj(ti) ≤ uj

max(ti)

uj(ti) є Rn, j є AN

Model  (a)  is  a  typical  mixed-integer  program 
(Shah 1996,  Más and Pinto 2003),  which requires an 
additional control vector b(ti) of binary variables, whose 
each entry is directly related to the u(ti) entry of same 
index. If bj(ti) is set to 1 (one), then a flow is allowed 
through arc j; otherwise, no flow is allowed through arc 
j. This is enforced by the manipulation of the upper and 
lower  bounds  on  uj(ti):  if  bj(ti)  =  1,  the  bounds  are 
preserved;  otherwise,  they  are  set  to  zero.  The 
summation constraint guarantees that at most one bj(ti) 
can be evaluated as 1 (one) at ti, j є AN. All others binary 
variables associated to AN  must be evaluated as zero. 

Model  (b)  is  a  complementarity-based  nonlinear 
program, which relies on the control vector  uj(ti) only. 
There is  no need for  additional  binary variables.  The 
summation of the products of all AN flows two by two is 
equal to zero if and only if all flows are equal to zero or 
only one flow is  greater  than zero,  making N as  the 
destination  of  at  most  one  transfer  operation,  as 
required. The main disadvantage of this formulation is 
that it defines a nonconvex nonlinear program. 

A point defined by the MILP formulation can be 
transformed in an NLP point by simply removing the 
binary  variables  from the  problem  and  replacing  the 
mixed-integer constraints for the complementarity ones. 
A  point  defined  by  the  NLP  formulation  can  be 
transformed  in  an  MILP point  by  simply  adding  the 
binary  variables  and  replacing  the  complementarity 
constraints by the mixed-integer ones. For each positive 
flow, the corresponding binary variable is set to 1 (one), 
while  for  each naught  flow,  the corresponding binary 
variable is set to 0 (zero). A feasible point in the NLP is 
equivalent to a feasible in the MILP. The opposite is not 
necessarily  true:  if  the  NLP  features  additional 
nonlinear  constraints  that  could  not  be  equivalently 
modeled in the MILP, a feasible MILP point may not be 
a feasible NLP point. 

Based on these foundations,  one can analogously 
extend the problem to consider many other constraints 
and variables. In order to illustrate this, we model the 
crude  oil  scheduling  problem  with  both  approaches. 
One wants to determine: (i) tanker allocation on the port 
jetties; (ii) transfer operations between ships, tanks, and 
pipelines;  (iii)  sequence  of  pipeline  parcels  (end 
products  and  crude  oil),  in  such  a  manner  that  an 
objective  cost  function  is  minimized  and  operational 
constraints  are  respected.  The  problem  considers:  (i) 
crude oil demand as known; (ii) ETA are given for all 
tankers.  Ideally,  a  good  schedule  would  use  a  small 
number  of  tanks,  but  it  is  important  to  notice  that 
inventory  costs  are  secondary  when compared  to  the 
cost of not meeting a refinery production plan. Jetties 
can  be  restrictive  on  what  vessels  and  cargoes  they 
handle, in accordance to their dimensions (draught and 
length) or pumping capacity. A ship must berth, unload 
(or load),  and leave the port  during the time window 
defined by contract and she can berth in a jetty only if 
the ship that had previously used this jetty had enough 
time to leave the port.  An ideal schedule must minimize 
the demurrage costs. Other constraints are considered as 
well:  (i)  blending operations are not allowed in lines, 
i.e.,  each  transfer  operation  has  only  one  source 
equipment  and one  destination equipment;  (ii)  a  tank 
can deliver  material  to another  equipment only if  the 
necessary  “settling  time”  or  “idle  time”  has  been 
observed  (e.g.  to  separate  brine  from crude  oil  or  to 
assure the lab analysis of an end product).

The NLP model is composed by control variables 
(Eq. 2), state variables (Eq. 3), state equations (Eq. 4, 5, 
and  6),  and  complementarity  equations  to  model 
scheduling decisions:  unique  definition  of  source  and 
destination in a transfer operation (Eq. 7), idle time to 
segregate impurities (Eq. 8), berthing time (Eq. 9), and 
constant  flow  constraints  (Eq.  10).  Both  control  and 
state variables are bounded by upper and lower limits. 
The  objective-function  (Eq.  1)  is  a  summation  of 
different costs, that can be prioritized with the use of 
weights.  In  the  case  of  crude  oil  scheduling,  we 
considered  the  following  costs:  demurrage  (Eq.  11), 
unattained demand (Eq. 12),   inventory (Eq. 13), and 
changeovers (Eq. 14).

 min J = ∑costwcostCcost (1)

 umin ≤ u(ti) ≤ umax(ti) (2)

 xmin ≤ x(ti) = [v(ti) p(ti)]T ≤ xmax (3)

v(ti) = v(ti-1) + (ti – ti-1)Uu(ti-1) (4)

p(ti) = F(x(ti-1), u(ti-1), ti – ti-1) (5)

pdensity
n(ti) = (uinlet, n(ti-1) pdensity

inlet, n(ti-1)(ti – ti-1) +  vn(ti-1) 
pdensity

n(ti-1))/(uinlet, n(ti-1)(ti – ti-1) + vn(ti-1) ) (6)

0 = rn(ti) = ∑k in Jn ∑ j > k in Jn uk(ti)uj(ti-1) (7)

0 = zn(ti) = ∑ti-1 
t' = ti-Tidle ∑ k in Jout,n ∑ j in Jin,n uk(ti-1)uj(t')       (8)
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0= sn(ti) = ∑ti-1 
t' = ti-Tberth ∑ j in Jn,p ∑ j in Jn,!p uk(ti-1)uj(t')        (9)

0 = qn(ti) = u0,n - ∑j in Jn uj(ti-1)             (10)

Cdemurrage = ∑j in Ships ∑t cj
demur cargo_gapj(t)               (11)

Cdemand=∑j in Pipelines ∑p in Products cj
demand(demandj,p - ∑t

T
 vj,p(t))

                  (12)

Cinventory = ∑j in Storages ∑t cj
inventory vj(t)                      (13)

Cchangeover = ∑j  ∑t cj
changeover(uj(ti) – uj(ti-1))²                   (14)

Note:  Eq.  4  features  U  as  an  incedence  square 
matrix  with  entries  in  {0,  1,  -1}.  Eq.  5  is  a  general 
blending functional, while Eq. 6 is a particular blending 
function (for density), which is the one we employ in 
our test cases. Eq. 7 enforces that only one flow can be 
used by an equipment n at time ti, therefore, a transfer 
operation has only one source and only one destination 
at  time  ti.  Eq.  8  enforces  the  idle  time,  while  Eq.  9 
enforces the necessary berthing time for ships. Eq. 10 
force a constant flow u0,n for a given equipment n – this 
constraint  can  be  easily  changed  to  force  a  variable 
flow, if needed. Eq. 11 deals with demurrage cost: we 
do not employ the classic demurrage formulation, but 
one that is also proportional to the remaining volume to 
be  transferred  that  is  delayed  (cargo_gap).  Eq.  14 
accounts for changeovers in the problem, by penalizing 
the differences in the flows. In all cost equations cjcost 
is a different arbitrary unitary cost.

The MILP model is similar to the NLP model, with 
the  replacement  of  Equations  2,  7,  8,  and  9  by 
Equations  2a,  7a,  8a,  and  9a.  Complementarity 
constraints were replaced by mixed-integer constraints, 
featuring binary decision variables (bj), leading to larger 
models.  This  model  was  based  in  the  crude  oil 
scheduling literature, mainly (Shah 1996) and (Más and 
Pinto 2003):

D(bj(ti))umin ≤ u(ti) ≤ D(bj(ti))umax(ti),  bj(ti) in {0,1}       (2a)

rn(ti) = ∑ j in Jn bj(ti-1) ≤ 1              (7a)

zn(ti) = ∑ j in Jout,n bj(ti-1) + ∑ti-1 
t' = ti-Tidle ∑ j in Jin,n bj(t') ≤ 1  (8a)

sn(ti) = ∑ j in Jn,p bj(ti-1) + ∑ti-1 
t' = ti-Tberth ∑ j in Jn,!p bj(t') ≤ 1  (9a)

Note:  Eq. 4a features a diagonal matrix D(bj(ti)), 
composed by the binary variables bj, which are added to 
the  model  in  the  MILP formulation.  These  variables 
represent  scheduling  decisions:  there is  no flow uj at 
time ti if bj = 0 at time ti, and there is a flow uj if bj = 1. 
Equations 7a, 8a, and 9a model represent the following 
constraints: only one flow can be used by an equipment 
n at time ti, idle time, and berthing time constraints.

4. RESULTS
Typical  NLP  methods  can  solve  problems  with 
complementarity constraints efficiently (Leyffer 2005). 
As  the  formulation  is  nonconvex,  the  method 
initialization  is  an  important  issue.  We  define  trivial 

points as the points where the control vector u is equal 
to zero at all time instants. These points are very easy to 
be constructed, but not feasible in the original problem 
formulation. At trivial points, the demurrage costs are 
maximum and the norms of the additional states are ||z|| 
= ||r|| = ||s|| = 0 and ||q|| >> 0. However, a trivial point is 
feasible  in  a  relaxation  of  the  original  model,  if  we 
remove equations (7) to (10) from the constraints, and 
add  them  as  penalties  on  the  objective  function, 
obtaining a merit function:

 J' = J + M ∑t eTr(t) + eTs(t) + eTz(t) + eTq(t)             (15)

A penalty  method  based  on  the  optimization  of 
successive relaxed problems with merit function J' can 
solve  the  original  problem,  converging  to  local 
minimum. A multistart procedure can be employed as 
well in the initialization of the relaxed problems.

Five test instances were coded in AMPL (Fourer et 
al.  2003).  The  MILP  and  NLP  instances  share  a 
common  objective  function,  and  do  not  feature 
equations  (5)  and  (6)  as  a  means  to  allow  the 
comparison between their optimal solutions. It is clear 
that  the  NLP model  is  more compact than the  MILP 
model, as shown in Table 2. The number of variables is 
the one determined after AMPL's pre-solve procedure, 
which eliminates redundancies. 

Table 2. Models' dimensions
MILP NLP

Binary/
Continuous 
variables

Linear 
Cons-
traints

Linear / 
Nonlinear 
variables

Linear / 
Nonlinear 
constraints

1(A) 12 / 25 31 12 / 19 19 / 6
1(B) 12 / 25 36 12 / 19 24 / 6

2 34 / 82 111 34 / 77 64 / 23
3(A) 93 / 158 265 93 / 76 92 / 11
3(B) 93 / 158 275 57 / 78 86 / 11

No specialized software was employed to optimize 
the test instances, but only standard commercial solvers: 

● For  MILP cases:  CPLEX  (v.  10.1.0)  (ILOG 
2002);

● For  NLP cases:  SNOPT (v.  6.1)  (Gill  et  al. 
2002),  and  MINOS  (v.  5.5)  (Murtaugh  e 
Saunders 1982). 

All  cases  were  initialized  at  trivial  points  –  as 
previously defined – and solved on a workstation with 
the  following  configuration:  Intel  Core  Duo  T2250 
1.73GHz, RAM 1GB, Linux OpenSUSE 10.1. All cases 
were solved in reasonable time to optimality: around 1 
second. Moreover, the solutions found in all cases were 
able to handle the ships with no delays – as desired – 
and meet the refineries crude oil demand – as desired as 
well. 

The test cases are detailed as follows:

● Test  1: Two  crude  tanks  and  one  pipeline 
connected to a refinery, whose crude demand 
has to be fulfilled. There are 2 configurations 
for this scenario: (A) allows the pipeline to be 
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idle in certain periods, (B) keeps the pipeline 
with  a  constant  flow,  during  the  entire 
schedule. The MINOS run converged to a local 
minimum  in  (B)  configuration.  The  NLP 
objective function is (Eq. 15), while the MILP 
is (Eq. 1). The penalty parameter M was set as 
1.0.

● Test  2: Two  crude  tanks,  one  jetty  and  two 
tankers, whose cargo had to be unloaded. The 
NLP objective function is (Eq.15) with M=1.0, 
while the MILP is (Eq.1).

● Test  3: Three  crude  tanks,  one  jetty,  three 
tankers, whose cargo had to be unloaded, and 
one pipeline, whose demand has to be fulfilled. 
There  were  2  configurations:  (A)  allows  the 
pipeline to be idle in certain periods, (B) keeps 
the pipeline with a constant flow. The SNOPT 
run  converged  to  a  local  minimum  with 
demurrage costs in (B) configuration. The NLP 
objective  function  is  (Eq.  15)  with  M=0.05, 
while the MILP is (Eq. 1). 

Table  3  shows  that  the  optimal  solutions  were 
achieved in both models (MILP and NLP).

Table 3. MILP and NLP results
MILP NLP

CPLEX MINOS SNOPT

1(A)
J = 1460 

14 iterations
J = 1460 

17 iterations
J = 1460 

51 iterations

1(B)
J = 1600 

 13 iterations
J = 1625 

5 iterations
J = 1600 

13 iterations

2
J = 0.33 

 63 iterations
J = 0.33

191 iterations
J = 0.33 

12 iterations

3(A)
J = 0 

 324 iterations 
 8 B&B nodes

J = 0 
411 iterations

J = 0
812 iterations

3(B)
J = 0 

397 iterations
 25 B&B nodes

J = 0 
472 iterations

J = 18.27
544 iterations

The  number  of  iterations  are  similar  for  both 
models,  but,  as  larger  problems  are  approached,  the 
MILP branch  and  bound  procedure  expands  a  larger 
number  of  nodes.  As  the  complementarity  model  is 
nonconvex, a nonlinear programming method, such as 
MINOS and  SNOPT,  may  converge  to  local  optima, 
differently from what happens with the mixed-integer 
model  when  solved  by  a  typical  branch-and-bound 
method,  such  as  CPLEX.  On  the  other  hand,  the 
complementarity model is more compact, featuring less 
variables and constraints than the MILP one.  

Noticing that one NLP solution is equivalent to an 
MILP  feasible  point,  we  propose  a  hybrid  scheme 
(Figure 3): solve the continuous NLP problem and then 
transform its solution as an initial point for the MILP. If 
needed, call NLP runs in difficult nodes of the MILP 
B&B tree. This scheme may be able to reduce the total 
number of branches and Simplex iterations in the MILP 
optimization, as the NLP point is an integral MILP good 
solution. 

Figure 3: Hybrid scheme

At the current state of our research, we employed 
the NLP solutions to initialize the MILP models,  and 
compared the number of iterations and branched nodes. 
A substantial reduction in the number of iterations in the 
MILP optimization run is detected (Table 4). 

Table 4. MILP cases with trivial and NLP starts
MILP Iterations 

(x,u)0=(x0, 0) (x,u)0=(x,u)SNOPT (x,u)0=(x,u)MINOS

1
(A) 14 13 13 

1
(B) 13 4 4 

2 63 47 40 
3

(A)
324 

(8 nodes) 215 215 

3
(B)

397
(25 nodes) 

265 
(6 nodes) 215 

5. CONCLUSIONS
One  of  the  bottlenecks  in  maritime  transportation 
industry is how ships are handled in ports: delays are 
very  common  and  expensive,  incurring  in  high 
demurrage costs.  We proposed  a  NLP model  for  this 
problem, and presented some computational examples 
in  order  to  illustrate  the  suitability  of  the  proposed 
model. Oil companies, port administrators, and freighter 
companies are possible users of this model. The most 
important advantage of using mathematical models for 
this  problems  is  to  find  schedules  that  incurr  in  no 
demurrage  costs  and  meet  all  operational  constraints. 
All cases were solved in reasonable time to optimality 
(around  1  second),  showing  that  this  approach  is  an 
interesting option for industry applications. Finally, it is 
important to notice that the complementarity equations 
herein described can be employed in others scheduling 
problems. 
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