
EXPERIENCES FROM THE APPLICATION OF HLA-BASED DISTRIBUTED
SIMULATIONS IN THE PRODUCTION OF VEHICLES

Michael Raab(a), Thomas Schulze(b), Steffen Straßburger(c)

(a)Fraunhofer Institute IFF, Magdeburg, Germany
(b)University of Magdeburg, Germany

(c)Technical University of Ilmenau, Germany

(a)Michael.Raab@iff.fraunhofer.de, (b)tom@iti.cs.uni-magdeburg.de, (c)Steffen.Strassburger@tu-ilmenau.de

ABSTRACT
This article discusses the application of distributed
simulation in the context of vehicle production
planning. The experiences are derived from a real
industrial project which aimed at connecting up to seven
individually developed simulation models. The article
reports on lessons learned which include the need for
efficient ways to manage and control HLA-based
distributed federations, to maintain a single code base
for the models as well as lookahead considerations for
synchronization.

Keywords: distributed simulation, production planning,
vehicle production

1. INTRODUCTION
Distributed Simulation refers in general to the
concurrent execution of several simulation models on
one or multiple processors (Fujimoto 2000). Resulting
benefits are possibilities to reuse existing simulation
models in an expanded context as well as to couple
simulations models of different software manufacturers.

In factory design and furthermore in factory
operation simulation models of different factory sub
sections are often developed independently and with
differences in level of detail and utilization focus. These
models are usually well suited to analyze the respective
factory sub sections. To model the interdependencies
between the several sub sections, a complex model is
needed. Dependencies of sub sections are mostly
influenced by existing connection modules like storages
or transport operations.

How can such a complex model be created? The
classical approach would be the development of a new
monolithic overall model, often with a level of detail
which is lesser than the one provided by existing sub
models. A different possibility (which is suggested in
this contribution) is the coupling of the pre-existing
simulation models establishing a complex distributed
model while keeping the achieved level of detail. This
approach has the following advantages yielding mainly
from the reuse of the existing simulation models
(Strassburger et al. 2006, Rabe und Jäkel 2001):

• Saving model development time in respect to
the development of a new monolithic overall
model

• Assuring the obtained level of detail
• Ensuring consistence between sub models and

distributed overall model

The paper describes authors’ experiences from an
industrial project targeting HLA-based distributed
simulation in the utility vehicle sector production. The
following chapter explains very shortly basic tasks of
distributed simulation and characterizes the usability of
distributed simulation in industrial applications.
Subsequently the starting position for this project and
the derived requirements will be explained. Some
implementation details are commented in the following
chapter. Calculated results from the complex distributed
simulation model are presented in the subsequent
chapter. An outlook finishes the paper.

2. BASISC TASK INSIDE DISTRIBUTED

SIMULATION
To achieve the needed interoperability between the pre-
existing simulation models, there are three main tasks
derived from the distributed simulation paradigm which
must be fulfilled (Fujimoto 2000). At first an agreement
on common objects of interest inside all simulation
models has to be created. All participants have to use
the same interpretation of sent and received data. This
agreement has to consider the semantic interoperability
between all components of the distributed model. The
second task is to exchange data based on common
objects which are defined in the agreement. Typically
publish and subscribe mechanisms are applied.
Synchronization of simulation time inside components
is the third main task. In general every component has
its own simulation clock and has to react to external
events from other components.

The existing approaches can be divided into two
categories. The first category includes solutions which
couple only homogenous simulation models from one
simulation model family. In this style, different models
within one simulator (e.g. Plant Simulation) can be
coupled based on internal features of that simulator.

29

This is a rather inflexible solution as it is bound to the
proprietary capabilities of that simulator.

More flexibility is provided by solutions from the
second category. Theses solutions are independent from
a single simulation software manufacturer and are based
on a framework or standard providing interoperability
between the models. They are not bounded on
proprietary interfaces. Known approaches are for
example FAMAS (Boer 2005) and HLA (IEEE 1516-
2000). The HLA-approach is a world-wide used and
standardized architecture for distributed simulation,
which allows to couple simulation and non-simulation
components with different time advance mechanisms.
Based on rather good user-acceptance, high flexibility
and our own experiences with HLA we decided to use
HLA for an industrial application.

3. STARTING POSITION
Within design and construction of a vehicle production
factory, independent simulation models were developed
to simulate the behaviour of seven interrelated assembly
and paint sections. These models are used after the
design phase to support ongoing factory operations. The
material flow inside the factory is presented in figure 1.
The aim of our industrial project was to connect the pre-
existing sub section models of a factory and to integrate
them into a complex distributed simulation model. This
complex model should be used to investigate the
interrelationships between the different sub sections.
Therefore the dimensioning of buffers between sections
and the coordination of production schedules were
investigated in order to assess bottlenecks in the
complex system. In our experience this scenario of
having to couple different independently developed
simulation models represents a typical use case in
industrial applications.

Figure 1: Schematic View on the Production System

Differences which typically need to be solved

concern the implementation of the simulation models in
varying simulation software, levels of detail in the
models, time advance mechanisms and time
dependencies. Our models can be divided into two
application categories: assembly and paint shop models.
Each category uses its own generic SLX simulation
model, which is used in combination with an
appropriate configuration file to generate an executable
SLX simulation model suitable for one production area.
Due to existence of a generic HLA interface for the
SLX simulator, HLA with RTI 1.3NG was selected to

perform as middleware for distributed simulation
(Straßburger 2001).

4. REQUIEREMENTS
To use a complex distributed model in this context
following requirements need to be fulfilled:

• Unique model version both monolithic and

distributed for using legacy simulation models,
• Simple management of distributed simulation

tasks,
• Presentation of additional results related to the

context of distributes simulation and
• Observance of simulation run-time.

An important requirement within the presented

industrial project was the need to maintain a single code
base for the monolithic and the distributed model
versions of the models. This was a mandate to keep the
models consistent as they are used in daily operations.
The configuration of the models had to allow the
flexibility to run a model either in stand-alone mode or
connected to other models. The distributed model
version has to contain additional features which allow
for example reactions on external events,
synchronisation with other distributed models and
modelling of transport to the successor model. These
additional features have to be hidden.

The HLA-runtime environment offers services of a
very low level for managing basic tasks. For example, a
distributed simulation model has to be started, has to
join and resign the federation, and has to be finished in
well defined way. Within our project scope it was
advisable to develop a dedicated user interface that
coordinates the necessary services for these tasks and
hides them from the user.

One of the main project goals was to obtain new
insights from the distributed complex model, which
can’t be obtained from single monolithic models. New
features for collecting information and statistics
between the models and their presentation in user-
friendly environment had to be developed.

The run-time of distributed simulation models is
strongly influenced by size of lookahead and used
synchronisation methods. 100 days is a typically value
for simulation run inside this industrial application area.
Monolithic simulation models based on SLX execute
these simulations in some seconds of run-time. The
project has to guarantee run-times for distributed
simulation which are in acceptable time slots.

5. IMPLEMENTATION
From the set of necessary implementation tasks, the
customization of the generic models, the modelling of
the material flow, the influence of the lookahead and the
development of a user interface were chosen to be
explained in more detail.

30

5.1. Customization of legacy generic simulation
models

There were two different types of monolithic legacy
generic simulation models. One for simulation of
assembly processes and the other for simulation of
painting processes. Both monolithic model types differ
in modelling approaches; they are specialized for their
application area. But they are unique in their
implementation language SLX and generic concept. The
generic models starts and will be adapted by using
configuration files to a specific simulation model. Both
legacy generic simulation models have to be extended
through:

• HLA-services for joining and resigning a
federation as soon as sending and receiving of
object attributes and interactions,

• Integration of external events into their local
event list and responding on this external
events and

• Modelling of part movement between coupled
models.

The requirement was the customization of the pre-

existing generic monolithic simulation models to be
able to participate in the distributed simulation. A basis
condition was to avoid the development of different
model versions for monolithic and distributed
applications. The generic model should be able to
generate both a monolithic and a distributed version of
the simulation model to ensure the consistency between
both models. The simulation language SLX offers the
possibility to extend the source code during
compilation. By using this SLX feature different model
versions can be generated smartly. Figure 2 shows the
approach to customize the pre-existing generic models.

Generic Model

Configuration
Files

Class S (Station)

Class A (Assembler)

…

compile Object S.1

Object A.1

Executable Simulation Model

Object S.n…

Object A.y

Object A.x

…

Distributed Simulation
Configuration module

DS Initialization
• Join Federation
• Create & Register Objects (Buffers)
• Publish, Subscribe Object Updates & Interactions

Synchronization Loop
• Manage advancement of Simulation Time
• Receive & Process Interactions & Attribute Updates

DS related class
definitions & extensions

Class E (Entity)

Class B (Buffer)

Generic Model
Configuration

Files
Class S (Station)

Class A (Assembler)

…

compile Object S.1

Object A.1

Executable Simulation Model

Object S.n…

Object A.y

Object A.x

…

Distributed Simulation
Configuration module

DS Initialization
• Join Federation
• Create & Register Objects (Buffers)
• Publish, Subscribe Object Updates & Interactions

Synchronization Loop
• Manage advancement of Simulation Time
• Receive & Process Interactions & Attribute Updates

DS related class
definitions & extensions

Class E (Entity)

Class B (Buffer)
Figure 2: Customizing pre-existing generic simulation
models for use in distributed simulations

Monolithic simulation models usually destroy their

flowing material parts when they reach the end of the
modeled process chain. In a distributed simulation it
becomes necessary to hand over subsets of these parts
to successive models. The transfer conditions of our
industrial pilot project include the transfer of material to
a bounded buffer of a successive model. In the
distributed version the same simulation model has to
pass the material part to next model. Enhancements to
the simulation code had to be made to allow this
behaviour.

Regarding their interoperability requirements our
distributed simulation models are therefore compliant
with a Type A.2 Interoperability Reference Model. The
classification used here is derived from the Draft
Standard for Commercial-Off-The-Shelf Simulation
Package Interoperability Reference Models (Taylor, S.
2007) The A.2 reference model type describes the
synchronized transfer of entities into a buffer with
limited capacity. In our solution implementing this
transfer and its conditions, we use an HLA interaction
for the entity transfer and HLA attribute updates to
communicate the current buffer content of the
respective input buffers. Figure 3 shows a principle
view and some important data structures.

Figure 3: Modelling the Material and Information Flow
beyond the Borders

For allowing the operation in a distributed

simulation certain data about local objects and its
attributes (which are of interest to the other models) has
to be communicated regularly to other simulation
models.

The Factory Model 1 in Figure 3 has to know the
availability of the input buffer (Queue 2) in Factory
Model2. Only if this buffer is available Factory Model 1
can transfer a part to Factory Model 2. The buffer object
is published to all other models with the attributes
Contents and Availability. Factory Model 2 publishes
all changes of the attributes to other simulation models.
A local copy of the buffer from Factory Model 2 is used
inside Factory Model 1. If an attribute update from the
original buffer is sent then the local copy will be
updated automatically. So consistency between original
and copy is ensured and Factory Model 1 decides about
part transfer depending on the local copy of the buffer
in Factory Model 2. For the publication and
subscription as well as the sending and receiving of
such data certain HLA functionalities have to be used.
This behaviour has to be implemented, in the best case
in a manner transparent to the end user.

5.2. Influence of lookahead
In distributed simulation the lookahead describes a
period of time in which a sub model will not create
external events for other sub models. Using a lookahead
greater zero conservative synchronisation methods can
calculate a time limit for other sub models. In general
an increasing lookahead enforces parallelism of sub
model execution and leads to decreasing execution time
of distributed simulation models. Results of

31

experiments with different sizes of lookahead are shown
in Figure 4.

Run-Times of distributed simulations by different lookaheads

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160 180 200

Lookahead in sec

R
un

-ti
m

e
in

 m
in

Figure 4: Run-Times of Distributed Simulations by
Different Lookaheads

To use a large lookahead is useful from the point

of performance. But a lookahaed > 0 is influencing the
logic inside execution of events. This is shown using
one example (Compare Figure 3). Factory Model 1 can
not deliver parts if the buffer of Factory Model 2 is not
available. Assume that the buffer attribute Availability
has been updated inside Factory Model 2 at time t1. The
other models will be notified about the new value will
at a timestamp t2 = t1 + lookahead. The value of the
local copy of the buffer object inside Factory Model 1
will therefore not be updated until time t2. As a result
the logic inside Factory Model 2 uses an incorrect value
about availability until time t2. This can lead to
undesired reactions inside Factory Model 2. For
example, if the buffer is not available and the Factory
Model 2 doesn’t know this fact and then factory Model
2 could send a part into the full (not available) input
buffer.

None general solutions for this problem have been
found inside this project. Special application-depending
approaches were used to avoid such problems.

5.3. User-Interface
For real industrial usage of distributed simulation it is
necessary to support the end user in his operational
work with the distributed simulation. The existing
features and user interfaces of commercial simulators
do not support the work with models in distributed
environments. During the implementation of the
industrial pilot project (which included up to seven
individual models) it became very soon clear that the
existing manual control features for starting, closing and
controlling the distributed simulation were insufficient.
For this reason the development of a user-interface
(called commander) was initiated.

The version of the user-interface (called
commander) currently developed provides the following
services:

• Encapsulation of RTI-Services against the user
• Supporting the user in creating the composition

of the complex model

• Creation of model visualization and calculation
of simulation statistic

• Starting, controlling and closing down entire
executions of the distributed simulation

The commander provides the opportunity to

compose and manage distributed simulation models on
an abstract layer without having the need to access the
HLA API. Such a layer is mandatory to achieve high
acceptance of distributed simulation in operational
environments. The commander was implemented in
C++ to be able to access the RTI-services provided by
the HLA API. To store the commander configuration,
an XML-file is used. Figure 5 shows an example of the
Commander user interface.

Figure 5: Form for the User-Interface

6. RESULTS
Besides the standard numerical result preparation within
the pre-existing monolithic models, an “Observer-
Federate” was used to collect data regarding the
distributed simulation including the flow of material
between the connected models and the history of buffer
content changes. These data can be collected from the
regular communication traffic between the models. For
further characterization of dependencies between the
different factory sections, each model collects
additional statistics on waiting times due to full buffers
and waiting times due to missing materials. This
information relieves the search for bottlenecks in the
complex system.

Table 1 shows results from model M4 for waiting
times. Models M1, M2, M3 and M4 deliver parts to
model M4. The production in model M4 has to stop, if
needed parts from provider models are not available.
Statistic for the duration of this models state is gathered.

32

Delays due missing incoming sub-models
Model Provider Models

M4 M1 M2 M3
of delays 0 10 4
Minimum delay 0s 30m 4m
Average delay 0s 3h 30m 45m
Maximum delay 0s 7h 34m 2h23m
Sum delay 0s 17h 30m 4h34m
Table 1: Delay Times for Model M4 Due Missing
Incoming Parts from Provider Models

Figure 6 shows an example about demand and

simulated production output of a sub model. The sub
model depends on other sub models which deliver parts.
The production output, depending on the behaviour of
provider models can be calculated only in a complex
model.

Daily Final Production Rate

0

5

10

15

20

25

30

35

40

45

Day
1

Day
4

Day
7

Day
10

Day
13

Day
16

Day
19

Day
22

Day
25

Day
28

Day
31

Day
34

Day
37

Day
40

Day

It
em

s Demand

 Production

Figure 6: Daily Demand and Simulated Production
Output for a sub model

For each of the monolithic simulation models in

our industrial project an individual visualization model
had been created. These models were inappropriate for
the visualization of the distributed simulation, as for this
use case only the material flow and the buffer fill levels
between the individual models were of interest (i.e., the
internal actions within a model were not to be
visualized). Therefore a new visualization including
statistic features for the interesting outputs had to be
created (compare Figure 7).

Figure 7: Visualisation of Material Flow and Buffer
Contents

7. FUTURE WORK
The goal of this industrial project to use legacy
monolithic simulation models in a distributed

simulation models has been achieved. The results that
have been derived from the complex distributed model
are relevant for project members. This project shows
that distributed simulation in industrial fields is
necessary, possible and manageable.

Additional work will be done in two directions: The
development of more general solutions for the
lookahead problem and the improvement of
management services for more simply use an
application of distributed simulation models.

REFERENCES

Boer, C. (2005). Distributed Simulation in Industry.

Doctoral Thesis Eramus University Rotterdam
Fujimoto, R. (2000). Parallel and Distributed

Simulation Systems . Wiley-Interscience
IEEE 1516-2000 (2000) IEEE Standard for Modeling

and Simulation (M&S) High Level Architecture
(HLA) - Framework and Rules.

Rabe, M.; Jäkel, F.-W. (2001). Non military use of
HLA within distributed manufacturing scenarios.
In Schulze, T, Schlechtweg, S., Hinz, V.. (eds)
Proceedings der Tagung Simulation und
Visualisierung 2001. S.141-150. SCS Europe,
2001

Straßburger, S. (2001). Distributed Simulation based on
the High Level Architecture in Civilian
Application Domains. Doctoral Thesis, University
of Magdeburg, Germany.

Strassburger, S., Schulze, T., Lemessi, M. (2006).
Applying CSPI Reference Models for Factory
Planning. In: Proceedings of the 2007 Winter
Simulation Conference, eds. S. G. Henderson, B.
Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R.
R. Barton, pp. 603-609. December 9-12, 2007.
Washington, D.C., USA.

Taylor, S.J.E., Mustafee, N., Strassburger, S., Turner,
S.J., Low, M.Y.H., Ladbrook, J. (2007). The SISO
CSPI PDG standard for commercial off-the-shelf
simulation package interoperability reference
models. In: Proceedings of the 2007 Winter
Simulation Conference. S. G. Henderson, B.
Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R.
R. Barton, eds., pp 594-602

AUTHORS BIOGRAPHY
MICHAEL RAAB is an employee at the Fraunhofer
Institute in Magdeburg, Germany. He holds a Masters’s
degree in Computer Science from the Otto-von-
Guericke-University Magdeburg. His research interests
include manufacturing simulation, distributed
simulation and virtual reality applications.

THOMAS SCHULZE is a professor in the School of
Computer Science at the Otto-von-Guericke-University,
Magdeburg, Germany. He received the Ph.D. degree in
civil engineering in 1979 and his habil. Degree for
computer science in 1991 from the University of

33

Magdeburg. His research interests include modeling
methodology, public systems modeling, manufacturing
simulation, distributed simulation with HLA and online
simulation. He is an active member in the ASIM, the
German organization of simulation. His web page can
be found via <www-wi.cs.uni-magdeburg.de>.

STEFFEN STRASSBURGER is a professor at the
Ilmenau University of Technology in the School of
Economic Sciences. In previous positions he was
working as head of the “Virtual Development”
department at the Fraunhofer Institute in Magdeburg,
Germany and as researcher at the DaimlerChrysler
Research Center in Ulm, Germany. He holds a Ph.D.
and a Diploma degree in Computer Science from the
University of Magdeburg, Germany. His research
interests include the topics simulation and distributed
simulation as well as general interoperability topics
within the digital factory context. Mr. Strassburger is
also the Vice Chair of SISO’s COTS Simulation
Package Interoperability Product Development Group.
His web page can be found via <www.tu-
ilmenau.de/fakww>.

34

