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ABSTRACT 
This article discusses the application of distributed 
simulation in the context of vehicle production 
planning. The experiences are derived from a real 
industrial project which aimed at connecting up to seven 
individually developed simulation models. The article 
reports on lessons learned which include the need for 
efficient ways to manage and control HLA-based 
distributed federations, to maintain a single code base 
for the models as well as lookahead considerations for 
synchronization.  
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1. INTRODUCTION 
Distributed Simulation refers in general to the 
concurrent execution of several simulation models on 
one or multiple processors (Fujimoto 2000). Resulting 
benefits are possibilities to reuse existing simulation 
models in an expanded context as well as to couple 
simulations models of different software manufacturers. 

In factory design and furthermore in factory 
operation simulation models of different factory sub 
sections are often developed independently and with 
differences in level of detail and utilization focus. These 
models are usually well suited to analyze the respective 
factory sub sections. To model the interdependencies 
between the several sub sections, a complex model is 
needed. Dependencies of sub sections are mostly 
influenced by existing connection modules like storages 
or transport operations. 

How can such a complex model be created? The 
classical approach would be the development of a new 
monolithic overall model, often with a level of detail 
which is lesser than the one provided by existing sub 
models. A different possibility (which is suggested in 
this contribution) is the coupling of the pre-existing 
simulation models establishing a complex distributed 
model while keeping the achieved level of detail. This 
approach has the following advantages yielding mainly 
from the reuse of the existing simulation models 
(Strassburger et al. 2006, Rabe und Jäkel 2001): 

 

• Saving model development time in respect to 
the development of a new monolithic overall 
model 

• Assuring the obtained level of detail  
• Ensuring consistence between sub models and 

distributed overall model 
 
The paper describes authors’ experiences from an 
industrial project targeting HLA-based distributed 
simulation in the utility vehicle sector production. The 
following chapter explains very shortly basic tasks of 
distributed simulation and characterizes the usability of 
distributed simulation in industrial applications. 
Subsequently the starting position for this project and 
the derived requirements will be explained. Some 
implementation details are commented in the following 
chapter. Calculated results from the complex distributed 
simulation model are presented in the subsequent 
chapter. An outlook finishes the paper. 

 
2. BASISC TASK INSIDE DISTRIBUTED 

SIMULATION 
To achieve the needed interoperability between the pre-
existing simulation models, there are three main tasks 
derived from the distributed simulation paradigm which 
must be fulfilled (Fujimoto 2000). At first an agreement 
on common objects of interest inside all simulation 
models has to be created. All participants have to use 
the same interpretation of sent and received data. This 
agreement has to consider the semantic interoperability 
between all components of the distributed model. The 
second task is to exchange data based on common 
objects which are defined in the agreement. Typically 
publish and subscribe mechanisms are applied. 
Synchronization of simulation time inside components 
is the third main task. In general every component has 
its own simulation clock and has to react to external 
events from other components. 

The existing approaches can be divided into two 
categories. The first category includes solutions which 
couple only homogenous simulation models from one 
simulation model family. In this style, different models 
within one simulator (e.g. Plant Simulation) can be 
coupled based on internal features of that simulator. 
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This is a rather inflexible solution as it is bound to the 
proprietary capabilities of that simulator.  

More flexibility is provided by solutions from the 
second category. Theses solutions are independent from 
a single simulation software manufacturer and are based 
on a framework or standard providing interoperability 
between the models. They are not bounded on 
proprietary interfaces. Known approaches are for 
example FAMAS (Boer 2005) and HLA (IEEE 1516-
2000). The HLA-approach is a world-wide used and 
standardized architecture for distributed simulation, 
which allows to couple simulation and non-simulation 
components with different time advance mechanisms. 
Based on rather good user-acceptance, high flexibility 
and our own experiences with HLA we decided to use 
HLA for an industrial application.  

 
3. STARTING POSITION 
Within design and construction of a vehicle production 
factory, independent simulation models were developed 
to simulate the behaviour of seven interrelated assembly 
and paint sections. These models are used after the 
design phase to support ongoing factory operations. The 
material flow inside the factory is presented in figure 1. 
The aim of our industrial project was to connect the pre-
existing sub section models of a factory and to integrate 
them into a complex distributed simulation model. This 
complex model should be used to investigate the 
interrelationships between the different sub sections. 
Therefore the dimensioning of buffers between sections 
and the coordination of production schedules were 
investigated in order to assess bottlenecks in the 
complex system. In our experience this scenario of 
having to couple different independently developed 
simulation models represents a typical use case in 
industrial applications.  

 

 
Figure 1: Schematic View on the Production System 

 
Differences which typically need to be solved 

concern the implementation of the simulation models in 
varying simulation software, levels of detail in the 
models, time advance mechanisms and time 
dependencies. Our models can be divided into two 
application categories: assembly and paint shop models. 
Each category uses its own generic SLX simulation 
model, which is used in combination with an 
appropriate configuration file to generate an executable 
SLX simulation model suitable for one production area.  
Due to existence of a generic HLA interface for the 
SLX simulator, HLA with RTI 1.3NG was selected to 

perform as middleware for distributed simulation 
(Straßburger 2001). 
 
4. REQUIEREMENTS 
To use a complex distributed model in this context 
following requirements need to be fulfilled: 

 
• Unique model version both monolithic and 

distributed for using legacy simulation models, 
• Simple management of distributed simulation 

tasks, 
• Presentation of additional results related to the 

context of distributes simulation and 
• Observance of simulation run-time. 
 
An important requirement within the presented 

industrial project was the need to maintain a single code 
base for the monolithic and the distributed model 
versions of the models. This was a mandate to keep the 
models consistent as they are used in daily operations. 
The configuration of the models had to allow the 
flexibility to run a model either in stand-alone mode or 
connected to other models. The distributed model 
version has to contain additional features which allow 
for example reactions on external events, 
synchronisation with other distributed models and 
modelling of transport to the successor model. These 
additional features have to be hidden.  

The HLA-runtime environment offers services of a 
very low level for managing basic tasks. For example, a 
distributed simulation model has to be started, has to 
join and resign the federation, and has to be finished in 
well defined way. Within our project scope it was 
advisable to develop a dedicated user interface that 
coordinates the necessary services for these tasks and 
hides them from the user. 

One of the main project goals was to obtain new 
insights from the distributed complex model, which 
can’t be obtained from single monolithic models. New 
features for collecting information and statistics 
between the models and their presentation in user-
friendly environment had to be developed. 

The run-time of distributed simulation models is 
strongly influenced by size of lookahead and used 
synchronisation methods. 100 days is a typically value 
for simulation run inside this industrial application area. 
Monolithic simulation models based on SLX execute 
these simulations in some seconds of run-time. The 
project has to guarantee run-times for distributed 
simulation which are in acceptable time slots.  

 
5. IMPLEMENTATION 
From the set of necessary implementation tasks, the 
customization of the generic models, the modelling of 
the material flow, the influence of the lookahead and the 
development of a user interface were chosen to be 
explained in more detail. 
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5.1. Customization of legacy generic simulation 
models 

There were two different types of monolithic legacy 
generic simulation models. One for simulation of 
assembly processes and the other for simulation of 
painting processes. Both monolithic model types differ 
in modelling approaches; they are specialized for their 
application area. But they are unique in their 
implementation language SLX and generic concept. The 
generic models starts and will be adapted by using 
configuration files to a specific simulation model. Both 
legacy generic simulation models have to be extended 
through: 

• HLA-services for joining and resigning a 
federation as soon as sending and receiving of 
object attributes and interactions, 

• Integration of external events into their local 
event list and responding on this external 
events and 

• Modelling of part movement between coupled 
models. 

 
The requirement was the customization of the pre-

existing generic monolithic simulation models to be 
able to participate in the distributed simulation. A basis 
condition was to avoid the development of different 
model versions for monolithic and distributed 
applications. The generic model should be able to 
generate both a monolithic and a distributed version of 
the simulation model to ensure the consistency between 
both models. The simulation language SLX offers the 
possibility to extend the source code during 
compilation. By using this SLX feature different model 
versions can be generated smartly. Figure 2 shows the 
approach to customize the pre-existing generic models. 
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Figure 2: Customizing pre-existing generic simulation 
models for use in distributed simulations 

 
Monolithic simulation models usually destroy their 

flowing material parts when they reach the end of the 
modeled process chain. In a distributed simulation it 
becomes necessary to hand over subsets of these parts 
to successive models. The transfer conditions of our 
industrial pilot project include the transfer of material to 
a bounded buffer of a successive model. In the 
distributed version the same simulation model has to 
pass the material part to next model. Enhancements to 
the simulation code had to be made to allow this 
behaviour. 

Regarding their interoperability requirements our 
distributed simulation models are therefore compliant 
with a Type A.2 Interoperability Reference Model. The 
classification used here is derived from the Draft 
Standard for Commercial-Off-The-Shelf Simulation 
Package Interoperability Reference Models (Taylor, S. 
2007) The A.2 reference model type describes the 
synchronized transfer of entities into a buffer with 
limited capacity. In our solution implementing this 
transfer and its conditions, we use an HLA interaction 
for the entity transfer and HLA attribute updates to 
communicate the current buffer content of the 
respective input buffers. Figure 3 shows a principle 
view and some important data structures.  

 

 
Figure 3: Modelling the Material and Information Flow 
beyond the Borders 

 
For allowing the operation in a distributed 

simulation certain data about local objects and its 
attributes (which are of interest to the other models) has 
to be communicated regularly to other simulation 
models.  

The Factory Model 1 in Figure 3 has to know the 
availability of the input buffer (Queue 2) in Factory 
Model2. Only if this buffer is available Factory Model 1 
can transfer a part to Factory Model 2. The buffer object 
is published to all other models with the attributes 
Contents and Availability. Factory Model 2 publishes 
all changes of the attributes to other simulation models. 
A local copy of the buffer from Factory Model 2 is used 
inside Factory Model 1. If an attribute update from the 
original buffer is sent then the local copy will be 
updated automatically. So consistency between original 
and copy is ensured and Factory Model 1 decides about 
part transfer depending on the local copy of the buffer 
in Factory Model 2. For the publication and 
subscription as well as the sending and receiving of 
such data certain HLA functionalities have to be used. 
This behaviour has to be implemented, in the best case 
in a manner transparent to the end user. 

 
5.2. Influence of lookahead 
In distributed simulation the lookahead describes a 
period of time in which a sub model will not create 
external events for other sub models. Using a lookahead 
greater zero conservative synchronisation methods can 
calculate a time limit for other sub models. In general 
an increasing lookahead enforces parallelism of sub 
model execution and leads to decreasing execution time 
of distributed simulation models. Results of 
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experiments with different sizes of lookahead are shown 
in Figure 4.  
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Figure 4: Run-Times of Distributed Simulations by 
Different Lookaheads 

 
To use a large lookahead is useful from the point 

of performance. But a lookahaed > 0 is influencing the 
logic inside execution of events. This is shown using 
one example (Compare Figure 3). Factory Model 1 can 
not deliver parts if the buffer of Factory Model 2 is not 
available. Assume that the buffer attribute Availability 
has been updated inside Factory Model 2 at time t1. The 
other models will be notified about the new value will 
at a timestamp t2 = t1 + lookahead. The value of the 
local copy of the buffer object inside Factory Model 1 
will therefore not be updated until time t2. As a result 
the logic inside Factory Model 2 uses an incorrect value 
about availability until time t2. This can lead to 
undesired reactions inside Factory Model 2. For 
example, if the buffer is not available and the Factory 
Model 2 doesn’t know this fact and then factory Model 
2 could send a part into the full (not available) input 
buffer.  

None general solutions for this problem have been 
found inside this project. Special application-depending 
approaches were used to avoid such problems. 

 
5.3. User-Interface 
For real industrial usage of distributed simulation it is 
necessary to support the end user in his operational 
work with the distributed simulation. The existing 
features and user interfaces of commercial simulators 
do not support the work with models in distributed 
environments. During the implementation of the 
industrial pilot project (which included up to seven 
individual models) it became very soon clear that the 
existing manual control features for starting, closing and 
controlling the distributed simulation were insufficient. 
For this reason the development of a user-interface 
(called commander) was initiated.  

The version of the user-interface (called 
commander) currently developed provides the following 
services: 

 
• Encapsulation of RTI-Services against the user 
• Supporting the user in creating the composition 

of the complex model  

• Creation of model visualization and calculation 
of simulation statistic 

• Starting, controlling and closing down entire 
executions of the distributed simulation 

 
The commander provides the opportunity to 

compose and manage distributed simulation models on 
an abstract layer without having the need to access the 
HLA API. Such a layer is mandatory to achieve high 
acceptance of distributed simulation in operational 
environments. The commander was implemented in 
C++ to be able to access the RTI-services provided by 
the HLA API. To store the commander configuration, 
an XML-file is used. Figure 5 shows an example of the 
Commander user interface. 

 

 
Figure 5: Form for the User-Interface 

 
6. RESULTS 
Besides the standard numerical result preparation within 
the pre-existing monolithic models, an “Observer-
Federate” was used to collect data regarding the 
distributed simulation including the flow of material 
between the connected models and the history of buffer 
content changes. These data can be collected from the 
regular communication traffic between the models. For 
further characterization of dependencies between the 
different factory sections, each model collects 
additional statistics on waiting times due to full buffers 
and waiting times due to missing materials. This 
information relieves the search for bottlenecks in the 
complex system.  

Table 1 shows results from model M4 for waiting 
times. Models M1, M2, M3 and M4 deliver parts to 
model M4. The production in model M4 has to stop, if 
needed parts from provider models are not available. 
Statistic for the duration of this models state is gathered. 
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Delays due missing incoming sub-models 
Model Provider Models 

M4 M1 M2 M3 
# of delays 0 10 4 
Minimum delay 0s 30m 4m 
Average delay 0s 3h 30m 45m 
Maximum delay 0s 7h 34m 2h23m 
Sum delay 0s 17h 30m 4h34m 
Table 1: Delay Times for Model M4 Due Missing 
Incoming Parts from Provider Models 

 
Figure 6 shows an example about demand and 

simulated production output of a sub model. The sub 
model depends on other sub models which deliver parts. 
The production output, depending on the behaviour of 
provider models can be calculated only in a complex 
model. 
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Figure 6: Daily Demand and Simulated Production 
Output for a sub model 

 
For each of the monolithic simulation models in 

our industrial project an individual visualization model 
had been created. These models were inappropriate for 
the visualization of the distributed simulation, as for this 
use case only the material flow and the buffer fill levels 
between the individual models were of interest (i.e., the 
internal actions within a model were not to be 
visualized). Therefore a new visualization including 
statistic features for the interesting outputs had to be 
created (compare Figure 7). 

 

 
Figure 7: Visualisation of Material Flow and Buffer 
Contents 

 
7. FUTURE WORK 
The goal of this industrial project to use legacy 
monolithic simulation models in a distributed 

simulation models has been achieved. The results that 
have been derived from the complex distributed model 
are relevant for project members. This project shows 
that distributed simulation in industrial fields is 
necessary, possible and manageable.  

Additional work will be done in two directions: The 
development of more general solutions for the 
lookahead problem and the improvement of 
management services for more simply use an 
application of distributed simulation models. 
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