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ABSTRACT 
The Corridor Method is a solution concept which may 
be characterized as a method-based metaheuristic. That 
is, based on a given algorithm which is meant to work 
well at least on small sized instances of a specific type 
of optimization problem, it defines one or more 
neighborhoods which seem to be well suited for the 
specific problem and the given algorithm. These 
neighborhoods may be viewed as corridors around 
given solutions. Experiments show that this type of 
approach is a successful hybridization between exact 
and metaheuristic methods. We show successful 
applications for the block relocation problem arising, 
e.g., at container terminals. 
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1. INTRODUCTION 
In this paper we present a dynamic programming 
inspired metaheuristic called corridor method along 
with its application upon the blocks relocation problem 
in block stacking systems, as found, e.g., in the stacking 
of container terminals in a yard. It can be classified as a 
local search based metaheuristic in that the 
neighborhoods that it deploys are method-based. By this 
we mean that the search for a new candidate solution is 
carried out by a fully-fledged optimization method 
which generates an optimal solution over the 
neighborhood. The neighborhoods are thus constructed 
to be suitable domains for this optimization method. 
Typically these neighborhoods are obtained by the 
imposition of exogenous constraints on the decision 
space of the target problem and, therefore, must be 
compatible with the method used to search these 
neighborhoods. This is in sharp contrast to most 
traditional metaheuristics where neighborhoods are 
move-based, i.e., they are generated by subjecting the 
candidate solution to small changes called moves.  

While conceptually the method-based paradigm 
applies to any optimization method, in practice it is best 
suited to support optimization methods, such as 
dynamic programming, where it is easy to control the 
size of a problem, hence the complexity of algorithms, 

by means of exogenous constraints. The essential 
features of the method may be illustrated in the context 
of well-known combinatorial optimization problems 
where exponentially large dynamic programming 
inspired neighborhoods are searched by a linear 
time/space dynamic programming algorithm.  

This paper has the following structure: Section 2 
presents the blocks relocation problem along with a 
dynamic programming based formulation; Section 3 
illustrates how the Corridor Method can be 
implemented to effectively tackle the problem at hand; 
Section 4 offers computational results and, finally, 
Section 5 concludes with some remarks. 
 
2. THE BLOCKS RELOCATION PROBLEM 
Increasing containerization and competition among 
seaport container terminals have become quite 
remarkable in worldwide international trade. Operations 
are nowadays unthinkable without effective and 
efficient IT use and appropriate optimization 
(management science and operations research) methods. 
Besides enabling efficient data interchange between 
supply chain partners, related information systems need 
to support terminal operators, shipping companies and 
even port authorities.  
 In container terminals, it is common practice to 
store outbound containers in the yard before loading 
them into a vessel. To be able to face competition 
among terminals and to guarantee a high level of 
service, operators must reduce unproductive time at the 
port; see, e.g., Stahlbock and Voß (2008) and the 
references given there for a comprehensive survey. 

Relocation is one of the most important factors 
contributing to the productivity of operations at storage 
yards or warehouses (Yang and Kim, 2006). A common 
practice aimed at effectively using limited storage space 
is to stack blocks along the vertical direction, whether 
they be marine containers, pallets, boxes, or steel plates 
(Kim and Hong, 2006). Given a heap of blocks, 
relocation occurs every time a block in a lower tier must 
be retrieved before blocks placed above it. Since blocks 
in a stack can only be retrieved following a LIFO (Last 
In First Out) discipline, in order to retrieve the low-tier 
block, relocation of all blocks on top of it will be 
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necessary. Figure 1 illustrates how the block stacking 
technique is used at a bay. Each vertical heap is called 
stack. A stack is made up by a number of tiers, which 
define the height of the stack. A bay is the collection of 
stacks and the width of the bay is given by the number 
of stacks. In Figure 1 the order in which a block is to be 
retrieved is indicated by a progressive number. 
Consequently, in order to pickup block 1, blocks 5 and 
4, in this order, must first be relocated to either stack 1 
or 3. 

 

 
Figure 1: An example of a bay with m = 3 stacks and 
n = 7 blocks. 

 
If the current configuration of the bay is taken as 

fixed, one might be interested in finding the sequence of 
moves that should be executed, while retrieving blocks 
according to a given sequence, in order to minimize the 
overall number of relocation moves. While in the 
shuffling problem containers are rearranged but not 
removed, in the on-line version of the problem, at each 
step, a container is removed from the bay, hence 
reducing the number of containers in the bay until all 
containers have been picked up from the bay. Exact as 
well as approximate algorithms have been proposed to 
minimize the number of relocations while retrieving 
blocks. For example, Watanable (1991) proposed the 
use of an accessibility index to forecast the number of 
relocation movements. With a similar approach, Castillo 
and Daganzo (1993) and Kim (1997) proposed heuristic 
rules to estimate the number of relocations for inbound 
containers. A mathematical formulation and a branch 
and bound approach, along with an effective heuristic 
scheme for the blocks relocation problem are presented 
in Kim et al. (2000) and in Kim and Hong (2006). 

In this paper, in a fashion similar to what is 
presented in Kim and Hong (2006), we consider the 
initial bay configuration as fixed and the sequential 
order of pickup as known in advance. Given this fixed 
initial arrangement, we are interested in finding the 
relocation pattern at each pickup operation in such a 
way that the total number of relocation moves within a 
bay is minimized.  

The general idea of this paper is based upon the 
introduction of a dynamic programming scheme that 
captures all the possible states of the bay at any given 
time. Given an incumbent bay configuration and a 

target block to retrieve, we distinguish between two 
cases: (i) the block to be retrieved is free, which is, no 
block is currently above it. In this case, the only 
acceptable decision is to retrieve the target block and 
place it into its final destination. On the other hand, (ii) 
if at least one block is currently placed upon the target 
block, we enumerate all the possible relocation 
strategies for the uppermost block and move this block 
to another stack, giving rise to a new bay configuration. 
This enumeration process is repeated until case (i) is 
reached, after which the current target block is retrieved 
and the next target block is addressed. The process 
terminates when the last block to be retrieved is freed 
up. 

Let us consider the case of a bay with  blocks, 
indicated with 1, … ,  , in which the first  blocks 
must be retrieved, with   . Without loss of 
generality, we assume that not necessarily all the blocks 
must be retrieved. Let us indicate with   1, … ,  a 
stack in the bay and with   the current block to be 
retrieved. Throughout this section, we will use the bay 
of Figure 1 as reference example. 

We now introduce the following assumptions: 
H1:  As in Kim and Hong (2006), pickup precedences 
among blocks are known in advance. We indicate the 
pickup precedence with a number, where blocks with 
lower numbers have higher precedence than blocks 
with higher numbers (e.g., in Figure 1, the pickup 
precedences are 1 2 7). 
H2:  When retrieving a target block, we are allowed to 
relocate only blocks found above the target block in the 
same stack using a LIFO policy (e.g., in Figure 1, when 
picking up block 1, we are forced to relocate blocks 5 
and 4, in this exact order). 
H3:  Relocation is allowed only to other stacks within 
the same bay (e.g., in Figure 1, when relocating   blocks 
5 and 4,  they can only be moved to either stack 1 or 
3). 
H4:  Relocated blocks can be put only on top of other 
stacks,  i.e., no rearrangement of blocks within a stack 
is allowed  (e.g., in Figure 1, when relocating   blocks 5 
and 4, these can only be placed on top of blocks 3 and 
7). 
 

In the following, let us define the basic elements of 
the dynamic programming (DP) model: 
 
State variable: Let us indicate with , , ,  the 
state variable, where   1, … ,  is the block to be 
retrieved,   1, … ,  is the stack in which the target 
block is found,  is the list of blocks above the target 
block and  is the configuration of the remaining blocks 
(e.g., with respect to Figure 1, we have 1,
2,  5, 4 , and  3, 2 , 7, 6 ). 

 
Decision variable: At each step, one of two different 
cases arises, namely (i) the target block has no other 
blocks placed above and can currently be retrieved and 
placed outside of the bay, i.e.,  . In this case, the 
only alternative is to retrieve the target block and to 
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place it into its final destination; (ii) the target block 
cannot be retrieved since at least one block is still above 
it, i.e.,   .  Let us indicate with   the uppermost 
block in the sequence , which is, the block that is 
currently on top in stack . In this case, the decision is 
about identifying which stack block  should be 
relocated to. Let us indicate with  such a stack and 
with  the set of all feasible values of   with 
respect to the current state  (e.g., in Figure 1, we have 

5 and  1, 3 , that is, the next decision 
concerns where to relocate block 5 and the only feasible 
moves are either to move it to stack 1 or to stack 3). 

 
State transition function: Let us indicate with 

, , ,  the state obtained by applying 
decision   to the current state , which is, 

, . Here  represents the state transition 
function. As previously mentioned, two different cases 
may arise: (i)  ; or (ii)   . In case (i), we have 
that 1, is the stack in which block 1 is 
currently located, is a new list of blocks currently 
above the target block 1 and, finally,   is the 
configuration of the remaining blocks. On the other 
hand, in case (ii), it is easy to see that  ,
,    \ , and depends on the application of 

move  to block  (e.g., in  Figure 1, let us suppose that 
1. In this case, the new state is  , 1

 1, 2, 4 , , where  5, 3, 2 , 7, 6 ). 
 

Functional equation: The DP “backward” functional 
equation is 

 
 1  min  ,  (1) 

 
where  , , ,  indicates the current state, and 

,  is the state transition function that accounts for 
the application of decision  upon the current state 

. We set  1, for  , , , ,  which is the 
cost of retrieving a block from the bay and moving it to 
its final destination. More formally, we can explicitly 
distinguish between the aforementioned cases (i) and 
(ii). Consequently, the functional equation can be 
rewritten, for 1, … , 1, as 

 

, , ,  
1 1, , , ,  

1  min
 

, ,  \ , ,    

  (2) 
 
with , , , 1. 
 

It is easy to see that one of the major drawbacks of 
the proposed dynamic programming scheme lies in the 
exponentially large number of entries in the dynamic 
programming evaluation table. Consequently, the size 
of the evaluation table can become very large after only 
a few steps of the dynamic programming algorithm. In 
the next section we illustrate how this major obstacle 
can be overcome. 

 

3. THE CORRIDOR METHOD FOR THE 
BLOCKS RELOCATION PROBLEM 

The Corridor Method (CM) has been presented by 
Sniedovich and Voß (2006) as a hybrid metaheuristic, 
linking together mathematical programming techniques 
with heuristic schemes. The basic idea of the CM relies 
on the use of an exact method over restricted portions of 
the solution space of a given problem. Given an 
optimization problem , the basic ingredients of the 
method are a very large feasible space  and an exact 
method  that could easily solve problem  if the 
feasible space were not too large. However, since, in 
order to be of interest, in general the size of the solution 
space grows exponentially with respect to the input size, 
the direct application of method  to solve  becomes 
unpractical when dealing with real-world instances, 
which is, when  becomes larger. 

Let us now consider how the CM can be applied to 
the blocks relocation problem. As mentioned in Section 
2, the main drawback of the proposed method is the 
exponential growth of the number of reachable states. 
We define a “two-dimensional” corridor around the 
current configuration, in such a way that the number of 
states generated from the current configuration is 
limited. Given a current bay configuration , the number 
of new configurations that can be generated starting 
from  is equal to | |. Consequently, in order to 
reduce the number of generated states, one can apply 
exogenous constraints that impose horizontal as well as 
vertical limits upon the bay. For example, horizontal 
limits could be introduced by reducing the number of 
stacks to which blocks can be relocated, as well as 
vertical limits, by establishing a maximum height, in 
terms of number of blocks in the same stack. 

Let us now formally define the “constrained” 
neighborhood induced by the application of the CM 
upon a given configuration. Let us indicate with 

 , , ,  the current bay configuration, where 
 , … ,  \  indicates all the stacks of the bay 

excluding stack . Let us indicate with | | the number 
of blocks currently on stack . Given two parameters  
and , we define the set of restricted admissible 
decisions as  

 
, ,    1, … , \ :    ,

| |   .   (3) 
 

Finally, we define the restricted neighborhood of 
the current configuration , i.e., the set of “feasible” bay 
configurations that can be created from  as 

 
 :  , ,  , , . (4) 

 
Consequently, the size of the neighborhood can be 
made arbitrarily small by changing the values of  and 

.  For this reason, we can say that the “corridor” 
around the incumbent bay configuration is defined by 
imposing exogenous constraints on the solution space 
of the problem via calibration of parameters  and .  
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4. COMPUTATIONAL RESULTS 
In this section we present computational results on 
randomly generated instances. All tests presented in this 
section have been carried out on a Pentium IV Linux 
Workstation with 512Mb of RAM. The algorithm has 
been coded in C++ and compiled with the GNU C++ 
compiler using the -O option. 

We designed an experiment that resembles that of 
Kim and Hong (2006). We divided our computational 
tests in two parts: (i) tests on small-medium size 
instances, for which an exact solution can be computed 
using the dynamic programming scheme. For these 
instances, we present a comparison of our algorithm 
with respect to the optimal solution as well as with 
respect to the solution found by the algorithm of Kim 
and Hong (2006), running the code provided by the 
authors on our randomly generated instances; and (ii) 
tests on large scale instances, for which the optimal 
solution is unknown. In order to measure the solution 
quality of our algorithm, we compare our results with 
those obtained running the algorithm of Kim and Hong 
(2006) on the same set of instances.  

The random generation process takes as input two 
parameters, the number of stacks  and the number of 
tiers , and randomly generates a rectangular bay 
configuration of size  , where  indicates the 
total number of blocks in the bay. For each combination 
of  and  we generated 40 different  instances.  

In Table 1 we compare the results of the proposed 
scheme with those obtained running the code of Kim 
and Hong (2006) on the same set of instances. It is 
worth noting that all values reported in the table are 
average values, computed over 40 different instances of 
the same class. This helps in offsetting instance specific 
biases in the reported results. In addition, we fixed a 
maximum computational time for the CM of 60 
seconds, after which the algorithm was stopped. 
Clearly, since the CM is based on a dynamic 
programming scheme, whenever the algorithm is 
truncated, no solution is returned.  

In Table 1 and Table 2, the first and second 
columns define the size of problem instances, in terms 
of number of tiers and number of stacks. The third and 
fourth columns report average number of moves and 
computational time of the algorithm of Kim and Hong 
(2006) (called KH for short). Columns five and six 
report the same information, average number of moves 
and average computational time, for the proposed CM. 
Column seven reports the gap between the solution of 
the CM and the optimal solution obtained by using the 
dynamic programming scheme (omitted in Table 2 
because instances were too large to be solved via 
dynamic programming). The gap is computed as: 

 
    (5) 

 
where  is the optimal solution found by the dynamic 
programming scheme and  is the average best 
solution found by the proposed CM scheme. Finally, the 

last two columns provide a measure of the corridor, in 
terms of width ( ) and height ( ). We solved each 
instance with different combinations of  
 1, 2, … , /2  and   1, 2, … , 1.5 . We 
report the values used to obtain the best solution in the 
shortest computational time. It is worth noting that, for 
the sake of consistency with the results reported in Kim 
and Hong (2006), all results reported in this section 
with respect to the number of moves (No.) only count 
the number of relocations and do not take into account 
the final retrieval of the target blocks to their final 
destinations. 

In addition, in order to further reduce the stochastic 
effects of the algorithm, we run the algorithm with the 
same set of parameters  and  five times on the same 
instance. Consequently, given an instance class  , 
we solved each one of the 40 instances 5 |Λ|  |Δ| 
times. In the table we report the average values over all 
the runs of a given instance class. 

 
Table 1: Computational Results on Small Size 
Instances. 

 
 

In Table 1, the “smaller” instances in the upper 
part of the table, i.e., 3 3 to 3 6, are solved to 
optimality by the CM. Consequently, a first observation 
of our results is related to the effectiveness of the CM in 
solving small instances to optimality in a very short 
computational time. For all the other instances, the 
algorithm compares favorably with the Kim and Hong 
(2006) algorithm, especially when dealing with large 
scale instances. In order to provide a further indication 
of the robustness of the algorithm, in Figure 2 we 
graphically present the variability of the results on the 
largest instances. As shown in Figure 2, the algorithm is 
quite robust with respect to the parameter values  and 

 as well as with respect to the initial configuration of 
the bay. 
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Table 2: Computational Results on Medium Size 
Instances. 

 
 

 
Figure 2: Variability results. 

 

5. CONCLUSION 
In this paper we have presented a metaheuristic-based 
algorithm for the Blocks Relocation Problem, in which 
one is given a sequence of blocks to be retrieved from a 
bay according to a fixed set of precedences. The 
objective is to find the blocks relocation pattern that 
minimizes the total number of movements required to 
comply with the retrieving sequence. This problem 
finds applications in a wide spectrum of real-world 
situations, where stacking techniques are used to reduce 
space usage, e.g., at a container terminal yard. We have 
first proposed a dynamic programming algorithm that 
can be used to find the optimal solution to the problem. 
However, since the size of the search space grows 
exponentially with respect to the input size, the dynamic 
programming approach cannot be used in real time  
when dealing with medium and large scale instances. 
For this reason, we tackled the problem by designing a 
Corridor Method inspired algorithm, in which a two-
dimensional “corridor” is build around the incumbent 
yard configuration. The imposition of exogenous 
constraints on the target problem sensibly reduces the 
size of the solution space, making the use of the 
“constrained” dynamic programming scheme practical 
even on very large instances. 
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