
THE CORRIDOR METHOD – A GENERAL SOLUTION CONCEPT WITH
 APPLICATION TO THE BLOCKS RELOCATION PROBLEM

Marco Caserta (a), Stefan Voß(b), Moshe Sniedovich(c)

(a) Institut für Wirtschaftsinformatik, Universität Hamburg, Von-Melle-Park 5, 20146 Hamburg, Germany
(b) Institut für Wirtschaftsinformatik, Universität Hamburg, Von-Melle-Park 5, 20146 Hamburg, Germany

(c) Department of Mathematics and Statistics, The University of Melbourne, Australia

(a) marco.caserta@uni-hamburg.de, (b) stefan.voss@uni-hamburg.de, (c) m.sniedovich@ms.unimelb.edu.au

ABSTRACT
The Corridor Method is a solution concept which may
be characterized as a method-based metaheuristic. That
is, based on a given algorithm which is meant to work
well at least on small sized instances of a specific type
of optimization problem, it defines one or more
neighborhoods which seem to be well suited for the
specific problem and the given algorithm. These
neighborhoods may be viewed as corridors around
given solutions. Experiments show that this type of
approach is a successful hybridization between exact
and metaheuristic methods. We show successful
applications for the block relocation problem arising,
e.g., at container terminals.

Keywords: corridor method, blocks relocation problem,
container terminal

1. INTRODUCTION
In this paper we present a dynamic programming
inspired metaheuristic called corridor method along
with its application upon the blocks relocation problem
in block stacking systems, as found, e.g., in the stacking
of container terminals in a yard. It can be classified as a
local search based metaheuristic in that the
neighborhoods that it deploys are method-based. By this
we mean that the search for a new candidate solution is
carried out by a fully-fledged optimization method
which generates an optimal solution over the
neighborhood. The neighborhoods are thus constructed
to be suitable domains for this optimization method.
Typically these neighborhoods are obtained by the
imposition of exogenous constraints on the decision
space of the target problem and, therefore, must be
compatible with the method used to search these
neighborhoods. This is in sharp contrast to most
traditional metaheuristics where neighborhoods are
move-based, i.e., they are generated by subjecting the
candidate solution to small changes called moves.

While conceptually the method-based paradigm
applies to any optimization method, in practice it is best
suited to support optimization methods, such as
dynamic programming, where it is easy to control the
size of a problem, hence the complexity of algorithms,

by means of exogenous constraints. The essential
features of the method may be illustrated in the context
of well-known combinatorial optimization problems
where exponentially large dynamic programming
inspired neighborhoods are searched by a linear
time/space dynamic programming algorithm.

This paper has the following structure: Section 2
presents the blocks relocation problem along with a
dynamic programming based formulation; Section 3
illustrates how the Corridor Method can be
implemented to effectively tackle the problem at hand;
Section 4 offers computational results and, finally,
Section 5 concludes with some remarks.

2. THE BLOCKS RELOCATION PROBLEM
Increasing containerization and competition among
seaport container terminals have become quite
remarkable in worldwide international trade. Operations
are nowadays unthinkable without effective and
efficient IT use and appropriate optimization
(management science and operations research) methods.
Besides enabling efficient data interchange between
supply chain partners, related information systems need
to support terminal operators, shipping companies and
even port authorities.
 In container terminals, it is common practice to
store outbound containers in the yard before loading
them into a vessel. To be able to face competition
among terminals and to guarantee a high level of
service, operators must reduce unproductive time at the
port; see, e.g., Stahlbock and Voß (2008) and the
references given there for a comprehensive survey.

Relocation is one of the most important factors
contributing to the productivity of operations at storage
yards or warehouses (Yang and Kim, 2006). A common
practice aimed at effectively using limited storage space
is to stack blocks along the vertical direction, whether
they be marine containers, pallets, boxes, or steel plates
(Kim and Hong, 2006). Given a heap of blocks,
relocation occurs every time a block in a lower tier must
be retrieved before blocks placed above it. Since blocks
in a stack can only be retrieved following a LIFO (Last
In First Out) discipline, in order to retrieve the low-tier
block, relocation of all blocks on top of it will be

89

necessary. Figure 1 illustrates how the block stacking
technique is used at a bay. Each vertical heap is called
stack. A stack is made up by a number of tiers, which
define the height of the stack. A bay is the collection of
stacks and the width of the bay is given by the number
of stacks. In Figure 1 the order in which a block is to be
retrieved is indicated by a progressive number.
Consequently, in order to pickup block 1, blocks 5 and
4, in this order, must first be relocated to either stack 1
or 3.

Figure 1: An example of a bay with m = 3 stacks and
n = 7 blocks.

If the current configuration of the bay is taken as

fixed, one might be interested in finding the sequence of
moves that should be executed, while retrieving blocks
according to a given sequence, in order to minimize the
overall number of relocation moves. While in the
shuffling problem containers are rearranged but not
removed, in the on-line version of the problem, at each
step, a container is removed from the bay, hence
reducing the number of containers in the bay until all
containers have been picked up from the bay. Exact as
well as approximate algorithms have been proposed to
minimize the number of relocations while retrieving
blocks. For example, Watanable (1991) proposed the
use of an accessibility index to forecast the number of
relocation movements. With a similar approach, Castillo
and Daganzo (1993) and Kim (1997) proposed heuristic
rules to estimate the number of relocations for inbound
containers. A mathematical formulation and a branch
and bound approach, along with an effective heuristic
scheme for the blocks relocation problem are presented
in Kim et al. (2000) and in Kim and Hong (2006).

In this paper, in a fashion similar to what is
presented in Kim and Hong (2006), we consider the
initial bay configuration as fixed and the sequential
order of pickup as known in advance. Given this fixed
initial arrangement, we are interested in finding the
relocation pattern at each pickup operation in such a
way that the total number of relocation moves within a
bay is minimized.

The general idea of this paper is based upon the
introduction of a dynamic programming scheme that
captures all the possible states of the bay at any given
time. Given an incumbent bay configuration and a

target block to retrieve, we distinguish between two
cases: (i) the block to be retrieved is free, which is, no
block is currently above it. In this case, the only
acceptable decision is to retrieve the target block and
place it into its final destination. On the other hand, (ii)
if at least one block is currently placed upon the target
block, we enumerate all the possible relocation
strategies for the uppermost block and move this block
to another stack, giving rise to a new bay configuration.
This enumeration process is repeated until case (i) is
reached, after which the current target block is retrieved
and the next target block is addressed. The process
terminates when the last block to be retrieved is freed
up.

Let us consider the case of a bay with blocks,
indicated with 1, … , , in which the first blocks
must be retrieved, with . Without loss of
generality, we assume that not necessarily all the blocks
must be retrieved. Let us indicate with 1, … , a
stack in the bay and with the current block to be
retrieved. Throughout this section, we will use the bay
of Figure 1 as reference example.

We now introduce the following assumptions:
H1: As in Kim and Hong (2006), pickup precedences
among blocks are known in advance. We indicate the
pickup precedence with a number, where blocks with
lower numbers have higher precedence than blocks
with higher numbers (e.g., in Figure 1, the pickup
precedences are 1 2 7).
H2: When retrieving a target block, we are allowed to
relocate only blocks found above the target block in the
same stack using a LIFO policy (e.g., in Figure 1, when
picking up block 1, we are forced to relocate blocks 5
and 4, in this exact order).
H3: Relocation is allowed only to other stacks within
the same bay (e.g., in Figure 1, when relocating blocks
5 and 4, they can only be moved to either stack 1 or
3).
H4: Relocated blocks can be put only on top of other
stacks, i.e., no rearrangement of blocks within a stack
is allowed (e.g., in Figure 1, when relocating blocks 5
and 4, these can only be placed on top of blocks 3 and
7).

In the following, let us define the basic elements of
the dynamic programming (DP) model:

State variable: Let us indicate with , , , the
state variable, where 1, … , is the block to be
retrieved, 1, … , is the stack in which the target
block is found, is the list of blocks above the target
block and is the configuration of the remaining blocks
(e.g., with respect to Figure 1, we have 1,
2, 5, 4 , and 3, 2 , 7, 6).

Decision variable: At each step, one of two different
cases arises, namely (i) the target block has no other
blocks placed above and can currently be retrieved and
placed outside of the bay, i.e., . In this case, the
only alternative is to retrieve the target block and to

90

place it into its final destination; (ii) the target block
cannot be retrieved since at least one block is still above
it, i.e., . Let us indicate with the uppermost
block in the sequence , which is, the block that is
currently on top in stack . In this case, the decision is
about identifying which stack block should be
relocated to. Let us indicate with such a stack and
with the set of all feasible values of with
respect to the current state (e.g., in Figure 1, we have

5 and 1, 3 , that is, the next decision
concerns where to relocate block 5 and the only feasible
moves are either to move it to stack 1 or to stack 3).

State transition function: Let us indicate with

, , , the state obtained by applying
decision to the current state , which is,

, . Here represents the state transition
function. As previously mentioned, two different cases
may arise: (i) ; or (ii) . In case (i), we have
that 1, is the stack in which block 1 is
currently located, is a new list of blocks currently
above the target block 1 and, finally, is the
configuration of the remaining blocks. On the other
hand, in case (ii), it is easy to see that ,
, \ , and depends on the application of

move to block (e.g., in Figure 1, let us suppose that
1. In this case, the new state is , 1

 1, 2, 4 , , where 5, 3, 2 , 7, 6).

Functional equation: The DP “backward” functional
equation is

 1 min , (1)

where , , , indicates the current state, and

, is the state transition function that accounts for
the application of decision upon the current state

. We set 1, for , , , , which is the
cost of retrieving a block from the bay and moving it to
its final destination. More formally, we can explicitly
distinguish between the aforementioned cases (i) and
(ii). Consequently, the functional equation can be
rewritten, for 1, … , 1, as

, , ,
1 1, , , ,

1 min

, , \ , ,

 (2)

with , , , 1.

It is easy to see that one of the major drawbacks of
the proposed dynamic programming scheme lies in the
exponentially large number of entries in the dynamic
programming evaluation table. Consequently, the size
of the evaluation table can become very large after only
a few steps of the dynamic programming algorithm. In
the next section we illustrate how this major obstacle
can be overcome.

3. THE CORRIDOR METHOD FOR THE
BLOCKS RELOCATION PROBLEM

The Corridor Method (CM) has been presented by
Sniedovich and Voß (2006) as a hybrid metaheuristic,
linking together mathematical programming techniques
with heuristic schemes. The basic idea of the CM relies
on the use of an exact method over restricted portions of
the solution space of a given problem. Given an
optimization problem , the basic ingredients of the
method are a very large feasible space and an exact
method that could easily solve problem if the
feasible space were not too large. However, since, in
order to be of interest, in general the size of the solution
space grows exponentially with respect to the input size,
the direct application of method to solve becomes
unpractical when dealing with real-world instances,
which is, when becomes larger.

Let us now consider how the CM can be applied to
the blocks relocation problem. As mentioned in Section
2, the main drawback of the proposed method is the
exponential growth of the number of reachable states.
We define a “two-dimensional” corridor around the
current configuration, in such a way that the number of
states generated from the current configuration is
limited. Given a current bay configuration , the number
of new configurations that can be generated starting
from is equal to | |. Consequently, in order to
reduce the number of generated states, one can apply
exogenous constraints that impose horizontal as well as
vertical limits upon the bay. For example, horizontal
limits could be introduced by reducing the number of
stacks to which blocks can be relocated, as well as
vertical limits, by establishing a maximum height, in
terms of number of blocks in the same stack.

Let us now formally define the “constrained”
neighborhood induced by the application of the CM
upon a given configuration. Let us indicate with

 , , , the current bay configuration, where
 , … , \ indicates all the stacks of the bay

excluding stack . Let us indicate with | | the number
of blocks currently on stack . Given two parameters
and , we define the set of restricted admissible
decisions as

, , 1, … , \ : ,

| | . (3)

Finally, we define the restricted neighborhood of
the current configuration , i.e., the set of “feasible” bay
configurations that can be created from as

 : , , , , . (4)

Consequently, the size of the neighborhood can be
made arbitrarily small by changing the values of and

. For this reason, we can say that the “corridor”
around the incumbent bay configuration is defined by
imposing exogenous constraints on the solution space
of the problem via calibration of parameters and .

91

4. COMPUTATIONAL RESULTS
In this section we present computational results on
randomly generated instances. All tests presented in this
section have been carried out on a Pentium IV Linux
Workstation with 512Mb of RAM. The algorithm has
been coded in C++ and compiled with the GNU C++
compiler using the -O option.

We designed an experiment that resembles that of
Kim and Hong (2006). We divided our computational
tests in two parts: (i) tests on small-medium size
instances, for which an exact solution can be computed
using the dynamic programming scheme. For these
instances, we present a comparison of our algorithm
with respect to the optimal solution as well as with
respect to the solution found by the algorithm of Kim
and Hong (2006), running the code provided by the
authors on our randomly generated instances; and (ii)
tests on large scale instances, for which the optimal
solution is unknown. In order to measure the solution
quality of our algorithm, we compare our results with
those obtained running the algorithm of Kim and Hong
(2006) on the same set of instances.

The random generation process takes as input two
parameters, the number of stacks and the number of
tiers , and randomly generates a rectangular bay
configuration of size , where indicates the
total number of blocks in the bay. For each combination
of and we generated 40 different instances.

In Table 1 we compare the results of the proposed
scheme with those obtained running the code of Kim
and Hong (2006) on the same set of instances. It is
worth noting that all values reported in the table are
average values, computed over 40 different instances of
the same class. This helps in offsetting instance specific
biases in the reported results. In addition, we fixed a
maximum computational time for the CM of 60
seconds, after which the algorithm was stopped.
Clearly, since the CM is based on a dynamic
programming scheme, whenever the algorithm is
truncated, no solution is returned.

In Table 1 and Table 2, the first and second
columns define the size of problem instances, in terms
of number of tiers and number of stacks. The third and
fourth columns report average number of moves and
computational time of the algorithm of Kim and Hong
(2006) (called KH for short). Columns five and six
report the same information, average number of moves
and average computational time, for the proposed CM.
Column seven reports the gap between the solution of
the CM and the optimal solution obtained by using the
dynamic programming scheme (omitted in Table 2
because instances were too large to be solved via
dynamic programming). The gap is computed as:

 (5)

where is the optimal solution found by the dynamic
programming scheme and is the average best
solution found by the proposed CM scheme. Finally, the

last two columns provide a measure of the corridor, in
terms of width () and height (). We solved each
instance with different combinations of
 1, 2, … , /2 and 1, 2, … , 1.5 . We
report the values used to obtain the best solution in the
shortest computational time. It is worth noting that, for
the sake of consistency with the results reported in Kim
and Hong (2006), all results reported in this section
with respect to the number of moves (No.) only count
the number of relocations and do not take into account
the final retrieval of the target blocks to their final
destinations.

In addition, in order to further reduce the stochastic
effects of the algorithm, we run the algorithm with the
same set of parameters and five times on the same
instance. Consequently, given an instance class ,
we solved each one of the 40 instances 5 |Λ| |Δ|
times. In the table we report the average values over all
the runs of a given instance class.

Table 1: Computational Results on Small Size
Instances.

In Table 1, the “smaller” instances in the upper
part of the table, i.e., 3 3 to 3 6, are solved to
optimality by the CM. Consequently, a first observation
of our results is related to the effectiveness of the CM in
solving small instances to optimality in a very short
computational time. For all the other instances, the
algorithm compares favorably with the Kim and Hong
(2006) algorithm, especially when dealing with large
scale instances. In order to provide a further indication
of the robustness of the algorithm, in Figure 2 we
graphically present the variability of the results on the
largest instances. As shown in Figure 2, the algorithm is
quite robust with respect to the parameter values and

 as well as with respect to the initial configuration of
the bay.

92

Table 2: Computational Results on Medium Size
Instances.

Figure 2: Variability results.

5. CONCLUSION
In this paper we have presented a metaheuristic-based
algorithm for the Blocks Relocation Problem, in which
one is given a sequence of blocks to be retrieved from a
bay according to a fixed set of precedences. The
objective is to find the blocks relocation pattern that
minimizes the total number of movements required to
comply with the retrieving sequence. This problem
finds applications in a wide spectrum of real-world
situations, where stacking techniques are used to reduce
space usage, e.g., at a container terminal yard. We have
first proposed a dynamic programming algorithm that
can be used to find the optimal solution to the problem.
However, since the size of the search space grows
exponentially with respect to the input size, the dynamic
programming approach cannot be used in real time
when dealing with medium and large scale instances.
For this reason, we tackled the problem by designing a
Corridor Method inspired algorithm, in which a two-
dimensional “corridor” is build around the incumbent
yard configuration. The imposition of exogenous
constraints on the target problem sensibly reduces the
size of the solution space, making the use of the
“constrained” dynamic programming scheme practical
even on very large instances.

REFERENCES
Castilho, B. and Daganzo, C. (1993). Handling

strategies for import containers at marine
terminals. Transportation Research B, 27(2):151–
66.

Kim, K. H. (1997). Evaluation of the number of
rehandles in container yards. Computers &
Industrial Engineering, 32(4):701–711.

Kim, K.H., Hong, G.P., 2006. A heuristic rule for
relocating blocks. Computers & Operations
Research, 33, 940 - 954.

Kim, K. H., Park, Y. M., and Ryu, K. R. (2000).
Deriving decision rules to locate export containers
in container yards. European Journal of
Operational Research, 124:89–101.

Sniedovich, M., Voß, S., 2006. The corridor method: A
dynamic programming inspired metaheuristic.
Control and Cybernetics 35, 551 - 578.

Stahlbock, R., Voß, S., 2008, Operations research at
container terminals – A literature update. OR
Spectrum 30, 1 - 52.

Watanabe, I. (1991). Characteristics and analysis
method of efficiencies of container terminal: an
approach to the optimal loading/unloading
method. Container Age, 3:36–47.

Yang, J. H. and Kim, K. H. (2006). A grouped storage
method for minimizing relocations in block
stacking systems. Journal of Intelligent
Manufacturing, 17:453–463.

93

