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ABSTRACT 
Marine steam turbine at the load of synchronous 

generator is a complex non-linear system, which needs 

to be systematically investigated as a unit consisting of 

a number of subsystems and elements, which are linked 

by cause-effect feedback loops. In this paper the authors 

will present the efficient application of scientific 

methods for the research of complex dynamic systems 

called qualitative and quantitative simulation 

methodology of System dynamics. This will allow 

continuous computer simulation of various models and 

significantly contribute to acquisition of new 

information about the non-linear character of 

performance dynamics of turbo generator systems in the 

process of designing, failure diagnosis, optimization 

and education. The results presented in the paper have 

been derived from the scientific research project 

“Shipboard energy systems, alternative fuel oils and 

reduction of pollutants emission” supported by the 

Ministry of Science, Education and Sports of the 

Republic of Croatia.  
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1. INTRODUCTION 
The model of marine steam turbine machinery which 

drives electric synchronous generator, shown in Figure 

1 (Isakov 1984), has two essential situations of energy 

accumulation: in the steam volume (steam area, steam 

volume of the turbine) and in the turbine rotor. The 

main condenser is observed as a special governing 

object.  

Each of the stated parts can be described by its 

mode equation, that is, by the differential equation 

which describes the performance dynamics. 

 
Figure 1: Steam condensation machinery of the marine 

turbine generator (1- governing valve, 2- turbine, 3- 

reduction gear, 4- generator, 5- condenser)  

 

2. SIMULATION MODELLING OF MARINE 
STEAM TURBINE 

The system dynamic mathematical model of the marine 

steam turbine can be defined by means of differential 

equations (Isakov 1984). 

Equation of the turbine steam volume:  

                 (1)  

Equation of the turbine rotor dynamics:   

                         (2) 

Where the following symbols stand for: 

1 - relative increment of the steam pressure in the 

steam volume,  - relative increment of the turbine rotor 

angular velocity, T 1 - time constant of the turbine rotor, 

T  - time constant of the turbine rotor, Rμ - time 

constant of the steam volume, R 1 - time constant of the 

steam volume, 0 - relative increment of the steam 

pressure before the manoeuvring valve, R 0 - time 

constant of the turbine rotor, μ - relative change of the 

position of the manoeuvring valve, 2 - relative 
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increment of the steam pressure in the main condenser, 

T 2 - time constant of the boiler. 

 

2.1. System dynamic mental-verbal model of marine 
steam turbine 

On the basis of a mathematical model, or the explicit 

form of the mode equation of the marine steam turbine 

(1), it is possible to determine the mental-verbal model 

of the marine steam turbine.  

If the relative increment of the steam pressure in 

the turbine steam volume 1 increases the speed of the 

relative increment of the steam pressure in the turbine 

steam volume 1 will decrease, which gives a negative 

cause-effect link.  

If the relative increment of the steam pressure 

before the manoeuvring valve 0 increases the speed of 

the relative increment of the steam pressure in the 

turbine steam volume will increase, which gives a 

positive cause-effect link.  

If the relative change of the position of the 

manoeuvring valve μ increases the speed of the relative 

increment of the steam pressure in the turbine steam 

volume will increase, which gives a positive cause-

effect link.  

If the time constant of the steam volume Rμ 

increases the speed of the relative increment of the 

steam pressure in the turbine steam volume will 

decrease, which gives a negative cause-effect link.  

If the time constant of the turbine rotor Rμ0 

increases the speed of the relative increment of the 

steam pressure in the turbine steam volume will 

decrease, which gives a negative cause-effect link.  

If the time constant of the steam volume Rμ1 

increases the speed of the relative increment of the 

steam pressure in the turbine steam volume will 

increase, which gives a positive cause-effect link.  

On the basis of a mathematical model, or the 

explicit form of the mode equation of the marine steam 

turbine (2), it is possible to determine the mental-verbal 

model of the marine steam turbine. 

If the relative increment of the steam pressure in 

the steam volume 1 increases the speed of the relative 

increment of the turbine rotor angular velocity will 

increase, which gives a positive cause-effect link.  

If the relative increment of the turbine rotor 

angular velocity  increases the speed of the relative 

increment of the turbine rotor angular velocity will 

decrease, which gives a negative cause-effect link.  

If the relative increment of the steam pressure in 

the main condenser 2 increases the speed of the relative 

increment of the turbine rotor angular velocity will 

decrease, which gives a negative cause-effect link.  

If the time constant of the turbine rotor T 1 

increases the speed of the relative increment of the 

turbine rotor angular velocity will decrease, which gives 

a negative cause-effect link.  

If the time constant of the turbine rotor T  

increases the speed of the relative increment of the 

turbine rotor angular velocity will increase, which gives 

a positive cause-effect link.  

If the time constant of the turbine rotor T 1 

increases the speed of the relative increment of the 

turbine rotor angular velocity will decrease, which gives 

a negative cause-effect link.  

If the time constant of the turbine rotor T 2 

increases the speed of the relative increment of the 

turbine rotor angular velocity will increase, which gives 

a positive cause-effect link.  

 

2.2. System dynamic structural model of the marine 
steam turbine 

On the basis of the stated mental-verbal models it is 

possible to produce structural diagrams of the marine 

steam turbine, as shown in Figures 2, 3 and 4.  

 

Figure 2: Structural model of the steam turbine – steam 

volume 

 

In the observed system there is the feedback loop 

(KPD1).  

KPD1(-):PSI1=>(-
)DPSI1DT=>(+)DPSI1DT=>(+)PSI1; which has self-

regulating dynamic character (-), because the sum of 

negative signs is an odd number.   

 

 
Figure 3: Structural model of the marine steam turbine – 

rotor dynamics 

 

In the observed system there is the feedback loop 

(KPD2).  
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KPD2(-):FI=>(-)DFIDT=>(+)DFIDT=>(+)FI; which 

has self-regulating dynamic character (-), because the 

sum of negative signs is an odd number.  

 

Figure 4: Global and structural model of the marine 

steam turbine 

 

2.3. System dynamic flowcharts of the marine steam 
turbine 

Flowcharts shown in Figures 5, 6 and 7 are based on the 

produced mental-verbal and structural models. 

 

 
Figure 5: Marine steam turbine flowchart – steam 

volume 

 

 
Figure 6: Marine steam turbine flowchart – rotor 

dynamics 

 

 
Figure 7: Global flowchart of the marine steam turbine 

with built-in PID governor 

 

MACRO DYNAMO functions built in the 

simulation model of the marine steam turbine: CLIP, 

STEP and UNIREG. 

 

3. QUANTITATIVE SIMULATION MODEL OF 
THE MARINE STEAM TURBINE 

Simulation model of the marine steam turbine in the 

simulation language: 

MACRO SLOPE(X, DEL) 

* 

A SLOPE.K=(X.K-SMOOTH(X.K,DEL))/DT 

* 

MEND 

* ................................ 

* UNIREG-PID REGULATOR: 

* 

MACRO UNIREG(X, KPP, KPI, KPD) 

* 

INTRN IBD, PREG, IREG, DREG 

*
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A PREG.K=KPP*X.K 

* 

L IBD.K=IBD.J+DT*X.J 

* 

N IBD=X 

* 

A IREG.K=KPI*IBD.K 

* 

A DREG.K=KPD*SLOPE (X.K, DT) 

* 

A UNIREG.K=PREG.K+IREG.K+DREG.K 

* 

MEND 

* 

R DPSI1DT.KL=(MI.K/RMI.K)+(PSIO.K/RPSIO.K)-

(PSI1.K/RPSI1.K)             

* 

L PSI1.K=PSI1.J+DT*DPSI1DT.JK             

* 

N PSI1=0 

* 

A 

MI.K=CLIP(STEP(.05,10)+STEP(.95,50)+PIDFI.K,0,D

ELAY1(RE.K,2),1E-16) 

*                                                   

A RMI.K=5                      

* 

A PSIO.K=0                     

*                              

A RPSIO.K=5                    

* 

A RPSI1.K=5                    

* 

SAVE DPSI1DT, PSI1, MI, RMI, PSIO, RPSIO, RPSI1 

* 

R DFIDT.KL=(PSI1.K/TPSI1.K)-(PSI2.K/TPSI2.K)-

(FI.K/TFI.K)          

* 

L FI.K=FI.J+DT*DFIDT.JK      

* 

N FI=0 

* 

A TPSI1.K=5                 

* 

A PSI2.K=0                  

* 

A TPSI2.K=5                 

* 

A TFI.K=.1+MEL.K     

* 

* UNIREG-PID REGULATOR INSTALLING: 

* 

A DISK.K=FIN.K-FI.K           

* 

A FIN.K=STEP (.05, 10) +STEP (.95, 50)         

* 

A PIDFI.K=CLIP (UNIREG (DISK.K, KPP, KPI, 

KPD), 0, TIME.K, 10) 

* 

C KPP=100 

* 

C KPI=0.1 

* 

C KPD=100 

SAVE DISK, PIDFI, FIN 

* 

SAVE TPSI1, PSI2, TPSI2, FI, TFI  

 

 
Figure 8: Global flowchart of the marine steam turbine 

generator system with built-in PID governors in 

POWERSIM simulation language 

 

4. INVESTIGATING PERFORMANCE 
DYNAMICS OF THE MARINE STEAM 
TURBINE  

After system dynamics qualitative and quantitative 

simulation models were produced, all possible operating 

modes of the system will be simulated in a laboratory, 

using one of the simulation packages, most frequently 

DYNAMO (Richardson and Aleksander 1981) or 

POWERSIM (Byrknes).  

After the engineer, designer or a student has 

conducted a sufficient number of experiments, or 

scenarios, and an insight has been obtained about the 

performance dynamics of the system using the method 

of heuristic optimisation. 

For the example, the scenario of starting the 

marine steam turbine and connecting the synchronous 

generator on switchboard in TIME = 100 has been 

simulated. Figure 9 shows changes in relative increment 

of the angular speed of the rotor FI and relative 

increment of the steam pressure in the steam volume 

PSI1 and Figure 10 shows voltage and current changes. 

 

Figure 9: Relative increment of the angular speed of the 

rotor FI and relative increment of the steam pressure in 

the steam volume PSI1 
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Figure 10: Voltage and electric current of marine 

turbogenerator 

 

The model can be used to simulate deviation of 

operating parameters such as main condenser pressure 

inlet steam pressure, opening and closing of 

manoeuvring valve and etc. It may also be used in 

heuristic optimisation of the PID governor coefficient. 

Change of these parameters will have an important 

influence on the performance (frequency and voltage) 

of turbo generator when working in load operating 

condition. All these results of simulation are very 

valuable in process of failure diagnosis, optimization of 

steam turbine thermodynamic process and educational 

purposes for future marine engineers. 

 

5. CONCLUSION  
System dynamics is a scientific method which allows 

simulation of the most complex systems. The method 

used in the presented example demonstrates a high 

quality of simulations of complex dynamic systems, and 

provides an opportunity to all interested students or 

engineers to apply the same method for modelling, 

optimising and simulating any scenario of the existing 

elements.  

Furthermore, the users of this method of simulating 

continuous models in digital computers have an 

opportunity to acquire new information in dynamic 

system performance. The method is also important 

because it does not only refer to computer modelling, 

but also clearly determines mental, structural and 

mathematical modelling of the elements of the system.  

This brief presentation gives to an expert all the 

necessary data and the opportunity to collect 

information about the system in fast and scientific 

method of investigation of a complex system.  

This means: “Do not simulate the performance 

dynamics of complex systems using the method of the 

"black box", because education and designing practice 

of complex systems confirmed that it is much better to 

simulate using the research approach of the “white 

box”, i.e. System dynamics methodology." 
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