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ABSTRACT 
In the given paper we investigate the problem of 
constructing continuous and unsteady mathematical 
models for determine the volumes of current stock of 
divisible productions in one or several interconnected 
warehouses using apparatus of mathematical physics 
and continuum principle. It is assumed that time of 
production distribution and replenishment is 
continuous. The constructed models are stochastic, and 
have different levels of complexity, adequacy and 
application potentials. The simple model is constructed 
using the theory of ODE, for construction of more 
complex models it is applied the theory of PDE. 
Besides, provided some additional conditions the finite-
differenced model for determination of random volume 
of divisible homogeneous production is constructed, 
and this finite differenced mathematical model makes 
possible to determine one of possible trajectories of the 
random quantity. All constructed models can be used 
for on-line monitoring of the dynamics of the 
productions random volumes. 

 
Keywords: inventory control model, current stock, 
divisible production, equations of mathematical physics 

 
1. INTRODUCTION 
One of the central problems of the inventory control 
theory is to find an optimal or quasi optimal solution to 
the task of ordering productions to be supplied, and 
main result of the task is the answer on two basic 
questions: how much to order and when to order. Of no 
less interest it is the task of determining the current 
stock of certain production (sold by the piece or 
indivisible production and dry or divisible production) 
at any given moment of a fixed time span, with any 
random factors taken into account.  By "current stock" 
we denote the quantity (volume) of the production 
accumulated in the stock, which is used for regular 
distribution (i.e. replenishment). Quite a lot of different 
types of models of varying complexity, purpose and 
adequacy have been developed in the inventory control 
theory. Most of the existing mathematical models in this 
theory consider indivisible produtions (Kopytov et al 

2007; Ashmanov 1980; Nikaido 1968). We can classify 
these models taking in account different their 
properties: deterministic and stochastic, linear and 
nonlinear, single- and multi-product, discrete and 
continuous models, and etc.  (Nikaido 1968). 

The present paper studies construction of 
continuous and unsteady mathematical models for 
calculating the volume of current stock of divisible 
production "from scratch" using apparatus and 
equations of mathematical physics. The suggested 
models are stochastic ones and have different levels of 
complexity, adequacy and application potentials. The 
simple models are constructed using the theory of 
ordinary differential equations, for construction of more 
complex models it is applied the theory of partial 
differential equations. 
 
2.  STOCHASTIC ODE MODEL FOR 

DETERMINING THE VOLUME OF THE 
CURRENT STOCK OF THE 
HOMOGENEOUS DIVISIBLE PRODUCTION 

In the present section we construct the continuous 
stochastic mathematical model for determining the 
volume of current stock of divisible production. For this 
purpose, we will use the apparatus of mathematical 
physics and the continuum principle (Tikhonov and 
Samarsky 2004); as modelling language will be chosen 
language of ODE. Before introducing the simplifying 
assumptions, which are required for modeling, as well 
as variables, parameters and functions that describing 
and coupling the initial data of the simulated process 
with unknown quantities of the current stock dynamics, 
we will consider briefly the issue of stochasticity of the 
mathematical model under construction. Namely, to 
construct the stochastic (i.e. not deterministic) model, 
we can proceed in the following two ways: 
 – the current stock to be determined is not supposed 
to be an accidental quantity, but after the introduction of 
a change rate the constructed model is supplied with all 
random factors which visibly influence unknown rate of 
the current stock change. In this case the obtained 
relation (in the form of the above mentioned ODE) with 
regard to unknown volume of the current stock and rate 
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of its change is a functional relationship among 
unknown volume, rate of its change, and accidental 
quantities (factors) influencing the current stock 
dynamics. In other words, in the obtained model, 
unknown volume, which initially did not seem to be 
assumed as an accidental value (stochastic value of a 
random function, to be more specific), due to the 
obtained ODE and corresponding conditions (initial 
conditions, conditions of co-ordination, etc.) appears 
dependent on the random quantities taken into account, 
i.e. unknown volume of the current stock is a function 
of the accidental quantities; 
 – the current stock is initially taken to be a random 
quantity, and this suggestion is taken into account when 
constructing the model.  
 The first of these ways is selected for the 
description of the mathematical model that will follow. 
It is worth mentioning in the way of a preliminary note 
that this choice will result in the construction of a 
stochastic model represented by the Ito-type differential 
equation (Ito 1987; Milstein 1995; Kuznetsov 2007; 
Diend 1990). 

Now we can start constructing the mathematical 
model "from the scratch". Let us assume that the current 
stock volume of the considered homogeneous divisible 
production at the moment t  equals to ( )x t . It is 

required that ( ) [ ] ( ) [ ], ; ,s e s ex t C T T x t t T T′∈ ∃ ∀ ∈  where 

[ ],s eT T  is a segment of time during which the dynamics 

of the current stock change is being studied, by 
sT  and 

eT  we denote the initial and final moments of this period 

of time, respectively. The requirement ( ) [ ],s ex t C T T∈  

is easy to interpret economically, and it is met if we 
assume that the current stock ( )x t  is being constantly 

distributed/replenished. The requirement 

( ) [ ],s ex t t T T′∃ ∀ ∈  is a purely mathematical one, i.e. it 

is necessary to ensure a mathematical correctness of the 
model. 

If an increase of the current stock volume ( )x t  is 

as 

( ) ( ) ( ) , 0, ,
def

ex t x t t x t t t t TΔ ≡ + Δ − Δ > + Δ ≤  

then  
( ) ( )

0
lim ,

t

dx t x t

dt tΔ →

Δ
≡

Δ
                                                      (1) 

and this quantity designates the change rate of the 
current stock volume at a given time t . 

 The rate ( )dx t

dt
 derived from (1) is completely 

analogous to the rate of a material point of continuous 
medium moving in metric space. It is then useful to find 
out the factors or reasons causing the change ( )x t  and, 

consequently, trigger the existence of ( )dx t

dt
. 

 With this aim in view, the following functions are 
introduced: ( )( ),S t x t  describing a continuous 

replenishment of the current stock and  ( )( ),C t x t  

describing a continuous distribution of the current 
stock. Then the difference ( )( ) ( )( ), ,S t x t C t x t−  is a 

measure of the change of the current stock volume, i.e. 

)).(,())(,(
)(

txtCtxtS
dt

tdx
−=                                          (2) 

 Let us work out the functions that make up the right 
side of the equation (2), namely functions ( )( ),S t x t  

and ( )( ),C t x t  in detail. The function of continuous 

replenishment ( )( ),S t x t  consists of three additive 

components, namely, from regulated replenishment of 
the stock, which is designated as ( ).regS i ; from 

unregulated replenishment ( ).unregS i ; and from random 

replenishment (for instance, a random stock 
replenishment  due to an exceptionally high quality of 
production or because of an expected sudden deficit of 
particular products, etc.), which can be described 
mathematically as a random quantity ( )SX t  that 

designating the total volume of production that have 
been delivered into a particular warehouse from random 
and/or non-random sources by the time t  , with all 
random circumstances taken into account. It is assumed 
for all types of replenishment that all orders are 
instantaneously executed, i.e. the shipping time for 
particular supplies is not considered in the present work. 
Let us interpret the introduced functions: 

1) the function ( ).regS i  can be interpreted as "one 

hundred per cent" (guaranteed) constant replenishment 
of the current stock of divisible production, i.e. 
replenishment of the current stock that takes place 
regularly  according to a contract during the segment 

[ ],s eT T , with the volume of such replenishment being 

either constant (i.e. 
. .regS const≡ ) or depending on t  

(i.e. being a function of the argument time 

( ). .reg regS S t= , or else being functionally dependent on 

( )x t  (i.e. ( )( ). . ,reg regS S t x t= ); 

 2) the function ( ).unregS i  obviously depends on t  

and functionally on ( )x t , and also on a certain quantity 

( )0x t , which designates the minimal volume of stock 

in a particular warehouse necessary for administering 
unregulated stock replenishment on condition that such 
replenishment is guaranteed. In other words, 

( ) ( )( ) ( ) ( ) ( )( ). . 0 0 0, , , ,unreg unregS S t x t x t k x t x t x tδ= = ⋅ ⋅  

where 
0k  is a proportion coefficient, and the function 

( ) ( )( )0,x t x tδ  is an indicator function, which has the 

form 

( ) ( )( ) ( ) ( )
( ) ( )

0

0

0

1, ,
,

0, ;

if x t x t
x t x t

if x t x t
δ

≤⎧⎪= ⎨
>⎪⎩

                           (3) 

 3) the random quantity ( )SX t  determines the total 

volume of production that was delivered into the 
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warehouse by the time t  due to random circumstances 
from random and/or non-random sources. Then the 
quantity ( )SX t t+ Δ  designates the sum total of all 

random deliveries by the time ,t dt+  where dt  is an 

elementary interval of time (on analogy with the 
terminology of mathematical physics), and 
0 1, edt t dt T< + ≤� . Consequently, it is possible to 

introduce a stochastic differential of a random process 

( )SX t , namely, the quantity 

( ) ( ) ,
def

S S SdX dt X t dt X t≡ + −  

which determines a random addition to the current stock 
of divisible productions during the elementary interval 
of time dt . 
 Now the function ( )( ),C t x t  that is contained in 

the right-hand side of the equation (2) and describes the 
dynamics of the continuous distribution of the current 
stock of divisible productions can be looked at in more 
detail. The function of continuous distribution 

( )( ),C t x t  consists of four additive components: 

regulated distribution which is denoted as ( ).regC i ; 

unregulated distribution ( ).unregC i ; possible losses 

( )lossC i  of divisible productions which take place 

during holding and distribution processes (for example, 
for petroleum productions it is evaporation, for grain 
main reasons of losses  are gnawing animals and 
inundation);  and random distributions (similar to 
random replenishment, there can be circumstances due 
to which  random distribution takes place) that can be 
mathematically presented as a random quantity ( )CX t  

designating the total volume of productions that was 
taken away from the warehouse by the time t  due to 
random circumstances. Let us now interpret the 
introduced functions: 
 1) the function ( ).regC i  can be interpreted as 

"strong" (guaranteed) constant distribution of the 
current stock of divisible productions, i.e. the volume of 
the current stock that is regularly taken away from the 
warehouse according to contracts during the segment 

[ ],s eT T , with the volume of such distribution being 

either constant (i.e. 
. .regC const≡ ) or depending on t  

(i.e. being a function of the argument time  

( ). .reg regC C t= , or else being functionally dependent on 

( )x t  (i.e. ( )( ). . ,reg regC C t x t= ); 

 2) the function ( ).unregC i  depends on the time t  

and functionally on ( )x t  in general, as well as on a 

certain threshold function ( )1x t , which determines the 

stock volume of divisible productions allowing for its 
unregulated distribution, ( ) ( )( ). . 1, ,unreg unregC C t x t x t= . 

In order to find an analytical expression of the function 

( ) ( )( ). 1, ,unregC t x t x t  the following assumptions can be 

made: 
• under ( )x t →∞  must be 

( ) ( )( ). 1 1, , ,unregC t x t x t k→  where the quantity 
1k  is the 

capacity of distributing the stock volume of divisible 
productions from the warehouse in the sense that 
whatever the stock replenishment (i.e. the quantity 

[ ]
( )( )

,
max ,

s et T T
S t x t

∈
, the warehouse can not possibly 

distribute the stock of divisible productions  measured 
as 

1k  during the entire considered time segment [ ],s eT T ; 

• under ( ) 2 .x t k const→ ≡ , where 
2k  is an 

averaged value of the replenishment volume that allows 
for unregulated distribution, must be  

( ) ( )( )
( )

( )

1 2

. 1 1
1 2

0, ,
, ,

, .
2

unreg

if x t k
C t x t x t k

if x t k

⎧ ≥
⎪→ ⎨

<⎪⎩

 

 The last two suppositions allow for determining 
unknown analytical form of the function 

( ) ( )( ). 1, ,unregC t x t x t : 

( ) ( )( ) ( ) ( ) ( )( )
( )

1
. 1 1

2

1 ,
, , ,unreg

x t x t
C t x t x t k x t

x t k

δ−
= ⋅ ⋅

+
 

where the indicator function ( ) ( )( )1,x t x tδ  has the 

same sense/value as in determining the function 

( ) ( )( ). 0, ,unregS t x t x t ; it is derive by formula (3) with 

the corresponding substitution of ( )1x t  for ( )0x t ; 

3) the function ( )lossC i  describes possible losses of 

the divisible productions current stock in storage and 
distribution. For instance, if we have the oil productions 
stock, losses will result from the evaporation and/or 
from the leakage through the reservoirs; if we have the 
agricultural productions stock (wheat, rice, meal, and 
the like), there will be unavoidable losses caused by 
pests, flood, strong winds, etc. Apparently, the value of 
these losses is a random one. Though, concluding the 
expression for the losses’ function ( )lossC i , we consider 

it reasonable to split these losses into somehow 
"normal/predictable" losses and into 
"abnormal/extraordinary" ones. Reasonability of this 
splitting lies in the following: any enterprise engaged in 
the processes of storing/distributing of the divisible 
vulnerable productions (for example, perishables, 
productions attractive for insects and rodents and the 
like, productions easily affected by winds and humidity 
and the like) should envisage in their model the 
parameter describing the value of the 
"normal/predicted" loss (for instance, in the form of a 
constant  – the upper limit of a possible loss; in the form 
of a linear function – some reasonable and somehow 
unpredictable percent of loss of the total productions 
volume; etc.). But besides this accounted/envisaged 
value of the "normal/predictable" loss in the processes 
of storing-distributing of the divisible productions there 
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may occur some other a priori unpredictable losses 
which damage may greatly exceed that of the 
"normal/predicted" loss. Therefore, in the given paper 
we’ll be building the loss functions ( )lossC i  with the 

account of both normal/predictable" losses and 
"abnormal/extraordinary" ones.  Function ( )lossC i  in 

the general case depends on the time t  as on the 
argument; functionally on the volume of the current 
stock ( )x t ; and on two more functions ( )2x t  и ( )3x t , 

which meaning is the following. Function ( )2x t  

determines the most favorable scenario of the loss at 
each fixed moment of time [ ],s et T T∈ ; this function, as 

said above, may be chosen, for example, as a constant – 
the upper limit of the possible "normal/predictable" 
loss, or as a linear function – a predicted loss percent of 
the total production volume. Function ( )3x t  determines 

a less favorable scenario (average, for example) of the 
loss at each fixed moment of time [ ],s et T T∈ . 

Thus, ( ) ( ) ( )( )2 3, , , .loss lossC C t x t x t x t=  To find the 

analytical expression of the function 

( ) ( ) ( )( )2 3, , ,lossC t x t x t x t , we’ll make the following 

assumptions: 
• at ( )x t →∞ , that is at increasing the volume of the 

current stock, the formula 

( ) ( ) ( )( )
[ ]

( )2 3 2
,

, , , max
s e

loss
t T T

C t x t x t x t x t
∈

→  must be 

valid, where  
[ ]

( )2
,

max
s et T T

x t
∈

 is the power of the loss 

for the whole considered period of time [ ], ;s eT T  

• if ( ) ( ) [ ]2 , ,s ex t x t t T T≤ ∈ , the loss process must 

stop, i.e. ( ) ( ) ( )( )2 3, , , 0;lossC t x t x t x t ≡  

• if ( ) ( ) [ ]2 , ,s ex t x t t T T> ∈ , than under the condition  

( ) ( ) [ ]3 , ,s ex t x t t T T→ ∈  the formula  

( ) ( ) ( )( )
[ ]

( )2 3 2
,

1
, , , max

2 s e
loss

t T T
C t x t x t x t x t

∈
→ ⋅  must be 

valid. 
The three former assumptions allow us to 

determine the requested analytical form of the function 

( ) ( ) ( )( )2 3, , ,lossC t x t x t x t : 

( ) ( ) ( )( )2 3, , ,lossC t x t x t x t =  

[ ]
( ) ( ) ( ) ( )( )

( ) ( )
( ) ( )

2
2

,
3 2

2

1 ,
max ,

1
s et T T

x t x t
x t x t

x t x t

x t x t

δ
∈

−
= ⋅ ⋅

−
+

−

 

where the indicator function ( ) ( )( )2,x t x tδ  is 

determined by formula (3) at a corresponding change of 

( )0x t  for ( )2x t ; 

4) the random quantity ( )CX t  designates the total 

volume of productions that has been removed from the 
warehouse by the time t  due to random circumstances. 

Then ( )CX t t+Δ  designates the sum total of random 

distribution by the time ,t dt+  where dt  is an 

elementary interval of time, with 0 1, edt t dt T< + ≤� . 

It follows that a stochastic differential of a random 
process ( )CX t  can be introduced, namely the quantity  

( ) ( ) ,
def

C C CdX dt X t dt X t≡ + −  which designates a 

random distribution of the current stock of divisible 
production during the elementary interval of time dt . 
 Thus, taking into account the above specification of 
functions ( )( ),S t x t  and ( )( ),C t x t  the differential the 

equation (2) takes on form 
( ) ( )( ) ( ) ( ) ( )( ). 0 0, ,reg Sdx t S t x t dt k x t x t x t dt dXδ= + ⋅ ⋅ + −  

( ) ( ) ( ) ( )( )
( )

1
. 1

2

1 ,
reg

x t x t
C t dt k x t dt

x t k

δ−
− − ⋅ ⋅ −

+
 

[ ]
( ) ( ) ( ) ( )( )

( ) ( )
( ) ( )

2
2

,
3 2

2

1 ,
max .

1
s e

C
t T T

x t x t
x t x t dt dX

x t x t

x t x t

δ
∈

−
− ⋅ ⋅ −

−
+

−

      (4) 

 The following initial condition (5) must be added to 
(4): 

( ) .
s

st T
x t x

=
=                                                                 (5) 

 The obtained equation (4) is the stochastic 
differential equation with respect to unknown random 
volume ( )x t  of the current stock of divisible 

production; and this equation together with the initial 
condition (5) constitutes the Cauchy problem for 
determine required volume ( )x t  of the current stock of 

divisible production. 
 It is significant that the summands 

SdX  and 
CdX  

in the right-hand side of the equation (4) are not 
differentials in the usual sense; these summands must 
be understood in the sense of the Ito stochastic 
differential (Kuznetsov 2007). Besides, the indicator 

functions ( ) ( )( ) ( ), 0,2ix t x t iδ =  in the right-hand 

side of the equation (4), derived according to formula 
(3), are not differentiated functions, which is caused by 
non-differentiability of the functions ( )( ),S t x t  and 

( )( ),C t x t . Consequently, the requirement 

( ) [ ],s ex t t T T′∃ ∀ ∈ , which was identified in the 

beginning of this section as a necessary condition for 
mathematical correctness of the model, will not be met. 
That is why in order to render a mathematical sense to 
the stochastic differential equation (4), it is necessary to 
introduce into is a corresponding amendment-condition. 
An easily realizable amendment might be substitution 

of the scalar functions ( ) ( )( ) ( ), 0,2ix t x t iδ =  by the 

corresponding quadratic functions (which are smooth 
functions) on the sections ( ) ( )0, 0, 2ix t i =⎡ ⎤⎣ ⎦ ,  

respectively. Such substitution is easily performed on 
the ground of natural and apparent requirements 
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( ) ( )( )
( )

( )
0

ˆ , 1 0,2 ;i
x t

x t x t iδ
=
= =   

( ) ( )( )
( ) ( )

( )ˆ , 0 0,2 ;
i

i
x t x t

x t x t iδ
=

= =   

( ) ( )( ) ( )
( )

( ) ( )
0

ˆ , 0, 2 ;
ix t

i ix t x t dx t x t iδ = =∫   

and in the result the following differential functions are 
obtained: 

( ) ( )( ) ( ) ( ) ( ) ( )2
2

3 2ˆ , 1i
i i

x t x t x t x t
x t x t

δ = − ⋅ + ⋅ +   when 

( ) ( ) ( )0, 0, 2 .ix t x t i∈ ∀ =⎡ ⎤⎣ ⎦  

 It is obvious that other substitutions-
approximations are possible (for instance, by splines, 
etc.), which in comparison to the described above 
approach, i.e. approximation of scalar functions 

( ) ( )( ) ( ), 0,2ix t x t iδ =  by the corresponding smooth  

functions ( ) ( )( ) ( )ˆ , 0, 2ix t x t iδ =  provide a higher 

level of precision. In this sense, there is certain 
ambiguity in determining the functions 

( ) ( )( ) ( )ˆ , 0, 2ix t x t iδ = , and hence ambiguity of the 

right-hand side of the equation (4). 
 Thus, instead of the differential equation (4) having 
no mathematical sense a mathematically correctly 
formulated differential equation can be written down: 

( ) ( )( ) ( ) ( ) ( )( ). 0 0
ˆ, ,reg Sdx t S t x t dt k x t x t x t dt dXδ= + ⋅ ⋅ + −  

( ) ( ) ( ) ( )( )
( )

1
. 1

2

ˆ1 ,
reg

x t x t
C t dt k x t dt

x t k

δ−
− − ⋅ ⋅ −

+
 

[ ]
( ) ( ) ( ) ( )( )

( ) ( )
( ) ( )

2
2

,
3 2

2

ˆ1 ,
max .

1
s e

C
t T T

x t x t
x t x t dt dX

x t x t

x t x t

δ
∈

−
− ⋅ ⋅ −

−
+

−

 

It is important to note the following with regard to 
the obtained stochastic differential equation. It is 
obvious that stochastic differentials of the random 
processes ( )SX t  and ( )CX t  can be conjoined if a 

random quantity ( )X t  designating the total volume of 

productions that were delivered to and distributed from, 
the warehouse by the time t due to random 
circumstances. Then we can indeed determine a 
stochastic differential of the random process ( )X t  as 

( ) ( )
def

dXdt X t dt X t≡ + − , 

and this quantity will determine the change dynamics of 
the random volume of the divisible productions’ stock 
during the elementary interval of time dt , namely 

0dXdt >  designates a random replenishment of stock 
during the elementary interval of time dt , and 

0dXdt <  designates a random distribution of stock 
during the elementary interval of time dt . With this 
specification in taken into account, the last differential 
equation takes the following final form: 

( ) ( )( ) ( ) ( ) ( )( ). 0 0
ˆ, ,regdx t S t x t dt k x t x t x t dtδ= + ⋅ ⋅ −  

( ) ( ) ( ) ( )( )
( )

1
. 1

2

ˆ1 ,
reg

x t x t
C t dt k x t dt

x t k

δ−
− − ⋅ ⋅ −

+
 

[ ]
( ) ( ) ( ) ( )( )

( ) ( )
( ) ( )

2
2

,
3 2

2

ˆ1 ,
max .

1
s et T T

x t x t
x t x t dt dX

x t x t

x t x t

δ
∈

−
− ⋅ ⋅ +

−
+

−

           (6) 

where [ ],s et T T∈ ; functions ( )( ). ,regS t x t , ( ).regC t  and 

( ) ( )0,3ix t i = , as well as numerical parameters 

( )0,2ik i =  have the described above values and are 

viewed as the given initial data of the problem under 
consideration; the functions ( ) ( )( ) ( )ˆ , 0, 2ix t x t iδ =  

are determined by the following formulas: 

( ) ( )( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

0

2
0 2

0

0
0

0, ,

3ˆ ,

2
1, ;

if x t x t

x t x t x t
x t

x t if x t x t
x t

δ

⎧
⎪ >⎪
⎪⎪= − ⋅ +⎨
⎪
⎪
+ ⋅ + ≤⎪
⎪⎩

 (7) 

( ) ( )( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1

2
1 2

1

1
1

0, ,

3ˆ ,

2
1, ;

if x t x t

x t x t x t
x t

x t if x t x t
x t

δ

⎧
⎪ >⎪
⎪⎪= − ⋅ +⎨
⎪
⎪
+ ⋅ + ≤⎪
⎪⎩

  (8) 

( ) ( )( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

2

2
2 2

2

2
2

0, ,

3ˆ ,

2
1, .

if x t x t

x t x t x t
x t

x t if x t x t
x t

δ

⎧
⎪ >⎪
⎪⎪= − ⋅ +⎨
⎪
⎪
+ ⋅ + ≤⎪
⎪⎩

 (9) 

 The stochastic differential equation (6) together 
with the initial condition (5), the initial given data 

( )( ). ,regS t x t , ( ).regC t , ( ) ( )0,3ix t i =  and 

( )0,2ik i = , as well as approximating smooth indicator 

functions (7)-(9) is the Cauchy stochastic problem. It is 
a stochastic mathematical model for determining the 
current stock volume of divisible homogeneous 
production. Unfortunately, the given paper did not 
investigate the issue of finding an analytical solution of 
the constructed model (5)-(9). Nevertheless, as the 
following section will demonstrate, if we additionally 
require that the random process ( )X t  will be the 

Markov random process, then the constructed 
continuous model (5)-(9) can be easily realized 
numerically (Ito 1987). 

Remark 1. Stochastic equation (6) shows that 
irrespective of the sign of the quantity ( )

s
s t T

x x t
=

=  

(i.e. irrespective of the initial condition (5)), unknown 
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function ( )x t  can assume a negative value, which, at 

first sight, does not make any economic sense. But a 
possibility of such a case was purposefully taken into 
account prior to constructing mathematical model (5)-
(9), and this case can be understood as a debt of the 
warehouse with regard to the current stock of divisible 
production. Besides, a closer look at the left-hand side 
of the equation (6) (as well as the equations (2) and 
(4)), it becomes obvious that there can be a case when 

( )
0

dx t

dt
< , which means a negative rate if the quantity 

( )dx t

dt
 is treated as the speed of a material point of the 

continuous medium in metric space, which has no 

physical sense. But if the quantity ( )dx t

dt
 in the 

considered problem designates the change rate of the 
volume ( )x t  of the current stock at the time [ ],s et T T∈ , 

then the case ( )
0

dx t

dt
<  corresponds to the situation 

whereby the volume ( )x t  as a function of the time 

argument is a decreasing function, i.e. the accumulated 
stock of divisible productions in the warehouse is 
decreasing. 
 
3. CONSTRUCTION OF FINITE-

DIFFERENCED MODEL FOR 
DETERMINATION OF RANDOM VOLUME 
OF DIVISIBLE HOMOGENEOUS 
PRODUCTION 

In this section we offer a finite-differenced 
approximation of the mathematical model (5)-(9) for 
determination of current stock volume of divisible 
homogeneous production, which was constructed in the 
previous section. Besides, given some assumptions, we 
put forward a recurrent implicit differenced scheme for 
numeric determination of the random volume of 
divisible homogeneous production at given discrete 
moments of time. 
 Let us introduce the function 

( )( )

( )( ) ( ) ( ) ( )

( )( ) ( ) ( )

( ) ( ) ( ) ( )

. 0 0

30
. 2

0

20
0

0

, , ,

3
, ,

2
,

reg

def

reg

S t x t k x t if x t x t

k
f t x t S t x t x t

x t

k
x t if x t x t

x t

⎧
⎪ + ⋅ >⎪
⎪ ⋅⎪≡ + ⋅ − −⎨
⎪
⎪ ⋅
− ⋅ ≤⎪
⎪⎩

 

( )( ) ( )
( ) ( ) ( )

( )( ) ( )
( )

( )

( )
( )

( ) ( ) ( )

. 1 1
2

3
1

. 2
1 2

2
1

1
0 2

1
, , ,

2

31
,

2

2
,

reg

reg

x t
C t x t k if x t x t

x t k

x tk
C t x t

x t x t k

x tk
if x t x t

x t x t k

⎧
⋅ + ⋅ >⎪ +⎪

⎪ ⋅⎪− ⋅ + ⋅ − −⎨ +⎪
⎪ ⋅⎪− ⋅ ≤
⎪ +⎩

 

[ ]
( ) ( )

( ) ( )
( ) ( )

( )( ) ( ) ( )

( )( ) [ ]
( )

( )
( )

( ) ( )
( ) ( )

[ ]
( )

( )
( )

( ) ( )
( ) ( )

( ) ( )

2
,

3 2

2

. 2

32
,

. 2
3 22

2

22
,

2
3 22

2

max ,

1

1
, , ,

2
3 max1

,
2

1

2 max
, .

1

s e

s e

s e

t T T

reg

t T T

reg

t T T

x t
x t

x t x t

x t x t

C t x t if x t x t

x t x t
C t x t

x t x tx t

x t x t

x t x t
if x t x t

x t x tx t

x t x t

∈

∈

∈

⎧
⋅⎪ −⎪ +

⎪ −
⎪
⎪+ ⋅ >
⎪
⎪⎪ ⋅− ⎨ ⋅ + ⋅ −⎪ −

+⎪
−⎪

⎪ ⋅⎪
− ⋅ ≤⎪ −⎪ +

−⎪⎩

(10) 

Apparently, the function ( )( ),f t x t  is a random 

one since in its expression (10) the function of possible 
losses has been accounted 

( ) ( ) ( )( )2 3, , ,lossC t x t x t x t =  

[ ]
( ) ( ) ( ) ( )( )

( ) ( )
( ) ( )

2
2

,
3 2

2

1 ,
max ,

1
s et T T

x t x t
x t x t

x t x t

x t x t

δ
∈

−
= ⋅ ⋅

−
+

−

 

which were entered and determined at the previous 
stage. Without account of these losses the function  

( )( ),f t x t  is an undetermined (i.e. non-random) 

function (Kopytov, Guseynov, Puzinkevich and 
Greenglaz 2010). 

After introduction the function ( )( ),f t x t  on the 

formula (10) the stochastic equation (6) can be rewritten 
in a more compact way: 

( ) ( )( ) ( ), ,dx t f t x t dt dX t= +                                   (11) 

and this equation is a particular instantiation (namely, 

( )( ) ( )( ) ( )( )1 2, , ; , 1f t x t f t x t f t x t≡ ≡ ) of a more 

general stochastic differential equation in the Ito form 

( ) ( )( ) ( )( ) ( )1 2, , ,dx t f t x t dt f t x t dX t= +                 (12) 

where the functions ( )( ) ( ), 1, 2if t x t i =  are supposed 

to be non-random functions, the random process ( )X t  

the Markov random process ( )X t , and the quantity 

( )dX t  is understood in the sense of a stochastic 

differential Markov random process ( )X t . 

 Under the mentioned assumptions, the Ito 
stochastic differential equation (12) allows for the 
following interpretation:  for the stochastic differential 

( )dX t , which is contained in the right-hand side of the 

equation (12), the quantity ( )X t  can be understood as a 

realized random quantity which assumes the given 
value ( )x X t= ��  at the moment [ ],s et T T∈� . Moreover, 

due to the assumption that ( )X t  is the Markov process 

the random quantity ( )X t dt x+ = �� �  , where 

0 1, edt t dt T< + ≤�� , has a density of probability 

( ) ( ), ; ,x t x t dt xρ ρ= +� �� �� � � . Then, if randomness of t�  is 
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taken into account, the above speculation holds for 

[ ],s et T T∀ ∈ , i.e. for random [ ],s et T T∈ , the random 

quantity ( )X t dt x+ = ��  where 0 1, edt t dt T< + ≤� , is 

determined by the  density of probabilities 

( ) ( ), ; ,x t x t dt xρ ρ= +� �� � �  only if the random quantity 

( )X t  assumed the concrete value x�  at the moment 

[ ],s et T T∈ , i.e. if ( )X t x= � . This interpretation of the 

Ito stochastic differential equation (12) allows for 
rewriting the equation (12) in the finite-difference 
approximation, namely 

( ) ( ) ( )( )1 ,x t t x t f t x t t+ Δ − = ⋅Δ +  

( )( ) ( ) ( )( )2 ,f t x t X t t X t+ ⋅ + Δ − =  

( )( ) ( )( ) ( )( )1 2, , .f t x t t f t x t X t t x= ⋅Δ + ⋅ + Δ − �  

 If we accept 

( ) ( )( ) ( ) ( )( )2 2, , ,x t f t x t X t f t x t x= ⋅ = ⋅ �  

then we obtain a recurrent correlation 

( ) ( )( ) ( )( ) ( )1 2, , ,x t t f t x t t f t x t X t t+ Δ = ⋅Δ + ⋅ + Δ  

which can be used for a discrete definition of the value 
of unknown function ( )x t . Indeed, if we break down 

the time segment [ ],s eT T  into N  elementary time 

spaces of the length ( )0, 1it i NΔ = −  we will obtain the 

discrete mesh 

( ){ }1 0
ˆ : 0, 1 , , ,

def

i i i i s N eT t t t t i N t T t T+≡ = +Δ = − = =  

and after designating 

( ) ,
def

i ix x t≡  ( ) ( )
( )( )2

,
,

def
i

i i
i i

x t
x X t

f t x t
≡ =�  

it is possible to write down the following recurrent 
implicit differenced scheme for determining the 
quantity ( )x t  numerically: 

( ) ( )1 1 2 1, , ,i i i i i i ix f t x t f t x x+ += ⋅Δ + ⋅ �                           (13) 

where random quantities 
1ix +�  are determined by the 

density of probabilities 

( ) 1
2

, ; ,
,
i

i i
i i

x
t t x

f t x
ρ +

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

�� . 

Remark 2.  Mathematical model (5)-(9) 
constructed in the Section 2 can be solved analytically 
with the help of integrals of Stratonovich and Ito (see 
(Kuznetsov 2007)) assuming a Markov nature of the 
random process ( )X t . If this assumption is not made 

(or can not be made due to specificity of the particular 
task of inventory control), the question of how to 
analytically integrate the stochastic differential 
equation (9) remains, unfortunately,  still open, and as 
mentioned before research into this issue was not 
undertaken in the present paper. As shown in (Diend 
1990), though, with certain additional conditions but 
without assuming the Markov nature of the random 
process ( )X t  an effective approximation of a 

stochastic differential equation such as (12), 
particularly the equation (11), which is the equation (6) 
in the mathematical model (5)-(9) constructed in the 
Section 2. 

Remark 3.  The constructed recurrent differenced 
scheme (13) together with the initial condition (5) is a 
finite differenced mathematical model for defining one 
of possible trajectories of the random quantity ( )x t , 

i.e. the constructed finite differenced model (13); (5) 
allows for defining approximate values of the quantity 

( )x t  at the moments of time 

( )1 0: 0, 1 , , .i i i i s Nt t t t i N t T t T+ = +Δ = − = =  

 
4. STOCHASTIC CONTINUOUS MODELS FOR 

SIMULTANEOUSLY DEFINING VOLUMES 
OF CURRENT STOCK OF DIVISIBLE 
PRODUCTION AT SEVERAL 
INTERCONNECTED WAREHOUSES  

The present section suggests two stochastic continuous 
mathematical models for defining volumes of current 
stock of divisible homogeneous and heterogeneous 
productions at several interconnected warehouses 
simultaneously. For achieving this aim, similarly to the 
Section 2, apparatus of mathematical physics is used 
and principle of continuous medium, the language of 
the theory of partial differential equations is chosen as a 
modeling language. Because of paper’s space 
limitations there is, unfortunately, no opportunity to 
present the entire chain of argumentation and all 
calculations related to constructing these models "from 
scratch"; they are only mathematically represented in 
what follows, with minimal explanation. Also, it is 
necessary to underline that in the given section some 
definitions introduced and employed in the three 
previous sections, the definitions ( ) ( )1, 2 ,ix t i =  in 

particular, have different values which are being 
declared as soon as they are introduced. 
 So, m∈`  warehouses are under consideration, 
and it is assumed that dynamics of the volume of 
divisible homogeneous production in all m  warehouses 
is subject to the stochastic differential equation (6) 
which was obtained in the Section 2. For the stochastic 
differential ( )dX t  that is contained in the right-hand 

side of the equation (6), the quantity ( )X t  will be 

viewed as a realized random quantity which assumed 
the given value ( )x X t=�  at the time [ ],s et T T∈ , i.e. the 

given warehouse has the volume of divisible 
homogeneous production ( )x x t=�  at the fixed time 

[ ],s et T T∈ ; as the course of constructing equation (6) 

shows, this volume can comprise both determined and 
random constituent volumes. Then the random quantity 

( )X t dt x+ = �� , where 0 1, edt t dt T< + ≤� , designates 

a random volume of homogeneous production in a 
particular warehouse at the moment t dt+  under the 
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condition that the volume x�  of homogeneous 
production was present in this very warehouse at the 
previous moment t . Consequently, it can be said that 
the random quantity ( )X t dt+  has the density of 

probability ( ) ( ), ; , .x t x t dt xρ ρ= +� �� � �  

 Since the continuous mathematical model (5)-(9) 
constructed in the Section 2 assumed the existence of 
one warehouse where there was volume ( ) ,

s
s t T

x x t
=

=  

of divisible homogeneous foods at the initial moment of 
time 

st T= , for m  interconnected warehouses there are 

obviously m  initial conditions 
{ } ( ) { } , 1, ,

s

i i
s

t T
x t x i m

=
= =  

where { } ( )ix t  designates a random volume of the 

divisible homogeneous products in an i -warehouse at 
the time [ ],s et T T∈ . That is why once these random 

initial volumes { } , 1,i
sx i m=  were distributed on the axis 

OX  of the Cartesian rectangular system of coordinates, 
these irregularly distributed initial volumes can be 
mentally identified with the distribution of the 
warehouses on the axis OX . This identification allows 
for constructing the required mathematical model. It is 
worth mentioning here that topology of the imagined 
distribution of warehouses on the axis OX  does not 
have to match the typology of distributing initial 
quantities-volumes { } , 1,i

sx i m= ; this is natural and 

obvious. 
 After the above mentioned identification we have a 
certain set of interconnected warehouses (SIW), and we 
can construct a mathematical model for establishing the 
dynamics of random volumes of divisible homogeneous 
production in this SIW ignoring the dynamics of a 
random volume of divisible homogeneous production in 
any individual warehouse. 
 Let us consider a relatively short segment 

( ) ( ) ( ),x t x t x t+ Δ⎡ ⎤⎣ ⎦  of the length ( )x tΔ  and introduce 

the functional ( )( ),t x tΔΨ  of the function- volume 

( )x t  which describes the number of elements SIW that 

can be found in the segment ( ) ( ) ( ),x t x t x t+ Δ⎡ ⎤⎣ ⎦ . In 

other words, ( )( ),t x tΔΨ  is the number of warehouses 

distributed on a short segment ( ) ( ) ( ),x t x t x t+ Δ⎡ ⎤⎣ ⎦  of 

the length ( )x tΔ . Then  ( )( )
( )
,t x t

x t

ΔΨ

Δ
 can be treated as 

probability of the warehouse with the volume ( )x t  of 

production being on the segment 

( ) ( ) ( ),x t x t x t+ Δ⎡ ⎤⎣ ⎦ . Consequently, we can move 

over to the limit with ( ) 0x tΔ →  and define a new 

function 

( )( )
( )

( )( )
( )0

,
, lim ,

def

x t

t x t
p t x t

x tΔ →

ΔΨ
≡

Δ
 

which is the density of distribution of warehouses 
according to random volumes ( )x t  of divisible 

homogeneous production. Then the function 

( ) ( )( ) ( )
2

1

,
xdef

x

t p t x t dx tΨ ≡ ∫   

designates the number of warehouses with random 
volumes ( ) ( ) ( )1 2,x t x t x t∈ ⎡ ⎤⎣ ⎦  at the time moment 

[ ],s et T T∈ . 

 It is easily seen that 

( ) ;
e

s

T

T

t dt mΨ ≡∫  

( )( ) ( ), 1.p t x t dx t
+∞

−∞

≡∫  

 Now the density of distribution ( )( ),p t x t  of 

warehouses according to random volumes ( )x t  of 

divisible homogeneous production is defined, and we 
can establish the law of distributing warehouses 
according to random volumes, i.e. to find out the rule 
that governs the change of the function ( )( ),p t x t . For 

this, the axis OX  is divided into two parts, an arbitrary 
segment ( ) ( )1 2,x t x t⎡ ⎤⎣ ⎦  and the view of this segment, 

i.e. the domain ( )( ) ( )( )1 2, ,x t x t−∞ +∞∪ . As random 

volumes of productions in warehouses change with the 
course of time, it will mean in our case that warehouses 
will be moving along the axis OX  in this course of 
time. This, in turn, means that during the segment of 
time [ ] [ ]1 2 1 2, , , ,s et t t t T T∀ ∈  a certain number of 

warehouses will have random volumes of divisible 
homogeneous production that are no bigger than ( )1x t  

and no less than ( )2x t , i.e. some warehouses will be 

located in the segment ( ) ( )1 2,x t x t⎡ ⎤⎣ ⎦  whereas their 

remaining number will be outside this segment, or in 
the domain ( )( ) ( )( )1 2, ,x t x t−∞ +∞∪ . Thus it will be 

quite correct if the equation of balance of warehouses 
for the segment ( ) ( )1 2,x t x t⎡ ⎤⎣ ⎦  in the segment of time 

[ ]1 2,t t  is presented in the following way (on analogy 

with a widely known approach in mathematical physics 
whereby mathematical models are constructed for heat 
conductivity, waves, diffusion, radiation, and other 
physical processes): 

( ) ( ) ( ) { } { } { }1 2 3
1 2 2 1, ,

def

t t t tΔΨ ≡ Ψ −Ψ = Ψ + Ψ + Ψ  

where { }1Ψ  is the number of warehouses located in the 
segment ( ) ( )1 2,x t x t⎡ ⎤⎣ ⎦  in the segment of time [ ]1 2,t t  

due to non-random replenishments and distributions of 
divisible homogeneous production; { }2Ψ  is the number 
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of warehouses located in the segment ( ) ( )1 2,x t x t⎡ ⎤⎣ ⎦  in 

the segment of time [ ]1 2,t t  due to random 

replenishments and distributions of divisible 
homogeneous production; { }3Ψ  is the number of 
warehouses which get in the period ( ) ( )1 2,x t x t⎡ ⎤⎣ ⎦  or 

get out of it in the period of time [ ]1 2,t t  for the account 

of random losses (both normal/predicted and 
abnormal/extraordinary which were discussed in section 
2) current stocks of the divisible homogenous 
production. The function ( )1 2,t tΔΨ  in the left-hand side 

of (13) is calculated according to the formula 

   ( ) ( ) ( )1 2 2 1,
def

t t t tΔΨ ≡ Ψ −Ψ =  

( ) ( )
2 2

1 1

2 1, ,
x x

x x

p t x dx p t x dx= − =∫ ∫  

( )( ) ( )( )2 2 2
2

1
1 1 1

,
, .

x x t
t t

t t
x x t

p t x t
p t x t dx dx dt

t

=

=

∂
= =

∂∫ ∫ ∫             (14) 

It is obvious that the quantities { } ( )1,3i iΨ =  can 

be negative, and this is then treated as a removal of 
warehouses from the segment ( ) ( )1 2,x t x t⎡ ⎤⎣ ⎦ . The final 

formulas for the functions { } ( )1,3i iΨ =  are given 

below without conclusion (there is an elegant 
conclusion which is not given here due to the space 
constraints): 

{ } ( )( ) ( )( ){ }
( ) ( )

( ) ( )2
1

2
1

1 , ,
t

x t x t

x t x t
t

p t x t t x t dtϑ
=

=
Ψ = ⋅ =∫  

( ) ( )( ) ( )( )( ) ( )
2 2

1 1

, , ,
t x

t x

dt p t x t t x t dx t
x t

ϑ∂
= ⋅

∂∫ ∫              (15) 

{ } ( )( ) ( )( )( )
2 2

1 1

2 , ,
t x

t x

dt a x t t p t x t
x

∂⎧Ψ = − ⋅ +⎨ ∂⎩∫ ∫  

( )( ) ( )( )( )
2

2

1
, , ,

2
b x t t p t x t

x

⎫∂
+ ⋅ ⋅ ⎬∂ ⎭

                            (16) 

{ } ( )( ) ( )
2 2

1 1

3 , ,
t x

t x

dt L t x t dx tΨ = ∫ ∫                                      (17) 

where function ( )( ),L t x t  is the number of warehouses 

which for a single period of time, caused only by the 
random losses of the current stocks of the divisible 
homogenous production, will be moved to the single 
segment of the abscises OX , at which there are 
distributed the values of random volumes of all m  
warehouses at the moment of time [ ],s et T T∈ ; the 

function ( ), ; ,z s x tρ  is a transitional function of the 

probability density of a diffusion stochastic process 

( )X t  (Samarsky and Mikhailov 2002; Gikhman and 

Skorokhod 1982); the function ( )( ),t x tϑ  designates 

the change rate of the random volume ( )x t  of the 

current stock of divisible homogeneous production in 
the set of interconnected warehouses (SIW) at the time 
t , and is determined by the stochastic equation 

( )( ) ( ) ( )( ) ( )( ), , , ,
dx t

t x t S t x t C t x t
dt

ϑ = = −  

where the functions ( )( ),S t x t  and ( )( ),C t x t  have the 

same values as mentioned in the Section 2. The 
functions ( )( ),a x t t  and ( )( ),b x t t  are calculated by 

the formulas 
( )( )

( ) ( )( ) ( ) ( )( ) ( )
( ) ( )

1

0

for 0, ,

1
lim , ; , ,

t
x t z t

z a t x t

x t z t x t t z t t t dz t
t ε

ε

ρ
Δ →

− ≤

∀ > ∀ ∈ =

= ⋅ − ⋅ + Δ
Δ ∫

\
 

( )( )

( ) ( )( ) ( ) ( )( ) ( )
( ) ( )

1

2

0

for 0, ,

1
lim , ; , .

t
x t z t

z b t x t

x t z t x t t z t t t dz t
t ε

ε

ρ
Δ →

− ≤

∀ > ∀ ∈ =

= ⋅ − ⋅ + Δ
Δ ∫

\

Taking into account expressions (15)-(17) in formula 
(14), the following equation is obtained: 

( )( )2 2

1 1

,x t

x t

p t x t
dx dt

t

∂
=

∂∫ ∫  

( ) ( )( ) ( )( )( ) ( )
( )

2 2

1 1

, ,
t x

t x t

dt p t x t t x t dx t
x t

ϑ∂
= ⋅ +

∂∫ ∫  

( )( ) ( )( )( )
2 2

1 1

, ,
t x

t x

dt a x t t p t x t
x

∂⎧+ − ⋅ +⎨ ∂⎩∫ ∫  

( )( ) ( )( )( ) ( )( ) ( )
2 2

1 1

2

2

1
, , , ,

2

t x

t x

b x t t p t x t dt L t x t dx t
x

⎫∂
+ ⋅ ⋅ +⎬∂ ⎭

∫ ∫  

which due to arbitrariness of the selected volume 
segment ( ) ( )1 2,x t x t⎡ ⎤⎣ ⎦ , arbitrariness of the selected 

time segment [ ]1 2,t t , and in accordance with the First 

Mean Value Theorem (use of this theorem here is quite 
rightful because all its requirements are met) can be 
written in the following way: 

( )( ) ( )( ) ( )( ) ( )( )( ),
, , ,

p t x t
a t x t t x t p t x t

t x
ϑ

∂ ∂ ⎡ ⎤= − + ⋅ +⎣ ⎦∂ ∂
 

( )( ) ( )( )( ) ( )( )
2

2

1
, , , .

2
b t x t p t x t L t x t

x

∂
+ ⋅ ⋅ +

∂
          (18) 

 The resulting stochastic equation (18) is the 
parabolic type inhomogeneous particular differential 
equation, and together with the above mentioned 
functions ( )( ), 0a t x t ≡ , ( )( ), 0b t x t ≡  and 

( )( ),t x tϑ , as well as corresponding initial and 

boundary conditions (for instance, the Newton type 
boundary conditions, or Neumann boundary conditions, 
or non-located boundary conditions) it makes the 
required mathematical model for determining unknown 
density of distribution ( )( ),p t x t  of exactly m∈`  

warehouses according to random volumes ( )x t  of 

divisible homogeneous production. It is not difficult to 
see that the equation (18) is a particular case of the 
widely known equation of Kolmogorov for the Markov 
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stochastic process ( )X t  with a transition function of 

the density of probability ( ), ; , .z s x tρ  

 The next stochastic continuous model (with the 
Dirichlet boundary conditions) is an informal 
generalization (the corresponding conclusion is rather 
complex and therefore not presented in the given 
article) of the above mentioned model: it describes the 
dynamics of unknown density of distribution 

( ) ( )( )1, ,..., np t x t x t  of exactly m∈`  warehouses 

according to random volumes ( ) ( ) ( )( )1 ,..., nx t x t x t=
of divisible n∈`  heterogeneous productions 

( )( ) ( )( ) ( )( )( )

( )( ) ( )( ) ( )( )( )

( )( )

2

1 1

1

1

, 1
, ,

2

, , ,

, ,

n n

ij
i j i j

n

i i
i i

n

i
i

p t x t
b t x t p t x t

t x x

a t x t t x t p t x t
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where 

( ) ( ) ( )( ) { } { }1 2
1

1

,..., ,
n

n i i
i

x t x t x t l l
=

⎡ ⎤= ∈ ⎣ ⎦∪ ;

the function ( ) ( )1,ix t i n=  describes the random 

volume of i -th divisible production at the time moment 

[ ],s et T T∈ ; the function ( )( ),i t x tϑ  describes the

change rate of the random volume ( )ix t  of the current 

stock of i -th divisible production in the set m∈`  of
interconnected warehouses at the time moment t ; the 

functions ( )( ) ( ), 1,ia x t t i n=  and ( )( ), ,ijb t x t

( )1, ; 1,i n j n= =  are calculated according to the

formulas 

( )( )

( ) ( )( ) ( ) ( )
( )( )

0

,

1
lim , ; , ,

i

i i
t

B z t

a t x t

x t z t x t z t t dz t
t

ε

ρ
Δ →

=

= ⋅ − ⋅ + Δ
Δ ∫

( )( )

( ) ( )( ) ( ) ( )( ) ( )
( )( )

0

,

1
lim ,

ij

i i j j
t

B z t

b t x t

x t z t x t z t dz t
t

ε
Δ →

=

⋅ − ⋅ − ⋅
Δ ∫

where 

( ) ( ) ( ){ }1 ... ;
def

nz t z t z t≡  ( ) ( ) ( ){ }1 ,..., ;
def

nx t x t x t≡

the function ( ), ; ,x t z t tρ + Δ  is a transition function of 

the density of probabilities of the diffusion stochastic 

process ( ) ( ) ( )( )1 ,...,
def

nX t X t X t≡  (Samarsky and

Mikhailov 2002; Gikhman and Skorokhod 1982), and 

( )( ) ( ) ( ) ( ){ }: n

def

B z t x t x t z tε ε≡ − ≤
\

 is the closed ε -

neighborhood of the point ( )z t . 

CONCLUSIONS 
The present paper studies construction of unsteady 
stochastic ODE and PDE models for calculating the 
volume of current stock of divisible productions "from 
scratch" using apparatus of mathematical physics. The 
constructed models are new ones and can be used for 
on-line monitoring of the dynamics of the divisible 
productions random volumes. Further guidelines of the 
current research are the development and investigation 
of optimization inventory control tasks using cost 
criteria on the base of on-line monitoring of 
multiproduct stock of divisible productions in one or in 
several interrelated warehouses. 
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