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ABSTRACT 
The classic mathematical transportation problem which 

is presented in most operations research or industrial 

engineering courses involves shipping from a number of 

warehouses to a number of customers, where the 

shipping costs are linear.  The idea being if it costs one 

euro dollar to ship one unit, from location A to location 

B, it will cost 100 euro dollars to ship 100 units from 

warehouse A to customer B.  These linear assumptions 

(for all the shipping costs) are usually made so that 

various linear programming techniques (simplex and 

other linear approaches) can be used to efficiently solve 

the overall optimization problem.  However, in the 

practical business world of large scale shipping there 

are usually considerable returns to scale (nonlinear 

costs) associated with the deliveries to customers.  

Therefore, an example of this kind is presented here and 

solved using simulation techniques. 
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1. INTRODUCTION 
Specifically the example presented involves shipping a 

product from 16 warehouses to 16 preferred customers 

where each of the 16X16=256 shipping routes has a 

different nonlinear cost structure, which reduces the unit 

shipping costs from warehouse I to customer J as the 

number of units shipped increases. 

 The example here has between 525,000 and 

600,000 units (in various amounts) of the product stored 

in the 16 locations and the customer demands are for 

between 525,000 and 600,000 units (in different 

amounts) at each destination.  Also, the total supply 

equals the total demand in this case (which is usually 

true in the long run).  However, the supply rarely equals 

short term demand in the real world and the MSMCO 

simulation approach can be modified to deal with some 

less than or greater than constraints rather than 

equations, if supplies and demands are not balanced. 

 

2. THE SAMPLE CASE STUDY 
We define 256XIJ variables, where XIJ is the amount of 

product leaving a warehouse I and heading to customer 

J.  We also have 16 equations for the XIJ values leaving 

each warehouse, plus 16 equations for the XIJ values 

arriving at the 16 preferred customers in the correct 

amounts they ordered. Additionally, we have a 

nonlinear cost equation.  Although it may cost one euro 

dollar to ship one unit of product, it may cost a lot less 

than 100 euro dollars to ship 100 units.  Therefore, the 

256 variable nonlinear transportation problem (with 

discounts for bulk shipping) is solved with the multi 

stage Monte Carlo optimization (Conley, 2003) 

simulation technique.  The shipping company’s goal is 

to reduce the overall shipping costs that were running in 

the 1.5 to 2 million euro dollars range down to about 

one million euro dollars.  Therefore, the right hand side 

of the cost equation is set at one million euro dollars.  

The other 32 equations are in units of product shipped.  

We use multi stage Monte Carlo optimization 

(MSMCO) to try to minimize the sum of the absolute 

values of the differences between the left and right hand 

side of the 33 equations.  This will approximately solve 

the system.  The multi stage Monte Carlo system makes 

repeated solution attempts in an ever moving and 

decreasing in size feasible solution region following a 

trail of better and better answers (lower total error) 

though 257 dimensional spaces.  The cost equation is 

C= 7.+.05*(i+j)*(x(i+j))**(.6+.01*(i+j)) = 1000000 

where i=1,2, …16 and * is multiply and** is raise to a 

power. 

 Specifically, for our 33 equation 256 variable 

system (transformed into a 257 dimensional 

optimization problem) 40,000 random sample answers 

are looked at in stage one and the best one (stored and 

printed) had a total error in all 33 equations of 

119,996,528.  Then stage two looked at another 40,000 

sample answers in a reduced region initially centered at 

the best answer from stage one.  This produced a new 

best answer of 114,673,528.  Then stage three similarly 

does another 40,000 sample solutions reducing the error 

further. 

 Even though these initial “discovery” stages have 

very high total errors, by stage 50 the total error is down 

to 34.  The 256XIJ values produced in stage 50 solved 

all 32 of the warehouse and customer equations and had 

a 34 euro dollar error in the cost control equation where 

the goal was a cost of one million euros. 

 This simulation took about 3 minutes to run the 50 

x 40,000 = 2,000,000 function evaluations on an 

inexpensive desk top PC.  The complete printout of the 

total errors of the 50 stage MSMCO (multi stage) 

simulation is in Table 1.  Tables 2 and 3 present the 

other relevant parts of the answer. 
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3. THE ANSWER PRINTOUTS 
Table 1 (as mentioned) presents the 50 stage printout of 

the total errors.  They are very high in the early 

discovery stages of the MSMCO simulation run.  

However, once they start to track a good answer the 

error terms start dropping dramatically to a 33+ Euro 

dollar cost error and a virtual zero, error (.5 unit total) 

on all of the 32 leaving and arriving equations.  The 

tables follow here. 

 

Table 1: The Stage Errors 

Stage Number Total Errors 

1 119996528.0000 

2 114673528.0000 

3 101945352.0000 

4 93896400.0000 

5 84041472.0000 

6 67086016.0000 

7 51818592.0000 

8 30441744.0000 

9 18462332.0000 

10 10419225.0000 

11 4611007.0000 

12 1350197.2500 

13 829315.1875 

14 470044.2813 

15 235782.6875 

16 158225.0000 

17 85789.7500 

18 69592.3125 

19 44407.7500 

20 36262.8125 

21 20031.7500 

22 14905.0625 

23 10706.0625 

24 7548.3125 

25 4448.8750 

26 3890.5625 

27 2486.1250 

28 1994.3125 

29 1264.9375 

30 909.5000 

31 714.6875 

32 516.1250 

33 409.8125 

34 300.6250 

35 229.2500 

36 150.5000 

37 120.0000 

38 99.5000 

39 79.3125 

40 64.7500 

41 58.4375 

42 47.9375 

43 44.8125 

44 40.5000 

45 39.1250 

46 37.8125 

47 36.6250 

48 36.2500 

49 35.1250 

50 33.0625 

 

      Table 2 presents the number of units shipped from 

each warehouse to each customer.  The 16 numbers in 

the 1 grouping represent the unit shipping amounts 

leaving warehouse 1 and bound for customers 1 through 

16 (reading left to right top to bottom in the grouping 

labeled one).  They add up to 600,000 units.  The 16 

numbers in the 2 groupings represent the unit shipping 

amounts leaving warehouse 2 and bound for customer 1 

through 16 (reading left to right top to bottom in the 

grouping labeled two).  They add up to 595,000 units 

(and so on for the other 14 warehouses). 

      Taking the upper left hand entry in each of the 16 

groupings and adding them up gives you the 525,000 

total units bound for customer 1 that come from 

warehouses 1 through 16 (and so on). 

 

Table 2: The Shipping Amounts 
 Column 1 Column 2 Column 3 Column 4 

 1 44592.266 28204.779 24779.855 38818.793 

 1  44660.852 42474.914 36898.750 8789.456 

 1 24376.973 32607.883 44095.602 35170.844 

 1 47782.434 107502.773 32258.361 6985.296 

 2 860.316 4483.140 52095.824 4920.257 

 2 55721.340 41307.066 19379.221 13734.656 

 2 15755.903 10778.478 37142.035 84397.047 

 2 134475.094 33806.871 67846.141 18296.627 

 3 14016.597 82811.031 33526.914 3709.981 

 3 2007.490 14209.472 475.354 57077.633 

 3 60822.930 65550.570 14076.178 48264.734 

 3 49168.039 10770.127 104711.500 28801.520 

 4 55947.031 50030.691 134804.719 45923.613 

 4 12304.259 16243.791 28020.822 2435.157 

 4 10291.113 78165.891 36343.551 1473.928 

 4 28673.438 3491.757 38109.355 42740.895 

 5 2080.985 12592.176 105.309 166457.266 

 5 17227.412 40241.980 29042.160 14684.987 

 5 25134.654 10384.798 57884.641 64610.441 

 5 31199.455 32094.121 23535.330 52724.262 

 6 1486.628 27140.459 36218.969 15398.490 

 6 2398.268 38748.012 45646.762 17540.447 

 6 14546.153 52363.535 38594.148 28070.598 

 6 3121.571 86585.625 33644.195 133496.156 

 7 266746.000 17605.098 9369.590 15545.590 

 7 11775.452 47188.070 30555.365 18927.512 

 7 8619.394 15634.977 921.640 55111.660 

 7 888.766 4657.088 61295.070 5158.753 

 8 16740.145 4613.849 15247.325 986.281 

 8 30984.273 22648.006 105562.391 5193.723 

 8 11082.579 112332.195 72157.844 72018.586 

 8 5704.437 28591.939 30635.119 30501.340 

 9 23591.436 2920.417 83545.125 23442.521 

 9 71350.711 7149.650 6071.913 28681.975 

 9 105054.766 29472.561 1399.122 25688.439 

 9 98983.820 1544.764 22257.094 28845.840 

10 2816.591 9420.608 17896.875 38675.965 

10 80396.500 30036.746 88567.492 3042.466 

10 31810.510 4844.226 153020.750 13448.157 
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10 5353.755 70741.266 94.583 4833.566 

11 17829.125 81727.445 16869.154 6623.472 

11 13223.104 13930.215 13169.904 8801.730 

11 117752.563 34185.121 33070.383 12759.497 

11 22923.820 58233.043 32604.734 66296.680 

12 4566.582 19541.547 2702.872 7670.750 

12 39572.512 48614.906 13704.979 162585.531 

12 54835.453 4228.451 10454.256 3485.226 

12 89607.859 46765.195 14803.914 21860.117 

13 7547.889 15834.984 4474.897 14508.642 

13 64135.563 151853.094 12974.294 74015.195 

13 16960.918 307.568 23610.848 18164.500 

13 18629.258 8608.676 45110.926 63262.758 

14 10455.435 103111.766 1596.627 113677.133 

14 27811.521 6396.921 6037.331 26470.602 

14 5542.942 57488.332 30804.586 65985.578 

14 1965.880 18959.227 24096.121 34599.902 

15 29200.139 57121.152 59628.168 27809.139 

15 10280.215 28387.352 96994.922 34976.105 

15 47973.891 420.451 12072.192 37972.953 

15 11927.979 30296.170 19933.180 25006.080 

16 26522.867 12840.830 42137.781 15832.064 

16 61150.555 569.841 21898.381 83042.867 

16 14439.232 61235.004 9352.340 13377.782 

16 34594.410 47351.375 44064.352 36590.328 

 

 Table 3 gives the individual equation errors for the 

32 leaving and arriving units followed by the cost 

equation error 33+ Euros in the left column.  The right 

hand column gives the right hand side constants on all 

33 equations. 

 

Table 3: Error on Left Constants on Right 

Equation Errors Right Hand Side 

 0.00000  525000.00000 

 0.00000  530000.00000 

 0.00000  535000.00000 

 0.00000  540000.00000 

 0.00000  545000.00000 

 0.00000  550000.00000 

 0.00000  555000.00000 

 0.00000  560000.00000 

 0.00000  565000.00000 

 0.00000  570000.00000 

 0.06250  575000.00000 

 0.00000  580000.00000 

 0.00000  585000.00000 

 0.00000  590000.00000 

 0.00000  595000.00000 

 0.06250  600000.00000 

 0.12500  600000.00000 

 0.00000  595000.00000 

 0.00000  590000.00000 

 0.00000  585000.00000 

 0.00000  580000.00000 

 0.00000  575000.00000 

 0.00000  570000.00000 

 0.00000  650000.00000 

 0.06250  560000.00000 

 0.00000  555000.00000 

 0.00000  550000.00000 

 0.06250  545000.00000 

 0.00000  540000.00000 

 0.06250  535000.00000 

 0.00000  530000.00000 

 0.00000  525000.00000 

33.06250 1000000.00000 

 

4. LINEAR VERSUS NONLINEAR SHIPPING 
COSTS 
Linear programming was developed in the early to mid 

20
th

 century as a result of the well-developed theory of 

linear algebra for solving systems of equations.  It 

involves solving linear equations and/or inequalities 

while heading to the goal of optimizing an objective 

function subject to linear constraints (equations and 

inequalities).  The key result that made this type of 

multivariate linear optimization possible is the 

fundamental theorem of linear programming which 

states that the optimal solution is at a “corner point” in 

the feasible solution space.  This solution technique is 

great for small or large scale (number of variables) 

shipping problems that are truly linear in nature or can 

at least be reasonably approximated with a linear 

system. 

 The difficulty of course is that many shipping 

problems are multivariate and nonlinear with constraints 

and these are more difficult to solve.  A fundamental 

theorem of nonlinear programming (if it existed) would 

say that the optimal solution could be anywhere in the 

feasible solution space (at a corner point or in the 

interior of the feasible solution spaces). 

 That is why simulation based multivariate 

nonlinear optimization techniques such as multi stage 

Monte Carlo optimization (MSMCO) can be useful 

when other techniques do not work or are not available. 

 

5. MULTI STAGE MONTE CARLO 
OPTIMIZATION 
The multi stage (MSMCO) simulation technique 

randomly looks around the entire feasible solution space 

in stage one and samples several thousand feasible 

solutions and stores and prints the best answer so far.  

That is the traditional Monte Carlo (or random) 

optimization technique.  However, with MSMCO that is 

just stage one.  Then centered about this best answer so 

far, stage two looks at thousands more feasible solutions 

in a slightly reduced search region and stores and prints 

its “best answer” so far.  Then stage three in a slightly 

more reduced region centered about the stage two best 

answers repeats this process.  Our particular example 

here did a 50 stage MSMCO simulation.  It started with 

huge error terms in the early stages.  However, by stage 

50 it had produced a useful answer to a 33 by 256 

nonlinear system. 

 This type of program can be run quickly on the 

modern inexpensive desk top computer available in our 

21
st
 century.  Some additional applications of multi 

stage Monte Carlo optimization (MSMCO) to various 

shipping problems are in (Conley 2003).  More general 

Page 35



applications of the MSMCO technique are in (Wong 

1996) and (Conley 2008).  It is a fairly versatile 

approach to general nonlinear optimization problems.  

The problems are more difficult to solve as the number 

of variables increases.  However, computer speeds help 

with that difficulty. 
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