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ABSTRACT 
Dynamic system simulation is important for automotive 
development and improvement as well as for analyzing 
mechanism of the system. A vehicle power train with a 
continuously variable transmission (CVT) was modeled 
into a simple and a detailed Bond Graph model and the 
fuel economy and engine power performance was 
simulated by use of the models according to the 
Japanese 10 Mode cycle. As a result, it is verified that 
the proposed Bond Graph models represent the basic 
dynamic characteristics of vehicle power train system 
with CVT and it is useful to calculate the optimum gear 
change pattern for low fuel consumption. 
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1. INTRODUCTION 
Recently environmental problems such as global 
warming and air pollution become more serious year by 
year. Car exhaust gas emission of vehicle is one of the 
causes of the environmental problems, so that in order 
to solve the problems vehicle industries have been 
making activities, one of which is to improve fuel 
economy of car. A simulation method can play an 
important role to predict and determine parameters 
necessary to develop and improve a fuel economy, 
especially. Though simulations on fuel economy were 
studied in the past (Suzuki and Hosoi 2007; Yokoi 
1979), there are few studies of the inverse problem such 
as running resistance is an input parameter for a vehicle 
power train system (Togai and Koso 2006). 

The objectives of our study are to establish a 
system Bond Graph model of a power train system with 
the continuously variable transmission (CVT) (Carbone, 
Mangialardi, Bonsen, Tursi, and Veenhuizen 2007; Cho 
and Hedrick 1989; Kong and Parker 2008; Mantriota 
2002; Srivastava and Haque 2008; Srivastava and 
Haque 2009; Srivastava and Haque 2009) as a study of 
the inverse problem in which running resistance is an 
input parameter for a vehicle power train system, and a 
simulation method calculating an optimal gear ratio of 
CVT suitable for running pattern of a vehicle. 

In this study, a one-dimensional system Bond 
Graph of a vehicle power train including the CVT was 

established and an engine output power was simulated 
in the Bond Graph model according to The Japanese 10 
Mode cycle. Then it is also clarified that it is possible to 
calculate the optimal gear ratio suitable for running 
pattern of a vehicle with CVT. 

 
2. MODELING OF VEHICLE WITH THE CVT 
Generally driving power performance is shown by 
vehicle maximum speed and arrival time for some 
distance as output variables against engine torque as an 
input variable. However, fuel consumption can be 
measured after running according to a legal running 
mode. In this case, an input variable is power for 
running resistance connected with vehicle acceleration 
and an output variable is engine power, from which the 
fuel consumption can be calculated. Namely, power-
flow is quite reverse against the case of calculating 
driving power performance in a vehicle system model.  
 

2.1. Analysis Object 
In this paper, an analysis target is a power train system 
of vehicle including a belt type CVT with a gasoline 
engine as a driving source. Figure 1 shows a schematic 
illustration of the power train system, which consists of 
an engine, a clutch, a belt-type CVT, a final gear, an 
axle, and tires. This system can be expressed by  Bond  
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Figure 1: Schematic Illustration of Power Train 
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Figure 2: Bond Graph for Power Train 
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Graphs (Karnopp and Rosenberg 1970; Karnopp, 
Margolis, and Rosenberg 2006; Thoma 1990), shown in 
Figure 2 (Hrovat and Tobler 1991).  

Each Bond Graph symbol indicates the respective 
following; 
SE elements (effort source elements), 

MSE1; the acceleration resistance Rs, 
MSE2; the air resistance Ra, 
MSE3; the rolling resistance Rr, 

R elements (resistance), 
R1; the frictional loss in the clutch, 
R2; the frictional loss in the engine, 

C elements (capacitor), 
C1; the stiffness of the axle, 
C2; the damper spring of the clutch, 

I elements (inertia), 
I1; the inertia of tires, 
I2; the inertia of the engine, 

TF elements (transformer), 
TF1; transformer of the tire radius, 
TF2; transformer of the final gear. 

SS elements (flow and effort sensor in Bicausal Bond 
Graphs) (Gawthrop 1995) 
Using this model, the engine revolution as well as 
engine torque are calculated as the output variables 
through the running resistance proportional to vehicle 
speed as the input variable. A way for calculating fuel 
consumption is described in Section 2.3. 

 
2.2. Input Variable 
The input variable in the simulation is the running 
resistance which is the sum of the following four 
resistances, the acceleration resistance, the air resistance, 
the rolling resistance and the gradient resistance, that 
are such function of the vehicle speed as expressed by 
Equation (1), (2), (3), and (4), respectively. Here, as 
described later, a running mode is supposed running on 
a level ground, the hill climbing resistance is always 
zero, 0 [N]. 

 
        (1) 
 
        (2) 
 
        (3) 
 

   (4) 
 

Here, A ， a ， DC ， g ， M ，V ， µ ，θ , and ρ  
indicate vehicle frontal projected area [m2]，vehicle 
acceleration [m/s2]，drag coefficient [-]，acceleration 
of gravity [m/s2]，vehicle mass [kg]，vehicle speed 
[m/s]，coefficient of rolling resistance [-], up-hill  road 
gradient [deg], and air density [kg/m3], respectively. 

In a simulation of forward power-flow direction, 
the engine power is delivered to the running resistance 
(the acceleration resistance, the air resistance and the 
rolling resistance), the frictional loss dissipated in  
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Figure 3: Input Variables 

 
components and the inertial power. However, in a 
simulation of reverse power-flow direction, the running 
resistance (the acceleration resistance, the air resistance 
and the rolling resistance) calculated in proportional to 
each running mode is given to the system as an input 
variable and reverse calculation through the power train 
system including a CVT component causes the output 
power transmitted to the engine finally. 

Figure 3 shows the input variables for the system. 
Each input variable shown by MSE-element is defined 
as the respectively corresponding Equation (1), (2) and 
(3). MSF1-element shows flow source (the 10 Mode 
cycle). In SE3-element, the rolling resistance is active 
only at V > 0. In this model the friction resistance in the 
clutch and the power lost in the engine are taken into 
consideration, so that the engine output power and fuel 
economy can be calculated more precisely. 
 
2.3. Method of Calculating Fuel Economy 
Figure 4 shows experimental data for the representative 
performance curves of vehicle engine. Fuel 
consumption is calculated using specific fuel 
consumption (SFC [g/(PS*h)]) which is expressed by 
broken lines in Figure 4. The chain line, the solid line 
with an arrow and WOT in the Figure indicate the 
optimum operating line for engine, the constant horse 
power line and the torque line on condition that the 
engine throttle valve is fully opened. In order to 
calculate easily the digital value of SFC from Figure 4, 
Figure 5 as a new diagram of SFC is made by the least-
square method.  
        Equations (5), (6), (7), and (8) are used to calculate 
the sum of fuel consumption (TFC [l]) and the average 
fuel consumption (AFC [km/l]). In Equation (5), an 
engine output power (P [PS]) is calculated as the 
product of engine torque (Te [Nm]) and engine 
revolution (Ne [rpm]). Fuel consumption (FC [l/s]) is 
calculated by Equation (6), in which unit of SFC is 
changed from [g/(PS*h)] to [l/(PS*s)] using density of 
gasoline, 0.783 [g/cm3] at 15 [oC]. To integrate FC for 
vehicle running time leads TFC in Equation (7). Finally 
AFC is given in Equation (8), where SM ([km]) 
indicates sum of millage for vehicle running time. 
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Figure 4: Representative Engine Performance Curves 

(Experimental Data) 
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Figure 5: Specific Fuel Consumption (Approximate 

Value) 
 

 

∫= dtFCTFC     (7) 

 
TFCSMAFC ÷=     (8) 

 
The 20-Sim software is used for Bond graph modeling 
and simulation of vehicle fuel consumption with a CVT 
component in the present study. 
 
2.4. How to Search for Optimum Gear Ratio in the 

CVT 
A continuously variable transmission (CVT) is a new 
component expected to improve fuel economy. 
Especially in vehicle transmissions, the CVT is well 
suited for more fuel-efficient driving in any driving 
mode compared with traditional gear transmissions with 
fixed gear ratio, because it is possible to change the gear 
ratio continuously and smoothly, to reduce the shock of 
gear change and to operate at high efficiency domain of 
engine revolution.  

A CVT component, shown in Figure 6, is modeled 
into two kind systems, CVT-1 in Figure 7 as a simple 
model and CVT-2 in Figure 9 as a detailed model. The 
difference between the two models is also studied after 
simulation of dynamic characteristics. 

  
Figure 6: CVT (Daihatsu Motor Co. 2006) 
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Figure 7: Bond Graph of CVT-1  
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Figure 8: Assumed Gear Ratio of CVT-1 

  
 
 Figure 7 shows the Bond Graph model of CVT-1, 
where one inertial mass consisting of two pulleys and a 
belt is expressed by one I-element, I4, and gear ratio by 
a modulated transformer, MTF2-element, and its 
variable coefficient is given as CVT gear ratio i shown 
in Figure 8. 
 In the present case, the coefficient function of 
MTF2-element is defined to be linearly proportional to 
vehicle speed. In Figure 8,α  indicates the proportional 
coefficient and is defined as 0.099. The gear ratio i is 
defined as a function ),max( minin and is calculated by 
Equations (9) and (10), where i，n，V， imax，and imin 
indicate gear ratio, variable, vehicle speed [km/h], 
maximum and minimum gear ratio, respectively.   
 

Vin ×−= αmax      (9) 
 

),max( minini =                                 (10) 
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Figure 9: Bond Graph of CVT-2 

 
Figure 9 shows Bond Graph of CVT-2, where the 

pulley and the belt are expressed independent in the 
model. Inertial effects of Pulley1 and Pulley2 are 
expressed by I5- and I7-element, respectively. Stiffness 
between Pulley1 and the belt and stiffness between 
Pulley2 and the belt are expressed by C3- and C4-
elements, respectively. Belt transforms power between 
rectilinear motion and rotational motion, and its variable 
coefficient is given by r, which is a pulley radius from 
the center of pulley shaft to the contact point at the belt 
and the pulley. Because r is variable according to 
driving condition in CVT, the belt is represented by 
MTF-element. The inertial effect of the mass of belt is 
represented by I6-element and the frictional power loss 
between the belt and the pulleys by R3-element.  

Gear ratio is decided as to reduce the torque 
difference between a point A on the constant horse 
power line and a point B on the optimum operating line 
(Figure 10) (Pfiffner, Guzzella, and Onder 2003; 
Takiyama and Morita 1993). Radius r1 and r2, the 
coefficients of MTF3- and MTF4-elements, are decided 
from the function of engine torque, engine revolution, 
vehicle speed and vehicle acceleration force. Radius r1 
is changeable on the arrow direction of solid line. The 
optimum operating line shown by chain line in Figure 
10 is represented as   Equation (11) obtained with the 
least-square method. Radius r2 is given by Equation 
(12), where R is constant and is the sum of r1 and r2. 
Then, gear ratio i  of CVT-2 is represented by Equation 
(13). 
 

29.791045.1100.1 226 +××+××−= −−
eee NNT   (11) 

 
12 rRr −=                  (12) 

 
 12 / rri =                  (13) 

 
3. JAPANESE AUTOMOTIVE TEST DRIVE 

CYCLES 
In the present study, the test driving mode is Japanese 
test drive cycle, called as the Japanese 10 Mode cycle 
and shown in Figure 11, which approximates a situation 
of driving in the city by combining ten kinds of driving 
patterns such as idling, acceleration, constant speed, and 
deceleration.  
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Figure 10: Active Control of CVT-2 (Yokoi 1979) 
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Figure 11: The Japanese 10 Mode cycle 

 
Table 1: Automotive Specifications 

CVT gear ratio 0.435 – 6.4 
Final gear ratio 5.69 
Vehicle weight 1305 [kg] 

Frontal projected area 1.8 [m2] 
Coefficient of drag 0.36 

Tire radius 0.273 [m] 
Coefficient of rolling resistance 0.018 

Air density 1.166 [kg/m3] 
 
 
4. SIMULATION RESULTS 
Table 1 shows automotive specifications of the analysis 
target in the present study. Time history of the gear ratio 
of the CVT is shown in Figure 12 which is obtained by 
Bond Graph simulation. In the Figure a broken line and 
a solid line indicate the calculated results of CVT-1 and 
CVT-2, respectively. The different results are caused by 
the difference of gear change pattern between CVT-1 
and CVT-2. Hereafter in all figures the chain line, the 
broken line and the solid line indicate the 10 Mode 
cycle, the results of CVT-1 and CVT-2, respectively. 
 Figures 13, 14, 15, 16, 17, 18, and 19 show time 
histories of engine revolution, engine torque, engine 
output power of CVT-1 and CVT-2, sum of mileage 
according to the Japanese 10 Mode cycle, fuel 
consumption per unit time, sum of fuel consumption, 
and average fuel consumption calculated by Equation 
(7) from Figure 18,  respectively. 
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 In Figure 13, engine revolution of CVT-2 is always 
lower than that of CVT-1. Though engine revolution of 
CVT-1 is kept constant for constant speed driving mode, 
engine revolution of CVT-2 always varies even for 
constant speed driving mode. It is because the gear ratio 
is continuously-varied to determine engine revolution 
with high efficiency in CVT-2, as shown in Figure 12. 
 On the other hand, in Figure 14 the engine torque 
of CVT-2 is always larger than that of CVT-1, contrary 
to features of engine revolution shown in Figure 13. As 
a result, the engine output power is almost same 
between CVT-1 and CVT-2, as shown in Figure 15, 
though the gear ratio is different. This is because 
parameters except for the driving resistance as an input 
variable and CVT are the same between the simple 
model of CVT-1 and the detailed model of CVT-2. This 
result shows the validity of CVT-1 and CVT-2 models. 
 Both Figures16 and 18 have upward-sloping curves, 
which are similar tendency in sum of mileage and sum 
of fuel consumption. It is because vehicle speed late in 
the Japanese 10 Mode cycle is twice as fast as that early 
in the 10 Mode cycle and fuel consumption increases 
rapidly in proportion to vehicle speed especially late in 
the 10 Mode cycle. At acceleration period, engine 
torque and revolution increase and fuel consumption 
increase similarly, though average fuel consumption 
deteriorates inversely. 
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Figure 12: CVT Gear Ratio 
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Figure 13: Engine Revolution 
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Figure 14: Engine Torque  
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Figure 15: Horse Power 
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  Figure 16: Sum of Mileage (The 10 Mode 

cycle) 
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 Figure 17: Fuel Consumption 
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Figure 18: Sum of Fuel Consumption 
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 Figure 19: Average Fuel Consumption 

 
 In Figure 19 the average fuel consumption for 160 
[s] according to the Japanese 10 Mode cycle is finally 
calculated as 12 [km/l] and 8.6 [km/l] in CVT-2 and 
CVT-1 model, respectively. It is caused by controlling 
the gear change minutely that the average fuel 
consumption in CVT-2 is better than that in CVT-1. 
 From the results mentioned above, it is verified that 
the Bond Graph models represent the basic dynamic 
characteristics of power train system with CVT and it is 
possible to calculate the optimum gear change pattern 
for high fuel-efficiency by combining the above Bond 
Graph models with some control programs for gear 
change pattern in CVT.  
 PC calculating time is 72 [s] for 160 [s] the 
Japanese 10 Mode cycle and is almost same between 
the models of CVT-1 and CVT-2. 
 
5. CONCLUSION 
The proposed Bond Graph models represent the basic 
dynamic characteristics of vehicle power train system 
with CVT and it is useful to calculate the optimum gear 
change pattern for low fuel consumption. 
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