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ABSTRACT 

Parallel robots seem to be the most suitable spots 

requiring high performance such as speed and accuracy. 

Such performances sought now are that the dynamics of 

parallel structures is no longer negligible. 

This work represents a contribution in this latter 

context; it deals in the whole dynamic study of a 

parallel robot with six degrees of freedom constituting 

the so-called Gough Stewart platform. In determining 

the direct and inverse geometric model, we use a setup 

based on Khalil and Kleinfinger ratings [7] for 

structures with closed loops. The kinematical modeling, 

using the calculation of the Jacobian matrix and its 

inverse, were deduced from the joint velocities of the 

six cylinders in order to follow a desired trajectory for 

the platform. 

The Newton Euler formalism is used to model the 

dynamics of the robot and the first to consider each 

kinematics chain (legs) as a serial structure, and then by 

considerations of balance and closed chain, we 

determine the dynamics of the platform. 

 

Keywords: Gough-Stewart platform, parallel robot, 

dynamic modeling, Newton Euler formalism. 

 

1. INTRODUCTION 

The complex architecture of parallel robots makes it 

increasingly necessary to improve their dynamic 

performance, this is especially motivated by the proven 

qualities recognized by the research community [2] and 

industrial robotics, addressing the very high speed, 

driving simulators, machine - tools, medical 

applications, etc.. Parallel robots in comparison with 

serial robots, have special characteristics, stiffness and 

dynamic load capacity higher still, actuators, high 

precision guidance and stable operation. 

To obtain the dynamics of parallel robots, many 

methods have used the classical procedure of computing 

dynamic model of an equivalent tree structure; Principle 

of virtual works has been used in [4]; work [3] and [5] 

have used the Euler-Lagrange formalism. On the other 

hand, the equations of Newton - Euler have been used 

by [10], [13] and [14]. Through the establishment of 

iterative matrix relations for kinematics and dynamic 

analysis of parallel robot Gough - Stewart [17] used the 

principle of virtual work to derive the fundamental 

equations of dynamics.  

This paper presents a method for obtaining the inverse 

dynamic model of parallel robot with six degrees of 

freedom consisting of a mobile platform attached to a 

fixed base by six identical kinematics chains using an 

universal joint (on base), a spherical joint (on the 

mobile platform) and an active prismatic joint. The 

model based on the formalism of Newton – Euler is 

obtained in terms of the dynamic models of the legs. It 

concludes with a simulation of kinematics and 

dynamics of the robot. 

 

2. DESCRIPTION OF PARALLEL ROBOT.  

The proposed parallel robot to look like a platform 

composed of six identical kinematics chains linked to a 

mobile platform through ball and connected with a fixed 

base by universal joints. A prismatic actuator used to 

vary the length of the kinematics chains (Fig. 1), the 

platform provides six degrees of freedom. Geometric 

modeling, kinematics and dynamics of parallel robots 

require the knowledge descriptions robots closed 

structure, description of tree structure robots as well as 

open-chain robots. It defines two headers one R0 

attached to base its origin is the point O, the other set at 

Rp mobile platform with O2 as the origin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1: Description of parallel robot with 

six degrees of freedom 
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The center of each drive shaft and the center of each 

ball are denoted by Bi and Pi (i = 1 to 6). 

The robot consists of 5 loops space motorized prismatic 

joints 6 and 30 passive revolute joints. The tree 

structure equivalent minimum [3] is obtained by 

isolating the platform. It is composed of 6 prismatic 

joints and 12 motorized passive revolute joints. In this 

structure the joints were removed. 

Each kinematics chain to a structure consisting of 3 

bodies with 3 joints [11]. The situation of the first 

revolute axis of each kinematics chain is shown in 

Figure 2. 

 

1.1.  Geometrical parameters of the kinematics chain 

i (i=1…6)   

 

Table 1. : Setting geometric chain i. 

 

Ji a(ji)   µji σji γji       bji     αji     dji      θji        rji   

1i   0 0 0 γ1i     b1i -π/2   d1i q1i     0 

2i 1i 0 0 0 0 π/2 0 q2i 0 

3i 2i 1 1 0 0 π/2 0 0 q3i 

 

for i=1…6;  γ11 = b11 = γ12 = b12 = b16 = 0 

 

 
 

Fig.2: Location frame joints of each kinematics chain. 

 

The geometric parameters of the structure are given in 

Table 1, we note: 

- µ(j) and σ (j) that describe the type of joint; µ(j) = 1 if 

the joint j is motorized and µ(j) = 0 if it is passive. 

 σ (j) = 1 if the joint is prismatic and σ(j) = 0 if it is 

revolute. (γj, bj, aj, dj, θj, rj) 

The parameters (γj, bj, aj, dj, θj, rj) are used to set the 

frame Rj in reference of its antecedent Ri. 

The transformation matrix (T) consists of these 

parameters is given by: 

( ) 10 3*1

j

i

j

i

j

i
P

T
Α

=
 

Where to: 

 
i
Aj :   is the matrix (3 * 3) which defines the direction of 

the coordinate Rj in the coordinate Ri .  
 

j

i

j

i

j

i

j

i ansA =  

 

i
Pj : is the position vector (3 * 1) which defines the 

origin of the coordinate Rj in the coordinate Ri. 

 

2.  GEOMETRICAL MODEL OF THE ROBOT. 

2.1.   Direct geometrical Model of chain i  

The direct geometric model of a leg i robot expresses 

the operational coordinates (X) of point Pi in frame R0 

according to the joint variables (qi = [q1i q2i q3i] 
T
 for i = 

1 to 6).                 

            ( )qfX =  

 

We use the transformation matrices to define the 

coordinate R3i origin Pi, which is the frame of the chain 

i in the reference base of the robot R0:   

  

          i

i

i

i

ii TTTT 3

2

2

1

1

0

3

0 =  

The geometric model solution of the parallel robot is 

not unique since for a given joint configuration 

variables, the platform can take several different 

situations. 

2.2. Inverse geometric model 

The Inverse geometric model is to calculate the joint 

coordinates (qi) corresponding to a given situation of 

the terminal body (platform) based on operational 

details. 

                    ( )Xfqi =  

 

This model is easily calculated using some basic 

elementary geometric relationships (Fig. 3). 

 

 

Fig.3: Representation vector ( )iBP  

 

 

        ( ) ( ) ( )OBOOPORBP iii ++= 22  

       R:   matrix orientation of the platform. 

 

( ) ( ) ( )ψθφ ,*,*, XrotYrotZrotR =  

(1) 

 

(2) 

 

(3) 

 

(4) 

 

(5) 
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Let 
Bi

Pxi, 
Bi

Pyi, 
Bi

Pzi   coordinates vectors BP(i) from a 

frame RBi. The prismatic variables q3i are obtained by 

the following equation: 

 

222

3 zi

Bi

yi

Bi

xi

Bi

i PPPq ++=  

 

The variables relating to passive joints q1i and q2i are 

given by equations (7), obtained using the method of 

Paul [1]: 

 

            -
Bi

Pxi S1i + 
Bi

Pyi C1i = 0                                         

 

Note:   Sqji  = Sji        et     Cqji  = Cji 
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and: 

( )







 −+−
=

Det

Pq

Det

SPCPq
q i

Bi

iii

Bi

ii

Bi

i

i

3311113

2 ,atan2  

with: 

 

( ) 0
2

1211

2

3 ≠++= ii

Bi

ii

Bi

i

Bi SPCPPDet    

 

The condition Det ≠ 0 is verified as 
Bi

Pzi is strictly 

positive and not zero (practically zero means that the 

chain is collinear with the plane of the base which is 

impossible), the variable is physically q1i joint between 

zero and  π. 

 

3.  KINEMATIC MODEL OF THE ROBOT. 

3.1. Direct Kinematics model of the chain i: 

The direct kinematics model of the chain i gives the 

linear velocity of point P as a function of velocity joints 

of the chain i ( )iii qqq 321 ,, &&&  for i = 1..6. This model is 

identical to the direct kinematics model of a serial 

structure with three joints (RRP). 

 

iipi qJV &
3

00 =  

 

Vpi: linear velocity of point Pi; 
0
J3i: Jacobian matrix of the kinematics chain i.   

 

 

3.2. Inverse Kinematics model:  

The inverse kinematics model allows expressing the 

linear speed of the motorized joint variables q as a 

function of kinematics torsor mobile platform is given 

by the following equation: 

 














= −

p

p

p

V
Jq

ω0

0

10
&  

 
0
Vp , 

0ωp : translational speed and angular velocity of the 

mobile platform; 

°Jp
-1 

: inverse Jacobian matrix (6 * 6) of the robot. 

 

3.3. Calculating the inverse Jacobian J
-1
p: 

The calculation of the inverse of the Jacobian matrix 

platform is based on determining the speed q3i with the 

projection of the speed of point Pi on the axis z3i. 

We have for a prismatic joint (σk=1): 

 

pi

T

ii Vq 0

3

0

3 a=&  

 
0
Vpi  linear speed of point Pi, is computed according to 

Vp and ωp by modeling of kinematics chains. 
0
a3i  : unit vector carried by the axis of articulation z3i 

prismatic. 

 

ipppi LVV 0000 ×+= ω  

 
0
Li : vector representing the components of  P1Pi vector 

expressed in the frame R0 . 

It comes as: 

 

       ( )ip

T

iP

T

ii LVq 00

3

00

3

0

3 aa ×+= ω&  

 

and then: 

 

       ( ) p

T
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T
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In section five, a MATLAB simulation is required to 

view and verify the results obtained from the Jacobian 

matrix inverse 
0
Jp

-1
. (Fig.4) 
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4. INVERSE DYNAMIC MODEL  

The inverse dynamic model is the relationship between 

the forces of the motorized joint and positions, 

velocities, accelerations of the platform. The inverse 

dynamic model is intended to control robots. 

 

( )ppp VVTf &000
,,=Γ  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the dynamic model we decompose the system into 

two subsystems: the platform that is linked to the 

kinematics chain of joints, the torque reaction 

transmitted to the chain at a platform is zero, the effect 

of chain i kinematics on the platform is represented by 

reaction forces fi (i = 1 to 6). 

The tree structure (the second subsystem) consists of the 

base and legs with two pairs of revolute joints (Γ1i , Γ2i ) 

are zero. 

In this problem the unknowns are the 18 components of 

reaction forces 
o
fi = [

o
fxi 

o
fyi 

o
fzi]

T
 and the 6 forces 

motorized joints Γ3i (i =1 à 6). Each dynamic model of a 

kinematics chain is composed of three equations, giving 

a total of 18 equations. The Newton-Euler equations of 

the platform gives 6 equations, we obtain a system of 24 

equations in 24 unknowns. 

This system will be solved sequentially as follows: 

- calculation of °fi  based Γ3i  using the dynamic model 

of the kinematic chain i 

- Γ3i  forces will be obtained from Newton-Euler 

equations of the platform. 

 

4.1 Calculating the reaction force °fi  

The general form of the dynamic model of the 

kinematics chain i, is written: 

 

( ) T
iiiiiii fJqqq 0

3
0,, +Η=Γ &&&  

With: 

 Hi : vector (3 * 3) containing the inertial forces, 

Coriolis, centrifugal and gravity. 

Γi : is composed of forces / torques of the joints of the 

chains where Γ1i and Γ2i  are zero; 

 

[ ] [ ]T

i

T

iii 3321 00 Γ=ΓΓΓ=Γ  

 

From equation (22) of the general form, the reaction 

force of the kinematics chain i can be written: 

 

      ( ) i

T

iiiii

T

ii JqqqJf Γ+Η=− −−
3

0

3

00 ,, &&&  

 

4.2  Dynamic of platform 

The Newton Euler equations around the origin of the 

platform are written: 

 

( )
( ) g

SM
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p

p
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ppp
ppp
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000
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


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××

+ΙΙ=
ωω

ωω
&                                                 

With :       
0
Fp : external forces and moments applied on the 

platform. 

 
0
fi = [

0
fxi ,

0
fyi ,

0
fzi]

T
 reaction force of the chain i and 6 

forces motorized joints Γ3i (i= 1à 6).  

°IIp :  space inertia matrix (6 * 6) of the platform, we 

have : 

 


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




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 −
=ΙΙ

pp

pp
p

ISM

SMIM
00

0
30

ˆ

ˆ
 

 
0
Ip : inertia tensor (3 * 3) of the platform expressed in 

the frame R0, which is expressed by: 

 
T

pp

p

pp AIAI 000 =  

0 
Traj. 

generation

. - 

+ 

q 

q&

 

q&

 

Xd 

 Xd 

V(V,ωωωω) 

0Jp
-1*V 

 

dx/dt 

0Jp
-1 

MGI 

t 

dq/dt 

Fig.4: Global Scheme used to validate the 

analytical kinematics model. 
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Fig. 5: Forces and moments applied on the platform 

by the forces of reaction chains. 
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p
Ip : inertia tensor (3 * 3) of the platform expressed in 

the coordinate Rp and 
0
Ap matrix orientation that 

expresses the frame Rp in the frame R0. 
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
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=

ppp

ppp

ppp

p
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0
MSp : first moment of inertia of the platform around the 

origin of the frame Rp. 

 

 [ ]Tpppp

p MZMYMXMS =  

 

    p

p

pp

p MSAMS 0=  

 

I3 : Identity matrix (3*3) ; Mp : mass of the platform ; 
 

0
g : acceleration of gravity.  

 

4.3. Relationship between °Fp   and  °fi : 

The forces and moments applied on the origin of the 

platform by the reaction forces of kinematics chains are 

given by the following equation: 

 

i

i i
p f
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I
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Equation (24) allows to write: 
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Let Hxi expressing the vector ( )iiii qqq &&& ,,Η  in cartesian 

space to the point Pi : 

 

( )iiii
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Equation (34) can be written:  
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Using the equation of the Jacobian inverse, we can 

deduce that: 
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With: 

 

            Γ = [Γ31……..Γ36]     

 

 Substituting equation (38) in equation (30), we obtain: 
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With:                                                                                                       
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Equation (39) represents the inverse dynamics model of 

the robot without friction and inertia of the actuators. To 

complete this model, we introduce the friction and 

inertia of the actuators. The expression (39) becomes: 

                         

( ) ( )( )
( ) robot

T

p
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FJMq

FqFq
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aa

aa
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signdiagdiag

+

++=Γ
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Where:   

diag(.) : represents a matrix (6 * 6) with the terms in 

parentheses on the diagonal non-zero and other zero; 
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sign(.) : represents the sign function; 

Fs :  vector  (6 * 1) composed  of dry friction parameters 

of the actuators;  

Fv :vector (6*1)composed of viscous friction parameters 

of the actuators.  

Hi (qi, i, i) representing the inverse dynamics model 

of the chain i is calculated by Newton's - Euler method 

[8]. 

Equation (42) represents the inverse dynamics model. 

For the calculation, in addition to the calculation of 

Jacobian matrices, we must determine ( )iiii qqq &&& ,,H  

which is simply the inverse dynamic model of the chain 

i expressed in cartesian space. 

(28) 

 

(29) 

 

(30) 

 

(31) 
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It summarizes the steps of calculating the inverse 

dynamics model as follows: 

- Resolution of geometric and kinematics direct 

models ; 

- Calculation of dynamic model of each 

kinematics chain : ( )iiii qqq &&& ,,H  ; 

- Calculation of the Cartesian dynamic model of 

each kinematics chain : xiH  ; 

- Calculation of forces and moments 
0
Fchaine  that 

match all xiH  ; 

- Determine the forces and / or moments 

required to move the platform, 
0
Fp ; 

- Calculation of forces and / or desired 

moments: 
T

pJ0=Γ (0
Fp

 
+

0
Fchaine). 

 

Physical interpretation 

We note from equations (38) (39) and (40), the effect of 

kinematics chains on the platform is equivalent to a 

force equal to ( )iiixi qqq &&& ,,H- at each point Pi. The 

corresponding total force is equal to 

( )∑ iiixi qqq &&& ,,H . 

The parallel robot we just studied can be represented by 

a single body with the same parameters as the inertial 

platform on which is applied to each point Pi a force 

xiH− . 

 

5. SIMULATION AND RESULTS 

The overall pattern of the simulation (figure 4) reflects 

the summary of the method developed for the 

kinematics analysis. Indeed, the inverse jacobian matrix 

of the robot (equation 20) allows deducing the velocities 

of the segments (cylinders). By direct derivation of 

active joint variables (results of inverse geometrical 

Model) yields the same vector velocity iq3
& . The 

estimate of the error term is used to validate the results 

of the analytical method. 

 To this end, using a trajectory generator whose 

parameters reflect the position and orientation (rotations 

about the base z-axis φ, y-axis θ and x-axis Ψ) of the 

platform at any time t (desired situation). The numerical 

values of parameters used in the simulation reveal two 

important factors: 

      - General form and dimensions adopted for the 

structure of the robot. A conceptual study of a robot 

type Gough-Stewart CAD (Solid Works) at identified 

all the dimensional parameters and inertial i.e. mass, 

center of gravity, inertia, and dimensions.   

   -  Singularities. The values given to the angles (φ, θ, 

Ψ) must lead to positions available (joint limits). 

 

In order to validate simulation models proposed 

considering the following physical data: 

 

 

a. Movement of the platform. 

 

t = 0 : 10 sec. 

      Position and orientation of the origin of the frame Rp 

 

 

0

t*0.04

t*0.07

                

*50800
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=
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ψ
θ
ϕ
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P

tP

z
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b. Masses. 

 

Platform  M= 24.45 kg 

Kinematics chains m =[ 0.11818 ; 7.27885 ; 

3.15325] 

 

c. Moments of the 2nd order of chains [kg.m
2
]. 

 

K (:,:,1)=[18822.31      0      0 ; 0      11453.35           0 ;  

0      0        11343.03] 

K(:,:,2) =[95191796  2745801 31799761.94; 

2745801  106222355.34  13430543; 

31799761.94  13430543  34166734] 

K(:,:,3)=[136247234.57    0     0 ; 0     136234387.21    

0 ;  0      0         693106.67]. 

 

d. Moments of inertia of the platform around the 

origin of the coordinate Rp [kg.m
2
].  

Ixx =6246766024.15; Iyy=612114662.55;   

Izz=1222025614.27; 

 

For a simple configuration chosen in advance, we can 

see the corresponding movement of the platform 

(Fig.6). 

It is shown in Figures 7, 8, 9 and 10 the change of 

variables and joint velocities iq3 , iq3
& , and the different 

speeds of the platform Vp. 

Figure 11 shown for the same physical data, the 

variation of active forces in joints obtained from the 

equations of Newton - Euler governing the dynamics of 

the platform. 
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Fig.6: Matlab simulation of a space trajectory’s robot. 
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Fig. 7: Displacement of active joints q3i [mm]. 
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Fig.8: Displacement and orientation of 

the platform in [mm] and [rd]. 

0 5 10
44

45

46

47

0 5 10
47

47.2

47.4

47.6

47.8

48

0 5 10
50

52

54

56

58

60

0 5 10
55

56

57

58

59

60

0 5 10
50

52

54

56

58

60

0 5 10
45

50

55

60

 

Fig. 9: Speed actuators " iq3
& " [mm/sec.]. 
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Fig. 10: Linear and angular velocities of the  

Platform  " V0p" [mm/sec.] and [rd/sec.]. 
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Fig. 11: Change Γ3i forces at the actuators [N]. 
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CONCLUSION: 

 

In this paper, a dynamic model of the parallel robot with 

six degrees of freedom has been made. A description 

based on the decomposition of the robot into two parts: 

the mobile platform and chains (legs) attached to the 

base forming a tree structure, to permit application of 

the methods known and used for robot series, branching 

or closed loop. 

Geometric modeling and kinematics of the robot was 

developed on the basis of previous work [7], [10] and 

[14]. The proposed models take into account the 

dynamics of the robot type Gough - Stewart. The 

calculation of these models is facilitated by being able 

to apply the techniques developed for serial robots. The 

value of modeling dynamic developed is that it allows 

to deduce directly a physical interpretation of the 

model. Indeed the one body equivalent to the robot has 

the same parameters as the inertial platform which is 

applied a force vector whose points of application are 

connections to the chains. There is therefore a compact 

algorithm capable of solving the dynamic a parallel 

robot in view of its adaptation to dynamic control laws. 

It plans to use and extend this approach to what we call 

the hybrid structure [10], serial – parallel robots. 
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