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Abstract

In this paper we present a methodology for optimal
force distribution calculation for the multiple manip-
ulators system grasping an object.We consider for
this case three robots holding a common rigid ob-
ject with three contact points , where the object can
translate and rotate in any directions. This approach
is used in the case of real time dynamics object force
control. The force distribution problem is formu-
lated in terms of a nonlinear programming problem
under equality and inequality constraints. Then, ac-
cording to [1],[2],[3] and [4] the friction constraints
are transformed from non linear inequalities into a
combination of linear equalities and linear inequal-
ities. The original non linear constrained program-
ming problem is then transformed into a quadratic
optimization problem. Some simulation results are
given to show the efficiency and accuracy of the pro-
posed methodology and perspectives on multiple ma-
nipulators system grasping an object control are dis-
cussed.
Keywords : Multiple Manipulators System, Grasp-
ing, Optimal Force Distribution, Quadratic Pro-
gramming, Friction Constraints.

1 Introduction

Cooperative system is generally understood as sev-
eral coordinated robots simultaneously performing
a given task. The main objective of a multi-robots
cooperative system in robotics is to manipulate an
object. Manipulation is performed with the aim of,
for example , changing the space position of an ob-
ject,grasping an object in contact with environment
, gripping,lifting, lowering, releasing, withdrawing...

The object force control need calculation of real-
time force distribution on the robot’s efectors. Due
to the existence of more than three actuated joints

in each robot , the manipulators system has redun-
dant actuation leading to more active joints than
the object degree-of-freedom (6 dof). Thus, when
formulating the force distribution problem, we find
fewer force moment balancing equations than un-
known variables. So, the solution of these equa-
tions is not unique. Moreover, some physical con-
straints, that concern the contact nature, friction,
...etc , must be taken into account in the calculation
of force distribution. In addition, joints torque satu-
ration must also be considered. Several approaches
in the literature have been proposed to address robot
coordination problem in [5],[6] Contact and friction
constraints for grasp conditions are considered and
a optimization algorithm is developed by minimiz-
ing the total energy E consumed by the actuators
of the planar dual-arm manipulators system.A new
approach for computing force-closure grasps of two-
dimensional and three-dimensional objects was pro-
posed in [7]-[8]and [9] then a new necessary and suf-
ficient condition for n-finger grasps to achieve force-
closure property are developed.in [10] The analy-
sis of grasping and manipulation of deformable ob-
jects by a three finger robot hand has been carried
out.Thus the Force Distribution Problem (FDP) can
be formulated as a nonlinear constrained program-
ming problem under nonlinear equality and inequal-
ity constraints.

• Linear-Programming (LP) Method [3],[11]

• Compact-Dual LP (CDLP) Method [12],[13]

• Quadratic Programming (QP) Method [14], [15]

• Analytical Method [16],[17],[18],[19]

A comparative study for the cited methods can be
found in [20]. Some researchers proposed the opti-
mal force distribution scheme of multiple cooperat-
ing robots by combining the Dual Method with the
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QP [21]. In FDP solving, according to some criteria,
physical aspects of the multiple cooperating robots
have to be considered. In this paper we propose an
approach to solve the problem of real-time force dis-
tribution for a multiple manipulators system, based
on the approach proposed in [22],[23] for an hexapod
robot.

This approach consists of the combination of the
QP Method with the reduction technique of prob-
lem size. The main idea concerns the transformation
of the original nonlinear constrained problem into a
linear one, by reducing the problem size and trans-
forming the nonlinear constraints into a linear ones,
respecting some physical considerations.

The rest of the paper is organized as follows. The
direct and inverse geometrical models of the robot
manipulator are presented in section 2. Section 3
concerns the force distribution problem. Problem
reduction and optimal solution are presented in sec-
tion 4. Before presenting some remarks and perspec-
tives, a Matlab simulation results of two cooperating
manipulators is presented in section 5 to show the ef-
ficiency of this approach.

2 Geometrical Modelling

Before presenting the direct and inverse geometrical
models, let us consider the robot architecture. As all
the robot are identical, only one robot modelling is
considred, the robot j architecture is given in figure
(2). Every robot ”j” j=1,...,n is grasping the object,
located at aj distance from the center of gravity of
the object. The angle φj represents the orientation
of the coordinate frame (x1,j , y1,j , z1,j) fixed at the
first articulation of the robot and the world ground
coordinate frame (X, Y, Z). Multiple Manipulators
System is considerated as an arborescent robot com-
porting some closed loops. So to study this kind
of robots we use the method defined by Khalil and
Kleinfinger [24].

Figure 1: Geometrical parameters of multiple
manipulators system

The transformation matrix from ith joint’s at-
tached coordinate frame to the (i-1)th joint’s at-

Figure 2: Exemple of multiple manipulators
system

tached coordinate frame is given by figure (3):

i−1T i = R(Z, γ)T (Z, b)R(X, α)T (X, d)R(Z, θ)T (Z, r)
(1)
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Figure 3: geometrical model

The table (1) describes the transformation from
the world ground coordinate frame (X,Y, Z) to the
coordinate frame at the contact point ”6” of each
robot.

frame α d θ r b γ
object α d θ r h β

Joint”1” 0 OP1 θ1,1 0 0 0
Joint”j” 0 OPj θ1,j 0 0 0
Joint”n” 0 OPn θ1,n 0 0 0

Table 1: Geometrical parameters of the object

The transformation providing the exact position
of the contact point”6” of any robot in the absolute
coordinate frame fixed at the ground is given by :

RT6 =R T0
0T

1
1T

2
2T

3
3T

4
4T

5
5T 6 (2)

When the position and the orientation of the last
coordinate frame fixed to the end of each robot”j”
are known ,We apply the method proposed by Paul
[25]. It provides the values of the joints coordinates
θi,j (i = 1, 2, 3, 4, 5, 6) (j = 1, .., n) as follow:
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frame α d θ r b γ
Joint”1” 0 aj θ1 0 0 φj

Joint”2” 0 0 θ2 + π/2 0 0 0
Joint”3” π/2 0 0 r3 0 0
Joint”4” 0 0 θ4 r4 0 0
Joint”5” −π/2 0 θ5 0 0 0
Joint”6” π/2 0 θ6 0 0 0

Table 2: Geometrical parameters of the jth
robot





θ1,j = arctan(Py/(−Px + d1))
θ2,j = arctan(Pz − r1)/(C1(Px− d1) + S1Py))
r3,j = C2(C1(Px− d1) + S1Py) + S2(Pz − r1)−

−R4− l2
θ4,j = arctan((S1ax− C1ay)/(S2(C1ax + S1ay)−

−C2az))
θ5,j = arctan((C4S2(C1ax− S1ay)− C4C2az

+S4(C1ay − C1sy))/(C2(C1ax + S1ay)+
+S2az))

θ6,j = arctan((−S4(−S2(C1ax− S1ay) + C2sz+
C4S1sx− C1sy))/(C5(−C4S2C1sx− S2S1sy+
+C2sz) + S4(S1sx− C1sy)− S5(C1C2sx+
+S1C2sy + S2sz))

(3)

Remark : S*=sin(*); C*=cos(*); (Px = Px,j , Py =
Py,j , P z = Pz,j), are the coordinates of the point ”6”
of the jth robot expressed in (X, Y, Z).

3 Force Distribution Problem

3.1 problem Formulation

Figure 4: Orientation of coordinate frame

The force system acting on the object is shown in
figure (4). For simplicity, only the force components
on the contact point are presented here. In the gen-
eral case, rotational torques at the contact are ne-
glected. Let (x0, y0, z0) be the coordinate frame in
which the object is located and (x6,j , y6,j , z6,j) de-
note the coordinate frame fixed at the contact point
of the jth robot. The (x6,j , z6,j) plane which is as-
sumed to be parallel to the (x0, y0, z0) plane and

its z axis is normal to the surface of the object.
F = [FXFY FZ ]T and M = [MXMY MZ ]T denote
respectively the object force vector and moment vec-
tor, which results from the gravity and the exter-
nal force acting on the object [26],[27],[28] and [29].
Define fx,j , fy,j , and fz,j as the components of the
force acting on the supporting robot ”j” in the di-
rections of x0, y0 and z0, respectively. The number
of supporting robot, n, can vary between 2 and 3 for
this studies. The object’s quasi-static force/moment
equation can be written as

{ ∑n
j=1 f j = F∑n
j=1 OP j ∧ f j = M

(4)

where OP j is the position vector joining contact
point of the robot ”j” and the gravity center of the
object. The general matrix form of this equation can
be written as :

AG =W (5)

with:




G = [f T
1 f T

2 · · · f T
n ]T ∈ <3n

f T
j = [fx,j fy,j fz,j ]T ∈ <3

W = [FT M T ]T ∈ <6

A =
(

I 3 . . . . . . I 3

B1 . . . . . . Bn

)
∈ <6×3n

Bj ≡ ÔPj ≡



0 −Pz,j Py,j

Pz,j 0 −Px,j

−Py,j Px,j 0


 ∈ <3×3

where I 3 is the identity matrix and G is the robots
force vector, corresponding to three (G ∈ <9) . A
is a coefficient matrix which is a function of the posi-
tions of the robot supporting, and Bj is a skew sym-
metric matrix consisting of (Px,j , Py,j , Pz,j), which is
the position coordinate of

contact point of the supporting robot ”j” in
(x0, y0, z0). W is a total body force/moment vector.
It is clear that (5) is an underdetermined system and
its solution is not unique. In other words, the robots
forces have many solutions according to the equilib-
rium equation. however, the robot forces must meet
the needs for the following physical constraints,

otherwise they become invalid :

[3]Supported object should not slip when the
robots move. It results in the following con-
straint: √

f2
x,j + f2

y,j ≤ µ fz,j (6)

where µ is the static coefficient of friction of the
surface of the object Since the robots forces are
generated from the corresponding actuators of
joints, the physical limits of the joint torques
must be taken into account. It follows that :

−τjmax ≤ J T
j

jA0j




fx,j

fy,j

fz,j


 ≤ τjmax (7)
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for (j = 1, ..., n), where J j ∈ <3×6 is the Ja-
cobian of the robot ”j”, τjmax ∈ <6×1 is the
maximum joint torque vector of the robot ”j”,
and A0j ∈ <3×3 is the orientation matrix of
(x6,j , y6,j , z6,j) with respect to (x0, y0, z0). In
order to have definite contact with the object,
there must exist a fz,j such that :

fz,j ≥ 0 (8)

In the following, we propose an approach for
problem size reduction, linearisation and solv-
ing for the three manipulators case. Clearly, it
is difficult to solve such a nonlinear program-
ming problem for real-time multi-robots force
distribution with complex constraints.

3.2 Problem Size Reduction

O

fx

fz

inscribed

pyramid

friction

cone

fy

Figure 5: conservative inscribed pyramid

The equation (6) is a formulation of the friction
cone figure(5). In order to overcome the non lin-
earities induced by the following equations, most re-
searches substitute this friction cone by the inscribed
pyramid [11],[30],[14],Thus, the nonlinear friction
constraints are approximately expressed by the fol-
lowing linear inequalities :

fx,j ≥ µ́ fz,j , fy,j ≥ µ́ fz,j , j = 1, ..., n (9)

where µ́ =
√

2µ
2 is for the inscribed pyramid. Thus,

the initial non linear constrained programming prob-
lem, substituting the non linear constraint Eq(6) by
the linear one of Eq(9), becomes a linear program-
ming problem [11],[12]and [14]. The possibility of
slipping can be minimized, by optimizing the ratio
of tangential to normal forces at the robot. In [31],
the authors have shown that, for multi-robots, all ra-
tios (at the contacts points) are equal to the global
ratio. This leads Liu and Wen [17] to find the re-
lationship between the robot forces and transform
the initial friction constraints from the nonlinear in-
equalities into a set of linear equalities. Let us define
the global ratio by the ratio of the tangential to nor-
mal forces at the object. The advantage of the exist-
ing methodes lies in the fact that part of component

of the robots forces satisfy the global ratio relation
ship and lets the other components satisfy the lin-
ear inequality constraints as Eq (9). For example,
defining fx,j (j = 1; ; n) and fy,j (j = 1; ; n), for
a robot j Chen et al [1], show that :

fx,j = kxzfz,j , (i = 1, ..., n) (10)

fy,j ≤ µ?fz,j , (i = 1, ..., n) (11)

where kxz = FX

FZ
is the global ratio of forces at the

object in direction of x0 and z0. µ? is the given co-
efficient for friction constraints. According to Eq(6),
we have µ? =

√
µ2 − k2

xz . Finally, the force dis-
tribution problem is transformed into a linear one by
replacing Eq (6) with Eqs (10) and (11).

3.3 Problem transformation and
Continuous solution

In modelling this systems, we consider that three
robots support the object at a time. so G and A
become a vector of 9 × 1 and a matrix of 6 × 9,
respectively. Equation (5) contains nine unknown
variables with six equations. By adding the Eq (10)
to the Eq (5) we obtain nine equations.

AG = W (12)

with :

A =




I 3 I 3 I 3

B1 B2 B3

1 0 −kxz 0 0 0 0 0 0
0 0 0 1 0 −kxz 0 0 0
0 0 0 0 0 0 1 0 −kxz




G =




f 1

f 2

f 3


 W =




F
M
0
0
0




Using some rows combination of the matrix A, Eq
(12) can be written as :

ÂG = Ŵ (13)

With: Â =



1 0 0 1 0 0
0 1 0 0 1 0
1 0 −kxz 0 0 0
0 0 0 1 0 −kxz

−Py,1 Px,1 0 −Py,2 Px,2 0
Pz,1 0 −Px,1 Pz,2 0 −Px,2

0 0 0 0 0 0
0 −Pz,1 Py,1 0 −Pz,2 Py,2
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1 0 0
0 1 0
0 0 0
0 0 0
1 0 −kxz

−Py,3 Px,3 0
Pz,3 0 −Px,3

0 −Pz,3 Py,3




Ŵ =




FX

FY

0
0

MZ

MY

0
MX




where Â ∈ <8×9 is the resulting matrix of A
after combination. G ∈ <8 is the robots force
vector.Ŵ ∈ <8 is the resulting vector of W after
combination. Thus, the force distribution problem
is subjected to the inequality constraints expressed
by (7), (8) (11).

4 Quadratic Problem Formula-
tion and Solution

The solution to the inverse dynamic equations of this
system is not unique, but it can be chosen in an opti-
mal manner by minimizing some objective function.
The approach taken here is to minimize the sum of
the weighted torque of the robot, which results in
the following objective function [15] and [21]:

fG = pTG +
GTQG

2
(14)

with:

pT = [τ̂T
1 JT

1 ......., τ̂T
n JT

n ] ∈ <3n

Q =




J1q1J
T
1 . . . 0

...
. . .

...
0 . . . JnqnJ

T
n


 ∈ <3n×3n

where τ̂j is the joint torque vector due to the weight
and inertia of the robot ”j”, Jj is the Jacobian of
the robot ”j”, and qj is a positive definite diagonal
weighting matrix of the robot j. This objective func-
tion is strictly convex. Because the time for obtain-
ing a solution does not depend on an initial guess,
a quadratic programming is superior to linear pro-
gramming in both speed and quality of the obtained
solution [15]. The general linear-quadratic program-
ming problem of the force distribution on robot is
stated by :

pTG +
GTQG

2
(15)

ÂĜ = Ŵ (16)

BĜ ≤ C (17)

where G ∈ <9 is a vector of the design variables.
It should be pointed out that, Eq. (19) denotes
Eq (13), and Eq(20) is the resulting inequality con-
straints for the combination of Eq (7), Eq (8) and
(11) where

1.2.3. B = [BT
1 BT

2 BT
3 BT

4 ]T ∈ <9×24

C = [τ1max .. τ6max − τ1max .. −
τ6max 0 0 0 0 0 0]T ∈ <24

with

B1 =




JT
1 R1 0 0
0 JT

2 R2 0
0 0 JT

3 R3


 ∈ <9×9

B2 =



−JT

1 R1 0 0
0 −JT

2 R2 0
0 0 −JT

3 R3




B3 =




0 0 −1 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 −1




B4 =




0 1 −µ? 0 0 0 0 0 0
0 0 0 0 1 −µ? 0 0 0
0 0 0 0 0 0 0 1 −µ?




In Eq (19), we have eight linear independent equa-
tions with nine unknown variables. By using Gauss
algorithm, this equation is transformed as follow :

[I8 Âr]

[
Ĝb

Ĝr

]
= Ŵr, (18)

where I 8 ∈ <8×8 identity matrix, Âr ∈ <8 is the
remaining column of the matrix Â after transforma-
tion. Ĝb ∈ <8 is the partial vector of G. Ĝr ∈ < is
the unknown element of Ĝ which denotes the design
variable. Ŵr ∈ <8 is the resulting vector of Ŵ af-
ter transformation. Equation(21) may be rewritten
by the following form

I8Ĝb + ÂrĜr − Ŵr = 0, (19)

Which yields to

Ĝb = Ŵr − ÂrĜr. (20)

Finally, it results in

G =

[
Ĝb

Ĝr

]
=

[
Ŵr

0

]
+

[
−Âr

1

]
Ĝr. (21)

Now let Ĝ0 = [Ŵ
T

r 0]T ∈ <8 and N =

[−Â
T

r 1]T ∈ <9, then Eq (24) becomes

G = Ĝ0 + NĜr. (22)

Substituting Eq (22) into Eqs (15) and (17), the
linear quadratic programming problem can be ex-
pressed by :

minimize f(Ĝr), (23)

subject to BNĜr ≤ C−BĜ0. (24)

where
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f(Ĝr) = pT Ĝ0 + 1
2Ĝ

T

0 QĜ0 + pTNĜr

+ 1
2Ĝ

T

0 QNĜr + 1
2Ĝ

T

r NTQĜ0

+ 1
2Ĝ

T

r NTQNĜr

Since Ĝr is a single variable
denoted by x, the optimal force distribution can

be written as :

minimize a0x
2+a1x+a2 subject to x ∈ [b1 b2]

(25)
With

a0 = 1
2N

TQN

a1 = pTN + 1
2Ĝ

T

0 QN + 1
2N

TQĜ0

a2 = pT Ĝ0 + 1
2Ĝ

T

0 QĜ0

Where [b1 b2] denotes the bound resulted from
Eq(24). Since it is clear that a0 ≥ 0 because of
the positive-definite matrix Q, There must be an op-
timal solution for the force distribution problem.

5 Simulations

The basic mechanism, size and parameters of the
object and one robot are shown in Figure (1) and
(2), where a = 0.25 [m], b = 0.61 [m], l1 = 0.05 [m],
l2 = 0.20 [m], l3 = 0.30 [m] and l4 ' 0 [m]. There are
six actuated joints θ1,j , θ2,j , ....and θ6,j in the robot
”j”, whose torques are denoted as τ1,j τ2,j ...and τ6,j ,
for (j=1,2,3), respectively. The Jacobian of the robot
”j” can be expressed by.

JT
j = [Jj,1 Jj,2 Jj,3] (26)

for (j=1,2,3), where

Jj,1 =




−S(θ1,j)C(θ2,j)(R4 + l2 + r3)
−C(θ1,j)S(θ2,j)(R4 + l2 + r3)

C(θ1,j)C(θ2,j)
0
0
0




Jj,2 =




C(θ1,j)C(θ2,j)(R4 + l2 + r3)
−S(θ1,j)S(θ2,j)(R4 + l2 + r3)

S(θ1,j)C(θ2,j)
0
0
0




Jj,3 =




0
−C(θ2,j)(R4 + l2 + r3)

S(θ2,j)
0
0
0




From Figure (4) the orientation matrix of
(x6,j , y6,j , z6,j) with respect to the frame (x0, y0, z0)
can be obtained by,

A0j =




Cos φ1,j Sinφj 0
−Sinφj Cosφj 0

0 0 1


 (27)

5.1 Simulation results

In order to show the effectiveness of proposed ap-
proach,we consider three identical 6-DOF manipula-
tors grasping a rigid object ,the base of each robot
is located at a distance of a1 see figure(6),We de-
note Xi ∈ <6 where : Xi = [Pxi, Pyi, Pzi, θi, φi, ψi]

T

represents the vector Cartesian position and orienta-
tion of the end-effector of robot i . Furthermore the
load vector coordinates (force tensor) at the object
is F = [−5, 10,−250, 3, 1, 2]T , µ = 0.05 the static
coefficient of friction
some simulations were conducted under Matlab. We
consider that the object rotate on the axis and si-
multaneous deplaced on Z0.

For the objective function Eq (14), the weighting
matrix are choosen as follow : p = 0 and Q = I
(the identity matrix).
The figure 6 shows the trajectory of the object in
the X-Y-Z suported with the three robots. The as-
sociated joints coordinates are obtained by using the
direct and inverse geometric model (Eq (2)and Eq
(3)). In the figures 7-9, the force distribution of the
object are given. We can show that, this distribution
validate the following force equilbrium equation :

Σfxj = Fx, , Σfyj = Fy, Σfzj = Fz

Elsewhere, the z-force components fzj are never neg-
ative, respecting the contact constraint. We can also
show that the constraint Eq (6) are always satisfiyed
as shown in figure 10 for the robot(j) ,j=1,2,3 where
the curve fx2

j +fy2
j is always under the curve µ2fz2

j

−60 −40 −20 0 20 40 60 80−50

0

50

0

10

20

30

40

50

60

70

robot 1

robot 2

robot 3

object

Figure 6: View of the object suported by three
robots

Figure 7: Forces on the first robot
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j ≤ µ2fz2
j satisfaction

6 Conclusion

In this paper, the authors have presented the force
distribution problem in the case of multiple manip-
ulators system. First, the robot inverse and direct
geometric models where presented. Then, the real
time force distribution problem where formulated in
terms of non linear programming problem. After
problem size reduction and transformation, the ini-
tial problem is solved in terms of quadratic program-
ming problem. Simulations results where presented.
Actually, we are working on the generalisation of this
approach at n > 3 robots case. Finaly, a new learn-
ing approach is under developpment for real-time op-
erationnal space control of the system.
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