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ABSTRACT 
A linear system with scalar control and disturbance is 

considered. The robust controllability of this system to a 

given target set is studied in the classes of linear and 

saturated linear strategies. In previous works, the 

analysis of this problem was limited to continuous sign-

constant gains. Such an approach has been inspired by 

those practical problems, where the control coefficient 

function in the scalar system, corresponding to the 

original one, is sign-constant. For systems of sign-

varying control coefficient functions using a sign-

varying discontinuous gain is proposed. It is shown that 

using such a gain considerably increases the robust 

controllability set of the corresponding strategy. 

 

Keywords: linear controlled system, disturbance, linear 

feedback strategy, saturated linear feedback strategy, 

robust controllability set  

 

1. INTRODUCTION 

Controllability is one of the basic system properties. 

This property has been well studied for systems without 

uncertainties by using an open-loop control (Kalman, 

1960; Kwakernaak and Sivan, 1972; Bryson and Ho, 

1975; Gabasov and Kirillova, 1976). However, this 

elegant theory is not applicable to real-life systems, 

affected by unmeasurable input parameters 

(uncertainties). For such systems, controllability should 

be augmented by the robustness property with respect to 

any admissible uncertainty realization. As a rule, the 

robust controllability can be realized by a feedback 

control. In the framework of differential games of kind, 

this property (called sometimes playability) was studied 

extensively (Isaacs, 1965; Blaquiere et al., 1969; 

Krasovskii and Subbotin, 1988; Lewin, 1994). There, 

the input uncertainty (disturbance) is considered as the 

control of an opponent. Various types of robust 

feedback controllability of systems with uncertainties 

were investigated in (Petersen et al., 1992; Savkin, 

1997; Savkin and Petersen, 1999; Turetsky and Glizer, 

2004; Ganebny et al., 2006). 

The general robust controllability concept does 

not take into account possible control constraints, 

although such constraints are indispensable part of most 

practical control problems. For analysis of the robust 

controllability problem with control constraints, in 

(Glizer and Turetsky, 2012), it was developed a concept 

of a robust controllability set. According to this 

concept, the robust controllability set is constructed for 

a so-called robust transferring feedback strategy, which 

steers the closed-loop system from the maximal 

possible set of initial positions to a prescribed target set 

against any admissible disturbance. The time 

realizations of such a strategy may violate the 

prescribed hard control constraints for some initial 

positions and for some admissible disturbances. By 

taking into account the hard constraints, the maximal 

possible set of initial positions is reduced to the robust 

controllability set. If the system trajectory emanates 

from any point of this set, the corresponding time 

realization of the robust transferring strategy satisfes the 

control constraint, robustly with respect to all 

admissible disturbances. 

In (Glizer and Turetsky, 2012), two classes of 

robust transferring strategies – linear and saturated 

linear – have been studied. The gains of these strategies 

were assumed to be non-zero and smooth, which means 

that they are sign-constant. Such gains are effective in 

the case where the control coefficient function in the 

scalar system, corresponding to the original one, is sign-

constant. However, a non-minimum phase controller, 

which can be found in some applications, leads to a 

sign- varying control coefficient function. In this case, 

the robust controllability set of a strategy with a sign-

constant gain becomes small or even empty. In this 

paper, we propose to use non-zero sign-varying gains 

with the sign opposite to the sign of the control 

coefficient function. Note that such gains are 

necessarily discontinuous. It is shown that such 

extension of the class of admissible gains enlarges 

considerably the robust controllability sets of  linear 

strategies and of saturated linear strategies. 
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2. PROBLEM STATEMENT 

 

2.1. Original Controlled System  
Consider a controlled dynamic system  

 

= ( ) ( ) ( ) ( ), 0 ,
f

x A t x b t u c t v f t t t+ + + ≤ ≤ɺ  (1) 

 where 
n

x R∈  is a state vector; 
1

u R∈  and 
1

v R∈  

are the control and the disturbance, respectively; 
f

t  is a 

prescribed final instant of time; the matrix-valued 

function ( )A t  and the vector-valued functions ( )b t , 

( )c t , ( )f t  are continuous on [0, ]
f

t . 

The control and the disturbance satisfy the constraints  

 

| | ,
u

u ρ≤                                                                    (2) 

| | ,
v

v ρ≤                                                                      (3) 

 

where 
u

ρ , 
v

ρ  are given positive constants. 

Definition 1  A function = ( , )u u t x , 

( , ) {( , ) : [0, ), }n

x ft x t x t t x R∈ ∈ ∈S ≜ , is called 

an  admissible feedback strategy for the system (1), if 

the corresponding closed-loop system has a unique 

absolutely continuous solution ( )x t , [0, )
f

t t∈ , for 

any admissible disturbance ( )v t  and for any initial 

condition 0 0( ) =x t x , 0 0( , )
x

t x ∈S . It is also 

assumed that there exists  

 

0

( ) ( ).limf
t t

f

x t x t
→ −

≜  (4) 

The target set is the linear manifold in ( , )t x -space  

 

0= {( , ) : = , = 0},T

x ft x t t d x d+T  (5) 

 

where 1 2= ( , , , )T n

n
d d d d R∈…  is a prescribed non-

zero vector, 0d  is a prescribed scalar. 

The control objective is to bring the system (1) 

from a given initial position 0 0( ) =x t x , 

0 0( , )
x

t x ∈S , to the target set (5), respecting the 

control constraint (2), by means of an admissible 

feedback strategy ( , )u t x , for all admissible 

disturbances ( )v t . 

Definition 2  An admissible strategy is called  robust 

transferring from a given initial position 0 0( , )
x

t x ∈S  

to 
x
T , if for any admissible ( )v t : ( )

f x
x t ∈T . It is 

called robust transferring from 
x x
⊆M S  to 

x
T , if it 

is robust transferring from any point 0 0( , )
x

t x ∈M  to 

x
T . 

Let, for a given admissible strategy, the set 
max

x x
⊆M S  be the maximal set, from which it is 

robust transferring to 
x
T . The set 

max max= ( ( ))
x x

u ⋅M M  is called the  robust 

transferrable set of the strategy ( )u ⋅ . 

Definition 3  The subset = ( ( ))
x x

u ⋅C C  of the robust 

transferrable set 
max

x
M  is called the  robust 

controllability set of ( )u ⋅ , if: 

(i) for any initial point 0 0( , )
x

t x ∈C  and any 

admissible disturbance, the time realization of ( , )u t x  

along the trajectory = ( )x x t  satisfies the control 

constraint (2): 

 

0| ( , ( )) | , [ , ).
u f

u t x t t t tρ≤ ∈  (6) 

     

  (ii) for any initial point 
max

0 0( , ) \
x x

t x ∈M C  there 

exist an admissible disturbance and a time moment 

1 0[ , )
f

t t t∈ , such that  

 

1 1| ( , ( )) |> .
u

u t x t ρ  (7) 

 

2.2. Scalarization  

Let ( , )t τΦ , 0
f

t tτ≤ ≤ ≤ , be the fundamental 

matrix of the homogeneous system corresponding to 

(1). By the non-homogenous transformation of the state 

variable in (1),  

0

= ( , ) =

( , ) ( , ) ( ) ,

t
f

T

f f

t

z z t x

d t t x t f d dτ τ τ
 
 Φ + Φ +
 
 

∫
 (8) 

 this system is reduced (Glizer and Turetsky, 2012; 

Gutman, 2006) to the scalar equation  

 

1 2= ( ) ( ) ,z h t u h t v+ɺ  (9) 

 

 where  

 

1

2

( ) = ( , ) ( ),

( ) = ( , ) ( ).

T

f

T

f

h t d t t b t

h t d t t c t

Φ

Φ
 (10) 

 Note that due to the continuity of ( )A t , ( )b t  and 

( )c t , the functions 1( )h t  and 2 ( )h t  are continuous on 

[0, ]
f

t . For the scalar system (9), the target set (5) 

becomes  
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= { ,0}.
z f

tT  (11) 

For such scalar systems, the definitions 1 – 3 are 

reformulated. 

Definition 4  A function = ( , )u u t z , 

( , ) {( , ) : [0, ), }z

z ft z t z t t z R∈ ∈ ∈S ≜ , is called 

an  admissible feedback strategy for the system (9), if 

the corresponding closed-loop system has the unique 

absolutely continuous solution ( )z t , [0, )
f

t t∈ , for 

any admissible disturbance ( )v t  and for any initial 

condition 0 0( ) =z t z , 0 0( , )
z

t z ∈S . It is also assumed 

that there exists  

0

( ) ( ).limf
t t

f

z t z t
→ −

≜  (12) 

 Definition 5  An admissible strategy ( , )u t z  is called  

robust transferring from a given initial position 

0 0( , )
z

t z ∈S  to 
z
T , if for any admissible ( )v t : 

( )
f z

z t ∈T . It is called robust transferring from 

z z
⊆M S  to 

z
T , if it is robust transferring from any 

point 0 0( , )
z

t z ∈M  to 
z
T , 

For a given admissible strategy, let the set 
max

z z
⊆M S  be the maximal set, from which it is 

robust transferring to 
z
T . 

Definition 6  The set 
max= ( ( ))

z z z
u ⋅ ⊆C C M  is called 

the  robust controllability set of ( )u ⋅ , if for any initial 

point 0 0( , )
z

t z ∈C  and any admissible disturbance, the 

time realization of ( , )u t z  along the trajectory 

= ( )z z t  satisfies the control constraint (2):  

 0| ( , ( )) | , [ , ).
u f

u t z t t t tρ≤ ∈  (13) 

Remark 1 Let the strategy ( , )u t z  be robust 

transferring for the system (9) from 
z z
⊆M S  to 

z
T . 

In (Glizer and Turetsky, 2012), it is proved that if the 

strategy  

 ( , ) = ( , ( , )),u t x u t z t xɶ  (14) 

 where ( , )z t x  is given by (8), is admissible for the 

system (1), then it is robust transferring for this system 

from  

 0 0 0 0 0= {( , ) : ( , ( , )) }
x z

t x t z t x ∈M M  (15) 

 to the target set  (5). This yields that if ( ( ))
z

u ⋅C  is the 

robust controllability set of ( , )u t z , then the set  

 0 0 0 0 0= {( , ) : ( , ( , )) ( ( ))},
x z

t x t z t x u∈ ⋅C C  (16) 

 is the robust controllability set of ( , )u t xɶ , given by 

(14). 

Remark 1 allows to confine the following 

analysis only to the scalar case. 

 

2.3. Previous Results  

In this section, the main results of the book (Glizer and 

Turetsky, 2012, Chapters 2 – 3) on the construction of 

the robust controllability sets for linear and saturated 

linear robust transferring strategies are briefly 

summarized. 

 

2.3.1. Linear Strategy 

Let us introduce the characteristic numbers 1 0N ≥ , 

1C , 2 0N ≥ , 2C  of the coefficient functions 1( )h t  

and 2 ( )h t  of (9): assuming that that the limit exists, 

 

0

( )
0, = 1,2.lim

( )

i
iN

it t
f f

h t
C i

t t→ −
≠

−
≜  (17) 

 

 It is assumed that  

 

2 1.N N≥                                                                (18) 

 

Consider the linear strategy  

 

( , ) = ( ) ,u t z K t z  (19) 

 

 where the gain function ( )K t  satisfies the following 

conditions:   

  (I)  ( ) 0K t ≠  for [0, )
f

t t∈ . 

  (II)  ( )K t  is continuously differentiable for 

[0, )
f

t t∈ . 

  (III)  one of two following limit conditions is satisfied: 

 

0

( ) = ,lim
t t

f

K t
→ −

+∞  (20) 

 

or 

 

0

( ) = ,lim
t t

f

K t
→ −

−∞  (21) 

 

   (IV)  there exists > 1
K

N  such that 

 

0

( )( ) = 0,lim
N

K
f

t t
f

K t t t C
→ −

− ≠ɺ  (22) 

 

    (V)  either 

 

1 1> 2, and < 0,
K

N N CC+  (23) 

 

or 
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2

1 1= 2, and < ( 1) ,
K K

N N CC N+ − −  (24) 

The set of all gains ( )K t , satisfying the 

conditions (I) – (V), is denoted as K . If the condition 

(18) is satisfied, then the linear strategy (19) with the 

gain ( )K t ∈K  is robust transferring from 
z
S  to 

( ,0)
f

t . 

Let us introduce the function  

 

*

1 2

( , ( )) =

( ( )) ( ) | ( ) |,signu v

t K t

Z K t h t h tρ ρ− −ɺ

P
 (25) 

 

where  

 

*( ) .
| ( ) |

uZ t
K t

ρ
≜  (26) 

 

 Assume that the set of zeros of the function 

( , ( ))t K tP  on (0, )
f

t  is finite (including empty). Due 

to this assumption, there exists 0 <
f

tδ ≤  such that 

two cases can be distinguished: 

 Case 1:  

 

( , ( )) > 0, ( , ).
f f

t K t t t tδ∈ −P  (27) 

 

 Case 2:  

 

( , ( )) < 0, ( , ).
f f

t K t t t tδ∈ −P  (28) 

 

Let for a given ( )K t , the set T  consist of all distinct 

zeros of  ( , ( ))t K tP  with positive slope. If ≠ ∅T , 

it can be written as 2, where 1 2< < <
p

t t t… . Let in 

this case 0( )
i

Z t , = 1, ,i p… , be the solution of the 

terminal value problem  

 

0 0 1 0 2 0/ = ( ) ( ) | ( ) |,
v

dZ dt K t h t Z h tρ+  (29) 

*( ) = ( ),
i i

Z t Z t  (30) 

 

 on the interval [0, ]
i

t . In Case 2, an additional function 

1 0( )
p

Z t+  is defined as the solution of the equation (29) 

with the initial condition  

 

1
0

(0) = ( ),limp
t t

f

Z F t+
→ −

 (31) 

 where  

2

0

| ( ) | ( , ) | ( ) |

( ) ,
| ( ) | ( ,0)

t

u v

t

K t G t h d

F t
K t G t

ρ ρ ξ ξ ξ− ∫
≜  (32) 

1( , ) = exp( ( ) ( ) ).

t

G t K h d
ξ

ξ η η η∫  (33) 

Let r  be the maximal index ( 1,r p∈  in Case 1 

or 1, 1r p∈ +  in Case 2), such that the trajectory 

0 0= ( )
r

z Z t  intersects the 0t -axis, and 

= ( ( )) (0, )
c c r

t t K t⋅ ∈  be the last time moment such 

that ( 0) > 0
r c

Z t + , ( 0) < 0
r c

Z t − . If no trajectory 

intersects the 0t -axis, then = 0
c

t . If =
c f

t t , then the 

robust controllability set ( ( ))
z

K ⋅C  of the strategy (19) 

is empty. 

Theorem 1  Let for a given gain ( )K t ∈K , Case 1 be 

valid. Then ( ( ))
z

K ⋅ ≠ ∅C . 

      If ≠ ∅T , then  

 

0 0 0( ( )) = {( , ) : < ,
z c f

K t z t t t⋅ ≤C  

 
*

0 0 0 0| | min{ ( ), ( ), , ( )}}.r pz Z t Z t Z t≤ …  (34a) 

 

      If = ∅T , then  

 
*

0 0 0 0 0( ( )) = {( , ) : < , | | ( )}.z c fK t z t t t z Z t⋅ ≤ ≤C

(34b) 

Theorem 2  Let for a given gain ( )K t ∈K , Case 2 be 

valid. If ( ( ))
z

K ⋅ ≠ ∅C , it is given as follows.   

     If ≠ ∅T , then  

 

0 0 0( ( )) = {( , ) : < ,
z c f

K t z t t t⋅ ≤C  

*

0 0 0 0 1 0| | min{ ( ), ( ), , ( ), ( )}}.r p pz Z t Z t Z t Z t+≤ …  

 (35a) 

     If = ∅T , then 

0 0 0( ( )) = {( , ) : < ,
z c f

K t z t t t⋅ ≤C  

*

0 0 1 0| | min{ ( ), ( )}}.pz Z t Z t+≤  (35b) 

                       

 Remark 2 It follows from Theorems 1 and 2 that 

the robust controllability set ( ( ))
z

K ⋅C  is symmetric 

with respect to the 0t -axis, and is described as  

 

0 0 0 0 0

( ( )) =

{( , ) : < , | | ( )}.

z

c f b

K

t z t t t z Z t

⋅

≤ ≤

C
 (36) 
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The function 0( )
b

Z t  denotes the respective boundary 

functions in (34) – (35). 

 

2.3.2. Saturated Linear Strategy 

Let us consider the saturation of (19) for ( , )
z

t z ∈S :  

 

s ( , ) = Sat( ( ) ) =

, ( ) > ,

( ) , | ( ) | ,

, ( ) < .

at

u u

u

u u

u t z K t z

K t z

K t z K t z

K t z

ρ ρ
ρ

ρ ρ




≤
 − −

                                    (37) 

 

Remark 3  This saturated linear strategy respects by 

definition the control constraint along any trajectory of 

(9). Therefore, its robust controllability set 
s s= ( ( ))at at

z z
K ⋅C C  consists of all the points 

0 0( , )
z

t z ∈S , from which this strategy is robust 

transferring. In general, the strategy (37) is not robust 

transferring from the entire set 
z
S  to the target point 

( ,0)
f

t . However, it is robust transferring at least from 

the robust controllability set 
z
C  of the strategy (19). In 

this subset, ( )K t z  is robust transferring and 

| ( ) ( ) |
u

K t z t ρ≤ . Thus, for any gain ( )K t ∈K ,  

 
s ( ( )) ( ( )).at

z z
K K⋅ ⊇ ⋅C C                                          (38)                                                                                                 

 

The inclusion (38) is illustrated by Fig. 1, where 

4
f

t = . The strip 

{ }0 0 0 0( , ) : [0,4], ( , )z t z t z= ∈ ∈ −∞ +∞S   is the 

robust transferrable set of a linear robust transferring 

strategy ( , ) ( )u t z K t z= . The set, denoted as I,  

consists of all initial positions, from which the time 

realizations of the strategy ( ) ( )u K t z t=  satisfy the 

constraint (2). This also implies that the saturated linear 

stratefgy ( )Sat ( ) ( )u K t z t=  is robust transferring 

from this set.  The set II is the set of all initial positions, 

for which | ( ) ( ) |
u

K t z t ρ> , while the saturated linear 

strategy still remains robust transferring. The set III 

contains all the points of  
z
S , for which  

| ( ) ( ) |
u

K t z t ρ>  and  the saturated linear strategy is 

not robust transferring. In other words, 

( ( ))
z

I K= ⋅C ,
s ( ( )) ( ( ))at

z z
II K K= ⋅ ⋅�C \C  and 

s ( ( ))at

z z
III K= ⋅� \CS . From the practical viewpoint, 

the inclusion (38) means that implementing the 

saturated linear strategy is preferable than the 

corresponding linear strategy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  1: Illustration of the Inclusion (38) 

 

Let ( ; , )z t t z , [ , )
f

t t t∈ , denote the solution of the 

initial value problem  

 

1 s 2= ( ) ( , ) ( ) , ( ) = .
at

z h t u t z h t v z t z+ɺ  (39) 

Theorem 3  If 
s ( ( ))at

z
K ⋅ ≠ ∅C , it is given by  

 
s

0 0 0 0 0 0

( ( )) =

{( , ) : [ , ), | | ( )},

at

z

s s

c f

K

t z t t t z Z t

⋅

∈ ≤

C
 (40) 

where  

 

0 0 0 0

=

min{ [0, ) :  0 : ( ; , ) = 0},

s

c

f f

t

t t z z t t z∈ ∃ ≥
 (41) 

0 0 0 0( ) = ( ; , ),s s s

c
Z t z t t z  (42) 

0 0 0= max{ 0 : ( ; , ) = 0}.s s

f cz z z t t z≥  (43) 

 

Introduce the function  

 

 1 2( ) ( | ( ) | | ( ) |) .

t
f

m u v

t

Z t h h dρ ξ ρ ξ ξ−∫≜  (44) 

 

Theorem 4  Let  

 

1( ) 0, [0, ).
f

h t t t≠ ∈  (45) 

 

 and  

 

( ) > 0, [0, ).
m f

Z t t t∈  (46) 

 

 Then  

 
s

0 0 0 0 0

( ( ))

{( , ) : [0, ), | | ( )}.

at m

z z

f m

K

t z t t z Z t

⋅ ⊆

∈ ≤

C C

≜
 (47) 
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 Moreover,  

 
s ( ( )) = ,at m

z z
K ⋅C C  (48) 

 

 if and only if  

 

/ | ( ) | ( ), [0, ).
u m f

K t Z t t tρ ≤ ∈  (49) 

 

Remark 4  Due to (Glizer and Turetsky, 2008), for any 

admissible robust transferring strategy ( , )u t z :  

 

( ( )) .m

z z
u ⋅ ⊆C C  (50) 

 

This means that, subject to the conditions (45), (46) and 

(49), the robust controllability set 
s ( ( ))at

z
K ⋅C  is 

maximal for the system (9). 

 

3. NEW RESULTS 

For any ( )K t ∈K , let define the sign-varying gain  

 

1 1

1 1

( ) | ( ) |, ( ) 0,sign

( ) =

( 0) | ( 0) |, ( ) = 0,sign

h t K t h t

K t

h t K t h t

− ≠


− + +

ɶ

 [0, )
f

t t∈                                                          (51) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  2a: Illustration of the Equation (51) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  2b: Illustration of the Equation (51) 

 

The construction of the gain  ( )K tɶ  is illustrated by 

Fig. 2. The set of all such functions is denoted ɶK . 

Remark 5  Due to (51), for all ( )K t ∈ ɶɶ K : 

| ( ) |K t ∈ɶ K . 

Let extend the set of admissible gains to the set  

 

1 = .∪ ɶK K K  (52) 

 

 For ( )K t ∈K , the robust controllability set of a 

linear and a saturated linear strategies is constructed by 

Theorems 1 – 2 and Theorem 3, respectively. In this 

section, the sets ( ( ))
z

K ⋅C  and 
s ( ( ))at

z
K ⋅C  are 

constructed for ( )K t ∈ ɶɶ K . 

 

3.1. Linear Strategy 

Lemma 1  Let ( )K t ∈K  and ( )K t ∈ ɶɶ K  correspond 

to ( )K t  by (51). Then for any initial position 

0 0( , )
z

t z ∈S  and for any admissible disturbance 

( )v t , the initial value problem  

 

1 2 0 0= ( ) ( ) ( ) , ( ) = ,z h t K t z h t v z t z+ɶɺ  (53) 

 

 is equivalent to the initial value problem  

 

1 2 0 0= | ( ) || ( ) | ( ) , ( ) = .z h t K t z h t v z t z− +ɺ  (54) 

 

 Proof. This lemma directly follows from the definition 

(51) of the gain ( )K tɶ .    

          □  

Theorem 5  Let ( )K t ∈K  and ( )K t ∈ ɶɶ K  

correspond to ( )K t  by (51). Let 1( )h t  has only a 

finite number of distinct zeros on the interval [0, ]
f

t . 

Then the robust controllability set ( ( ))
z

K ⋅ɶC  is 

constructed by applying Theorems 1 –2 to the system  

 

1 2= | ( ) | ( ) ,z h t u h t v− +ɺ  (55) 

 

 with the strategy  

 

( , ) =| ( ) | .u t z K t z  (56) 

 

 Moreover,  

 

( ( )) ( ( )).
z z

K K⋅ ⊇ ⋅ɶC C  (57) 

  

Proof. The first statement of the theorem is a direct 

consequence of Remark 5 and Lemma 1. In order to 
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prove the inclusion (57), it is sufficient to show that if 

0 0( , ) ( ( ))
z

t z K∈ ⋅C , then 0 0( , ) ( ( ))
z

t z K∈ ⋅ɶC . For 

this, let us show that any trajectory of the system (53), 

starting from 0 0( , ) ( ( ))
z

t z K∈ ⋅C , does not leave 

( ( ))
z

K ⋅C . Assume the opposite, i.e. that for some 

initial point 0 0( , ) ( ( ))
z

t z K∈ ⋅C  and for some 

admissible disturbance ( )v t , the trajectory 

2 0 0( ; , , ( ))z t t z v ⋅  of the system (53) leaves ( ( ))
z

K ⋅C  

through its upper boundary. This means that there exist 

the time moment 1 0[ , )
f

t t t∈  and a number > 0δ  

such that 2 1 0 0 1( ; , , ( )) = ( )
b

z t t z v Z t⋅  and for 

1 1( , )t t t δ∈ + :  

 

2 0 0( ; , , ( )) > ( ).
b

z t t z v Z t⋅  (58) 

 

 Note that  

 

1 1| ( ) ( ) | ( ) ( ) , 0.h t K t z h t K t z z− ≤ ≥  (59) 

 

 Let 1 1 1( ; , ( ), ( ))
b

z t t Z t v ⋅  denote the trajectory of the 

system (9) for = ( )u K t z  and the same disturbance 

( )v t  as in (53), starting from the boundary point 

1 1( , ( ))
b

t Z t . Then, by applying Differential Inequality 

Theorem (Hartman, 1964) to the systems (53) and (9) 

with = ( )u K t z , and by using the inequality (59),  

 

2 0 0 1 1 1

1 1 1

( ; , , ( )) ( ; , ( ), ( )),

( , ),

b
z t t z v z t t Z t v

t t t δ

⋅ ≤ ⋅

∈ +
 (60) 

 

where 10 < δ δ≤ . By definition of the robust 

controllability set ( ( ))
z

K ⋅C ,  

 

1 1 1

1 1 1

( ; , ( ), ( )) < ( ),

( , ).

b b
z t t Z t v Z t

t t t δ

⋅

∈ +
 (61) 

 

The inequalities (60) – (61) contradict the inequality 

(58), meaning that the trajectory 2 0 0( ; , , ( ))z t t z v ⋅  

cannot leave ( ( ))
z

K ⋅C  through its upper boundary. 

The fact that it also cannot leave ( ( ))
z

K ⋅C  

through its lower boundary, is proved similarly by using 

the inequality  

 1 1| ( ) ( ) | ( ) ( ) , < 0.h t K t z h t K t z z− ≥  (62) 

                    □  
 

3.2. Saturated Linear Strategy 

Similarly to Lemma 1 and Theorem 5 in the case of a 

linear strategy, the following lemma and theorem hold. 

Lemma 2  Let ( )K t ∈K  and ( )K t ∈ ɶɶ K  correspond 

to ( )K t  by (51). Then for any initial position 

0 0( , )
z

t z ∈S  and for any admissible disturbance 

( )v t , the initial value problem  

 

1 2 0 0= ( )Sat( ( )) ( ) , ( ) = ,z h t K t z h t v z t z+ɶɺ  (63) 

 

 is equivalent to the initial value problem  

 

1 2

0 0

= | ( ) |S (| ( ) | ) ( ) ,

( ) = .

z h t at K t z h t v

z t z

− +ɺ
 (64) 

 

Theorem 6  Let ( )K t ∈K  and ( )K t ∈ ɶɶ K  

correspond to ( )K t  by (51). Let 1( )h t  has only a 

finite number of distinct zeros on the interval [0, ]
f

t . 

Then the robust controllability set 
s ( ( ))at

z
K ⋅ɶC  is 

constructed by applying Theorem 3 to the system  

 

1 2= | ( ) | ( ) ,z h t u h t v− +ɺ  (65) 

 

 with the strategy  

 

( , ) = S (| ( ) | ).u t z at K t z  (66) 

 

Moreover,  

 
s s( ( )) ( ( )).at at

z z
K K⋅ ⊇ ⋅ɶC C  (67) 

 

The following theorem is a direct consequence of 

Theorem 4 and Lemma 2. 

 

Theorem 7  Subject to the condition (46), the robust 

controllability set 
s ( ( ))at

z
K ⋅ɶC  is maximal for the 

system (9) if and only if the inequality (49) is satisfied. 

 

4. INTERCEPTION PROBLEM 

In this section, the results of Section 3 are applied to an 

interception problem with non-minimum phase 

controllers. Consider a planar engagement between two 

point-mass objects (pursuer and evader). The velocities 

p
V  and 

e
V  and the bounds of the lateral acceleration 

commands 
max

pa  and 
max

e
a  of the objects are constant. 

The geometry of such planar engagement is presented in 

Fig. 3. 
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Figure  3: Interception Geometry 

 

In this paper, in contrast with (Glizer and Turetsky, 

2012; Shinar, 1981),  it is assumed that the controllers 

of the pursuer and the evader are described by non-

minimum phase transfer functions  

 

( ) = , = , ,
1

i
i

i

s b
H s i p e

sτ
−
+

 (68) 

 

where 
p

b , 
p

τ , 
e

b  and 
e

τ  are positive constants. 

Assuming that the aspect angles 
p

ϕ  and 
e

ϕ  are small, 

the engagement can be modeled by the system (1). In 

this system, 1x  is the relative separation between the 

objects, normal to the initial line-of-sight; 2x  is the 

relative normal velocity. Due to the non-minimum 

phase form of the transfer functions (68), the variables 

3x  and 4x  are connected to the lateral accelerations of 

the evader and the pursuer by  

 

 3

1
= ,

e

e

a x v
τ

+  (69) 

 4

1
= ,p

p

a x u
τ

+  (70) 

 

 The controls of the pursuer u  and the evader v  are the 

lateral acceleration commands, satisfying the constraints 

(2) – (3) with 
max=u paρ  and 

max=
v e

aρ , respectively. 

The final time is 0= / ( )
f p e

t r V V+ , where 0r  is the 

initial range between the objects. In this example, 

= 700
p

V  m/s, = 800
e

V  m/s, 0 = 6r  km, and, 

consequently, = 4
f

t  s. The matrix A  is  

0 1 0 0

0 0 1 1
( ) ,

0 0 1 / 0

0 0 0 1 /

e

p

A t
τ

τ

 
 − ≡

− 
 − 

 (71) 

 the vectors b  and c  are  

 

( ) (0, 1 / ,0, (1 / )) ,

( ) (0,1 / , (1 / ),0) ,

T

p p p

T

e e e

b t b

c t b

τ τ

τ τ

≡ − − +

≡ − +
 (72) 

 

0 20

20

( ) 0, = (0, ,0,0) ,

= (0) (0).

T

e e p p

f t x x

x V Vϕ ϕ

≡

−
 (73) 

 

 The objective of the pursuer is to nullify the miss 

distance 1| ( ) |
f

x t , i.e. in the target hyperplane, 

= (1,0,0,0)Td , 0 = 0d . 

In the scalar system (9):  

 

1( ) = (1 ) (( ) / ) ,
f

p p f p

p

t t
h t b t tτ ψ τ

τ

−
+ − −  (74) 

  

2 ( ) = (1 ) (( ) / ) ,
f

e e f e

e

t t
h t b t tτ ψ τ

τ

−
+ − −  (75) 

 

where ( ) exp( ) 1ψ ξ ξ ξ− + −≜ . 

 For these coefficient functions, 1 2= = 1N N , 

1 = 1/
p

C τ− , 2 = 1 /
e

C τ− , i.e. the condition (18) 

holds.   

 

Proposition 1  If  

 

1 exp( / )
> ,

(exp( / ) / 1)

f p

p

p f p f p

t
b

t t

τ

τ τ τ

− −

− + −
 (76) 

 

 then the function 1( )h t , given by (74), changes its sign 

once in the interval (0, )
f

t . Moreover, if the 

inequality(76) is not satisfied, then 1( )h t  is sign-

constant for (0, )
f

t t∈ .  

Proof. Let start with the first statement of the theorem. 

The inequality (76) is equivalent to the inequality  

 

1(0) > 0.h   (77) 

 

Note that  

 

1( ) = 0.
f

h t   (78) 

 

The derivative of the function 1( )h t  is  

1

1
( ) = exp( ( ) / ) ,p f p p

p

h t b t t bτ
τ

 
+ − − −  

 

ɺ  (79) 
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 yielding  

 

1

1
( ) = > 0.f

p

h t
τ

ɺ  (80) 

 The relations (77) – (78) and (80) guarantee that the 

function 1( )h t  changes its sign at least once in the 

interval (0, )
f

t . 

Let prove that 1( )h t  changes its sign exactly once in 

the interval (0, )
f

t . Taking into account the equation 

(85), it is sufficient to show that the derivative 1( )h tɺ  

has no more than one zero in the interval (0, )
f

t . 

Indeed, due to (79), the equation 1( ) = 0h tɺ  can be 

rewritten as  

 

exp( ( ) / ) = / (1 ),
f p p p p p

t t b bτ τ τ− − +  (81) 

 

which has no more than one zero in the interval 

(0, )
f

t . This completes the proof of the first statement 

of the proposition. The second statement is proved by 

similar arguments.                                                       □  

 

Consider the linear feedback strategy (19) with the gain  

 
2( ) = / ( ) ,fK t A t t−  (82) 

 

where > 0A . Note that the gain (82) satisfies the 

conditions (I) – (III). The characteristic numbers of this 

gain, defined by (22), are = 3
K

N , = 2C A . Note 

that 1= 2
K

N N +  and the condition 

2

1 = 2 / < ( 1) = 4p KCC A Nτ− − − −  is satisfied for  

 

> 2 .
p

A τ                                                                (83) 

 Thus, for such a gain the conditions (IV) – (V) are also 

satisfied and ( )K t ∈K . Therefore, the strategy  

 
2( , ) = / ( ) ,fu t z Az t t−  (84) 

 

where A  satisfies (83), is robust transferring from 
1= {( , ) : [0, ), }z ft z t t z R∈ ∈S  to ( ,0)

f
t . 

Example. Let = 4
f

t  s, = 0.2
p

τ  s, 
max = 30pa  

m/s
2

, = 0.5
e

b  s
1−

, = 0.2
e

τ  s, 
max = 10
e

a  m/s
2

, 

= 5A  s. For these parameters, the inequality (76) 

becomes > 0.263
p

b . In this example, 
p

b  is chosen 

as = 0.7
p

b  s
1−

. The closed-loop system, 

corresponding to the gain (82), is  

 

1
22

5 ( )
= ( ) .

(4 )

h t
z z h t v

t
+

−
ɺ  (85) 

 

The graph of the function 1( )h t  is depicted in Fig. 2. It 

is seen that this function changes the sign from positive 

to negative at = = 2.37t tɶ . Thus, due to (51),  

 
2

2

5 / (4 ) , 0 < ,
( ) =

5 / (4 ) , < 4.

t t t
K t

t t t

− − ≤


− ≤

ɶ
ɶ

ɶ
 (86) 

 

The equivalent closed-loop system (54), corresponding 

to the gain (86), is  

 
2

1 2= 5 | ( ) | / (4 ) ( ) .z h t z t h t v− − +ɺ  (87) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  5: Interception Problem: the Functions  

( , ( ))t K tP  and ( , ( ))t K tɶP  

In Fig. 5, the functions ( , ( ))t K tP  and ( , ( ))t K tɶP  

are depicted. It is seen that Case 1 (see (27)) is valid for 

both gains and 1= { } = {3.19}tT . In Fig. 6, the 

robust controllability sets of the linear control strategies 

( ( ))
z

K ⋅C  and ( ( ))
z

K ⋅ɶC  are depicted, demonstrating 

the advantage of the discontinous-sign gain 

( ( )) ( ( ))
z z

K K⋅ ⊃ ⋅ɶC C .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  6: Robust Controllability Sets of the Linear 

Control Strategies ( ( ))
z

K ⋅C  and ( ( ))
z

K ⋅ɶC  
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In Fig. 7, the robust controllability sets of the saturated 

linear control strategies 
s ( ( ))at

z
K ⋅C  and 

s ( ( ))at

z
K ⋅ɶC  

are depicted, showing that, similarly to the case of 

linear strategies, 
s s( ( )) ( ( ))at at

z z
K K⋅ ⊃ ⋅ɶC C . 

 

 
Figure  7: Robust Controllability Sets of the Saturated 

Linear Control Strategies 
s ( ( ))at

z
K ⋅C  and 

s ( ( ))at

z
K ⋅ɶC  

 

5  CONCLUSIONS 
In the paper, a linear controlled system having a sign-

varying control coefficient with bounded disturbance is 

considered. Using for such systems a linear, or a 

saturated linear control strategy with continous-sign 

gain leads to a small (sometimes even empty) robust 

controllability set. Earlier results for constructing the 

robust controllability sets of linear and saturated linear 

transferring strategies are extended to the case of a sign-

varying discontinuous gain. Such an extension is based 

on the reducing the sytem with discontinuous gain 

control to the equivalent system with a corresponding 

continuous gain control. It is shown that by replacing 

the continous gain with a properly chosen discontinous 

gain the robust controllability set is substantially 

enlarged. It is also shown that the robust controllability 

set of a saturated linear control strategy is larget than 

the robust controllability set of the corresponding linear 

control strategy. These results are illustrated by the 

example of an interception problem with non-minimum 

phase controllers of the pursuer and the evader.  
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