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ABSTRACT 
This paper focuses on some specific industrial cases in 
the area of condition monitoring, fault detection, 
diagnosis and decision support system methods. The 
paper briefly describes the cases, describes the existing 
methods, if any, and lists the specific challenges.  
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equipment, Review of industrial methods. 
 
1. INTRODUCTION 
Fault detection and diagnosis has been an active and 
important field for petrochemical plants. It has not been 
given the same level of attention in other process 
industries; especially metallurgical and material 
processing plants. But as the competition is growing in 
the world market, the fault detection and diagnosis is 
becoming important in all types of industries to reduce 
unexpected situations and to avoid unplanned 
shutdowns. The other important parameter for the 
motivation in this direction is health and safety issues 
arising from unexpected faults.  

The work presented here is a part of an initiative 
taken by Teknova to work together with local industries 
in southern Norway with a focus on methods and tools 
for fault detection, diagnosis and decision support 
systems. The first step in this initiative is to survey the 
existing methods and tools in practice. The survey was 
focused to categorize the methods in three categories: 
measurement methods, fault detection & diagnosis 
(condition monitoring) and decision support system. 
The survey is intended to look at the methods applied 
for identifying faults both in process and operating 
equipment. However, most of the work presented here 
is focused on the equipment aspects. 

In order to have a fault detection & diagnosis (or 
condition monitoring system) it is very important to 
have enough measurements from a process or 
equipment. However it is not always possible to 
measure key variables/parameters to monitor a process 
or equipment well enough. Especially the process plants 
being surveyed were metallurgical plants, where the 
operating temperatures for some process operations 
exceed 2000°C. Furthermore, the corrosive 
environment, dangerous fluids/gases and closed systems 
make it even more difficult to measure the key 
variables. For some types of equipment, e.g. pipes 
handling different types of fluids, it may be 
cumbersome to have manual periodic monitoring 
equipment. There can be situations where it is better to 

have contact-free sensors with regard to health and 
safety issues.  Even though there are lots of 
advancements in various measuring technologies, the 
application of these advanced technologies for 
metallurgical plants has to overcome a lot of challenges. 

In some cases, it is almost impossible to apply any 
technology to measure key process variables or 
performance parameters of equipment. In these 
situations, modeling plays an important role to develop 
soft sensors to estimate the immeasurable variables. In 
traditional process industry, where application of 
models for control and state estimation purposes has not 
been a practice, it is a challenge to make the transition. 
Especially, in situations where mathematical models 
cannot be applied and knowledge based and/or data-
based models are useful, it is even harder to make 
engineers interested in developing and implementing 
these kinds of models. 

For some cases, there are measurements available, 
but it is a challenge to have dedicated human resources 
to use the measurements for the purpose of condition 
monitoring of the equipment. It appears very common 
that there is a lot of historical data of the process 
measurements which is not being used for any purpose. 
The field of industrial diagnosis is not being applied at 
the same level in different process plants. The reasons 
can be many; the size of the plant, the age of the plant 
and the experience from before, availability of human 
and economic resources etc. Even in the case where 
there is an interest for using the data to gain useful 
knowledge, it is a challenge to convince other 
engineers/operators to have a transition from more 
human control to less human control in the plant.  

Decision support system plays an important role 
once a fault is detected. For the plants operated by 
operators, it is very important to have an optimal design 
of decision support systems; design of Human Machine 
Interface (HMI) screens, placement of screens, color 
design, alarm level design and display etc. For some 
critical equipment failure and unexpected process 
operating conditions, the decision support system plays 
a key role for the operators and engineers to make 
important decisions in a short time interval. 

 
1.1. Overview of the state of the art 
At this juncture, we shall give a brief overview of the 
most prominent state of the art techniques used in the 
field fault detection and diagnostics. In one hand, fault 
detection and diagnosis methods fall into two main 
families, namely, Quantitative methods 
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(Venkatasubramanian et al 2003a) and Qualitative 
methods (Venkatasubramanian et al 2003b). In the other 
hand, other taxonomies divide the later techniques into 
History based approaches and Model based approaches 
(Venkatasubramanian et al 2003c). The cross-
combination of these aforementioned taxonomies 
results into four classes illustrated in Figure 1. 

 

 
Figure 1: Classification of failure detection and 
prediction techniques. 
 
Failure isolation refers to the ability of the diagnostic 
methodology to discriminate between the different types 
of failures and trace their root causes (Dash and 
Venkatasubramanian 2000). Fault isolation seeks to 
identify a cause-effect relationship that is susceptible of 
explaining the reason behind system deviation. In this 
perspective, Fault trees (Lapp and Powers 1977) have 
been extensively used for failure isolation. They are 
based on backward reasoning where the symptoms of 
the failure are first identified and then traced back using 
backward chaining to a possible root cause that can 
justify the process’s mal-functioning.  

Bayesian networks are a popular technique for 
fault diagnosis which bears similarities with the fault 
tees (Przytula and Thompson 2000). Statistical 
knowledge of the process and failure occurrences are 
summarized in a graph which edges represent cause-
effect relationships. In the absence of statistical 
knowledge, the graph can be constructed by knowledge 
experts that specify the conditional probabilities of the 
occurrence of a system event given observations 
(symptoms) in a form of tables attached to each node. 
Bayesian networks have shown great permit in complex 
systems where human expert attention might easily 
become overwhelmed by the overabundant possible root 
causes of a failure. Usually, the hypothesis that 
dominates the other hypothesizes in terms of probability 
is identified as the root cause of the failure. 
Nevertheless, a sorted list of the eventual root causes of 
the failure ordered by their respective probabilities 
given the symptoms can assist the human expert in the 
presence of uncertainties. Case Based Reasoning (Guiu 
et al 1999) is a widely used technique for identifying 
faulty situations by leveraging historical knowledge of 
the process. In Case Based Reasoning, the status of the 
monitored process is compared to previously 
encountered failure situations from historical data 

accumulated over experience. A distance similarity 
measure is employed in order to situate the current 
status vis-à-vis previously encountered failures. The 
later distance is usually computed in form of a weighted 
combination of the difference between the current status 
of the monitored process variables and the historical 
process data. Nevertheless, the main shortcoming of 
Case based reasoning is its inability to predict and 
recognize novel classes of failures that are not present 
in the historical data. It is worth mentioning that 
Bayesian Networks and Case based reasoning belong to 
the class of qualitative based methods. Knowledge 
based Expert Systems (Becraft and Lee 1993) are 
another widely used method for failure diagnostics and 
prediction. Knowledge based Expert Systems are 
constructed via collaboration between a knowledge 
engineer and domain experts. The simplest form of 
knowledge based expert system is defined by 
antecedent part and a consequence part which maps 
these system observations to a fault mode. These rules 
reflect the expert knowledge experience about the 
system. There are three main challenges when 
constructing such expert systems: the issue of 
completeness of the set of rules to cover all states of the 
system, the eventual huge number of rules and the 
possibility of creating conflicting rules. Neural 
networks (Hoskins and Himmelblau 1998) are a form of 
quantitative methods that are based on the history of the 
process. Neural Networks are particularly useful in the 
absence of a model of a physical model of the process 
being monitored. Neural networks are able to extract 
hidden knowledge from process data by deducing a 
mathematical mapping between the inputs of the 
process and the classes of failures. When it comes to 
failure diagnostics and prediction, the Neural Network 
is fed by training data from the different failure modes 
as well as from the normal operations modes. The 
Neural network consists of different layers of neurons 
where the input of one layer serves as output to the next 
layer. Back-propagation is probably the most successful 
technique for updating the weights of the neurons in a 
Neural Network. In Back-Propagation update mode, the 
weights are adjusted using a gradient approach in order 
to mitigate the error between the computed output of the 
neural network and the expected output from the labeled 
training data. The main shortcomings of Neural 
Networks are twofold. First, Neural networks give good 
performance in already known situations while usually 
fail to predict novel failures for which there is no 
training data. In addition, it is not possible to express 
and extract the learned rules of the neural networks in a 
human readable form. 

Machine Learning techniques have been also 
widely deployed in the area failure diagnosis and 
prediction. The adopted Machine Learning techniques 
can be broadly divided into two main classes, namely 
Regression techniques and Classification techniques. 
Regression paradigms aim to deduce mathematical 
expressions that fit the training data. Principal 
Component Analysis /Partial Least Squares (Wold et al 
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1984) have received a lot of attention when it comes to 
creating a statistical model of the failures occurrences 
by reducing the dimension of the space containing the 
variable of the monitored process and then applying 
multivariate regression techniques in order to relate the 
process input variables to the output variables.  
Gaussian Processes (Rasmussen and Williams 2006) 
have recently emerged as intriguing technique for non-
linear regression that started to gain popularity. Pattern 
recognition classifiers have also been used in the field. 
These techniques include Support Vector Machines 
(Pöyhönen et al 2002) and Decision trees. In some 
cases, the different classes of faults cannot be separated 
in a low dimensional space by a linear classifier; 
therefore Kernel based techniques are used to map the 
low dimensional space into a high dimensional space 
where the faults classes are separable. Other statistical 
methods include Clustering and Data Mining 
techniques. Clustering and Data Mining techniques are 
two forms of quantitative based techniques that have 
found many applications in the field of failure 
diagnosis. It is worth mentioning that clustering is a 
form of unsupervised learning in contrast to 
classification techniques such as Support vector 
machines and decision trees that are forms of supervised 
learning. In Data Mining, association mining rules is a 
known method (Agrawal and Srikant 1994) that permits 
to discover frequent episodes in event sequences which 
are able to predict the failure in advance. 

Model based techniques are based on deep 
knowledge of the mathematical model that governs the 
monitored process. Kalman filters (Frank et al 2000) are 
probably the most popular model based techniques for 
failure prediction and diagnostics. The advantage of 
Kalman filter resides in their recursive update form 
which makes it computationally and memory efficient. 
In fact, Kalman filter relies on the last measurement in 
order to create an estimate of the state of the system and 
does not consequently require storing the whole 
historical data of the process.  
 Residual based methods (Gertler and Monajemy 
1995) resort to the concepts of residual generation 
which represents the difference between various 
functions of the outputs and the expected values of 
these functions under normal (no-fault) conditions. The 
procedures for residual generation vary from hardware 
redundancy (voting schemes) to complex state and 
parameter estimation methods.  

The following industrial cases are presented in the 
sections to follow; Condition monitoring of pipes, 
Condition monitoring of valves, Condition monitoring 
of heat exchanger tubes, Water leakage detection & 
control and Failure prediction of hydraulic systems.  

 
2. CONDITION MONITORING OF PIPES 
One of the industrial cases reported in this paper is 
about condition monitoring of pipes belonging to a 
plant in the process industry. The objective is twofold: 
to perform cost-effective condition based monitoring, 

and to fulfill government imposed rules about health, 
safety and environment. 

In the case studied, the company has a large 
number of pipes in use, with an accumulated length of 
many kilometers.  For pipes carrying hazardous 
substances, condition monitoring is mandatory. The 
owner of the plant is responsible for a safe operation, 
and has to come up with adequate procedures. This 
chapter describes an effort to meet these requirements. 
The majority of the pipes are thin-walled, most of them 
with 3 to 6 mm wall thickness. 
 The methods considered, in addition to visual 
inspection, are ultrasonic wall thickness, x-ray, and 
pressure testing. For the critical pipes at this plant, 
acceptance criteria for wall thickness loss after 
ultrasonic inspection are defined as follows:  

 
 0-5% is OK within measurement uncertainty. 
 5–10% Increasing attention during subsequent 

inspections. 
 >10 % Physical check-out, disassembly, X-ray 

inspection, replacement. 
 
 A plan for measurement points has been made, 
limiting the total number of check points to 1000, 
taking into account the consequences of leakage, and 
experience with location of problem spots. Locations at 
the pipes with highest flow velocities have been chosen, 
such as the outside of pipe bends, and especially bends 
immediately downstream from pumps, see Figure 2. 

 
Figure 2: Location of inspection points at the outside 
of a bend. 
 
 
 Also, points for inspection are selected downstream 
from reductions in cross-section, near the first weld, 
where the flow velocity is increased, see Figure 3. 

 
Figure 3: Location of inspection points after 
reduction in cross-section.  
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 With completely fluid-filled cross-sections, points 
are selected at the top, bottom and on the sides (at the 3, 
6, and 12 o’clock positions), see Figure 4.  

 
Figure 4: Location of inspection points for 
completely fluid filled pipes. 

 
 With partly filled pipes, inspection is made at the 
bottom and at the normal liquid level, see Figure 5.  

 
Figure 5: Location of inspection points for partially 
fluid filled pipes. 
 
 At water locks, several points along the axis near 
the bottom are chosen, and with bends in the vertical 
plane trapping air, the first point in the flow direction 
near the liquid to air contact is chosen, see Figure 6.  

 
Figure 6: Location of inspection points at air traps. 
 

 
Figure 7: Location of inspection points at water 
locks. 

 
  
 These points are marked, as shown in Figure 7, 
after inspection in order to compare subsequent 
measurements and make trend plots for close checking 
of material loss in the 5 – 10% range. Even an 
inspection plan of 1000 points is a formidable 
undertaking. Results shall be archived, and the 
measurement locations should be marked very precisely 
for subsequent inspection and comparison. 
 Pressure testing should be avoided, since it could 
lead to leakage of hazardous material and exposure of 
humans. In cases with harmless fluids it can be used if 
care is taken to protect the operators well. 

 
2.1. Ultrasonic wall thickness measurement 
For the wall thickness measurements, the primary 
method used is recording of travel times for pulse-echo 
ultrasonics (NDT Handbook). This means that a short 
pulse train of ultrasonic energy is generated and 
transmitted from a piezoelectric transducer, and the 
instrument switches to listening mode after a short dead 
time. An echo of the transmitted pulse is then detected 
when the input level rises above a manually or 
automatically set threshold, or the detection can be 
based upon the time difference between multiple echoes 
travelling back and forth between the front and back 
wall several times. 
 The length of the pulse train and the minimum dead 
time determines the minimum wall thickness that can be 
measured. The time difference between multiple echoes 
gives a better estimate of wall thickness than the time to 
the first echo, provided that the subsequent echoes are 
strong enough. 
 The above case, with wall thickness 3 to 6 mm, and 
a goal of detecting a 5% material loss, requires fairly 
high-frequent and wide-band ultrasonic signals. 
Ultrasonic transducers should be selected for having 
well damped, short pulse trains. The center frequency 
should preferably be above 5 MHz with a pulse 
signature consisting of less than 2.5 oscillations before 
the signal is reduced to below 20% of the maximum 
amplitude. This corresponds to a 0.5 microsecond pulse 
length, which with good margin ensures a minimum 
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detectable wall thickness of 1.5 mm, given an 
approximate sound velocity of 6 mm per microsecond.  
 Other methods, such as autocorrelation and 
inversion methods can also be used to find the desired 
time differences, and may give more accurate results 
than estimating ultrasonic travel times from simple 
thresholding of the received pulse amplitudes. These 
methods require more skilled signal analysis, but will 
give more precise results, especially with repeated 
surveys after a certain time interval, e.g. 6 or 12 months. 
To gain the most from repeated measurements, the same 
probe should then be located at exactly the same 
position as the first measurement, not only close to a 
point marked by a pencil, but preferably guided by  firm 
side supports glued to the pipe. 
 For location of cracks or bad welds, there are other 
ways to configure ultrasonic inspection, using two or 
more transducers, or using non-normal angles of 
incidence. One of the principles used is then to direct 
the ultrasound away from the probe position, and if the 
material to be inspected is homogeneous and free from 
cracks, nothing will be reflected or scattered back to the 
probe. Reflected energy detected within a certain time 
window will therefore indicate defects located at a 
distance corresponding to this travel time. 
 Another powerful technique is called TOFD, Time 
Of Flight Diffraction. This method makes use of the full 
waveform of the ultrasonic pulses transmitted and 
received. The set-up is a separate transmitter and 
receiver, e.g. on each side of a weld to be inspected. 
The transmitter-receiver pair is moved along the weld 
and closely spaced recordings are made. The waveforms 
are plotted in grey-scale and interpreted in terms of 
diffraction theory, similar to wave optics. This makes 
visualization of small defects possible. 

3. CONDITION MONITORING OF VALVES 
When a process plant has a very high number of valves, 
it becomes a challenge to monitor them. Especially 
when valves are used to control critical fluids and even 
a small leakage in a valve cannot be tolerated, it 
becomes even more challenging. The following are the 
challenges in order to have online condition monitoring 
of valves: 

 Too many valves of different types from 
different suppliers 

 Different types of valves carrying different 
types of fluids 

 Offline testing may be an option but it will 
lead to down time for the plant 

 Predictive maintenance is preferred over 
periodic maintenance 

  
 To develop a condition monitoring system for 
valves, various aspects have to be taken into account. 
Suitable sensors are required depending on the type of 
valve, purpose of valve and criticality of valve for plant 
operation. Once the sensors are identified, an optimal 
wireless data logging system is required to collect data 
from the valve sensors,  and to process and analyze a 

the data. Decision support system is to be designed to 
help operators identify a faulty valve with sufficient 
information; location of valve, type of fault, severity of 
fault, manufacturer with contact details etc.  

 
4. CONDITION MONITORING OF HEAT 

EXCHANGERS 
There are several commercial Non-Destructive Testing 
(NDT) condition monitoring methods available for heat 
exchangers; Ultrasonic testing, Visual inspection, 
Magnetic particle inspection, Helium leak test and Eddy 
current testing (Melingen 2010). All the techniques are 
briefly described, with more attention given to the Eddy 
current testing, as it is being used as the standard 
method by the company which presented the case.  
 
4.1. Ultrasonic testing 
A transducer sends a high frequency ultrasound pulse 
through the material and based on the reflected wave 
characteristics, the condition of the heat exchanger can 
be quantified. The advantages of ultrasonic testing are 
the following; it is sensitive towards both surface and 
subsurface discontinuities, the depth of penetration 
deeper compared to other methods, it can measure 
corrosion through thick walls, and furthermore it can 
also quantify the size of pits. However there some 
challenges to use this method; reliability of the method 
can be affected by poor surface finish, thick paint, and 
temperature. Only skilled personnel can perform the 
testing.  

4.2. Visual inspection 
Rigid/flexible fiber-optic boroscopes can give 
information about the condition of tubes/plates in heat 
exchangers. This method can be less expensive but it 
has its own limitations related to quantifying different 
types of faults. 

4.3. Magnetic particle inspection 
This method utilizes the magnetic properties of the heat 
exchanger material to detect a crack. The method is 
easy to apply and gives quick results. This method can 
be used for detecting cracks on the surface.  

4.4. Helium leak test 
Helium is used as trace gas in this method. The gas is 
pumped to the heat exchanger and a spectrometer is 
used to detect any leakage. It gives accurate results 
regarding the leak but it cannot be used to detect other 
faults than the leakage. 
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Figure 8: Decision support system from Force 
Technology 
 

4.5. Eddy current testing 
Eddy current based technology is being used to detect 
faults in thin heat exchanger tubes. The condition 

monitoring using eddy current based technology has 
several advantages, some of them are listed below: 
 

 Very effective to detect cracks 
 Gives immediate results 
 Lot of data is available from test which can be 

analyzed to predict time for the next 
maintenance/replacement 

 Portable equipment and contact-free 
 The user interface system, for example from 

Force Technology (Force Technology) is very 
intuitive to find the severity of the fault and 
location of faulty tubes, see Figure 8. 

 
However there are some challenges which are listed 
below: 

 
 Calibration of the equipment is very specific to 

the material. Hence the equipment can only be 
used for inspection of particular equipment. If 
shall be used for other equipment, lot of 
calibration is necessary 

 The results of inspection are sensitive to the 
thickness of the material. 

  

 

 
Figure 9: Manifolds for cooling system at Eramet furnace. Ultrasound flow meters are mounted on the inlets and 
outlets, and water leakages are detected by investigating flow differences. 
 

 
5. WATER LEAKAGE DETECTION AND 

CONTROL 
In metallurgical plants, for instance Eramet Norway, it 
is necessary to handle molten materials in different unit 

operations. As the operating temperature can be as high 
as 2000°C, it is necessary to have a cooling system for 
the operating equipment and it is common to have water 
as the cooling liquid. In this circumstance, it is very 
critical not have any water leakage from the cooling 
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system onto the molten material as the leakage would 
lead to explosions. Such explosions are of great concern 
for the safety of operators. Explosions caused by water 
leakage will also lead to equipment loss and possibly 
long term shutdown of the plant (even if the equipment 
is working, the plant may be shut down while the 
accident is investigated). The Norwegian government 
requires the plant to have a reliable system to identify, 
quantify and handle water leakages. The regulations 
also state that the water leakage alarms should be 
handled separately from other technical alarms due to 
the potential for serious dangers. 
 As the cooling system supplies cooling for different 
types of equipment, there can be a large number of 
water circuits. As a first measure to avoid leakages, it is 
important to use only clean water. This will minimize 
clogging and corrosion of pipes, and also ensure good 
cooling of the furnace hood. Monitoring of individual 
circuits for a leakage requires heavy instrumentation. 
 One system which was considered, but found 
unsuitable, was based on infrared imaging. IR images 
would be able to tell where a leakage occurs. However, 
automation of such a system is complicated, and since a 
large area has to be covered, many expensive cameras 
would have to be installed. Instead, a system has been 
implemented with two ultrasound flow instruments for 
each water circuit – one at inlet and one at outlet, see 
Figure 9. The difference in the flows at the inlet and 
outlet is compared to an estimate of the standard 
deviation over a specified time, to detect a fault. This 
statistical analysis is required to distinguish leak 
detection from measurement noise in a robust manner. 
Leaks down to 40 l/h can be determined using this 
method without or very few false alarms. 

A good decision support system is designed to 
make sure that the leakage circuit is controlled/closed 
once a water leak is detected in a particular circuit. The 
flow instruments provide an opportunity to quantify 
leakages, and thus differentiate between critical alarms 
and alarms indicating small leakages, which do not 
require immediate action. These alarms are indicated by 
different colors in the HMI. The display observed by the 
operator also gives a clear message about which circuit 
is failing. It is important to train operators with 
operational procedures, what to do in the event of a 
water leakage in the cooling system corresponding to a 
critical equipment.  

Overall the following are identified as the key 
challenges to have an optimal condition monitoring 
system for a process/equipment in the plant: 

 Measuring key process/performance variables 
due to challenging process operating 
conditions 

 Enough motivation for developing and 
implementing models for the application of 
fault detection and diagnosis 

 Dedicating human resources for data analysis, 
and a challenge for a transformation from a 
more human control to less human control in 
process plants 

 Optimal and intuitive decision support system 
design 
 

6. FAILURE PREDICTION OF HYDRAULIC 
SYSTEMS 

Off-shore industry relies heavily on hydraulic drilling 
equipment. Failure Prediction of hydraulic systems is an 
area of research which has recently attracted a 
considerable amount of research (Angeli and Atherton 
2001). These systems are prone to wear over time 
leading to performance degradation and, ultimately, to 
failure.  Due to the high cost of downtime in off-shore 
industry, detecting the wearing out of a component 
should take place at an early stage in order to avoid 
prominent failure. 

 
Figure 10: Nonlinear hydraulic-mechanical system 
with control valve and Nonlinear hydraulic-
mechanical system with control valve and and 
hydraulic cylinder exerting forces on the object to be 
handled. Total load mass M, equivalent spring 
coefficient k and damping. 
 
 Too low forces in drilling operations might result in 
loss of grip while too high forces might jeopardize the 
drilling pipe. In a recent study pertinent to hydraulic 
drilling pipes (Choux and Blanke 2011), the authors 
devised an approach for prognosis that involves 
monitoring changes in two key parameters of the 
hydraulic system, namely leakage coefficient between 
the cylinder chambers and friction coefficient against 
the piston displacement. This stems from the fact that 
an increase of friction or the leakage coefficient lead to 
loss of grip. The nonlinearity of the hydraulic drilling 
equipment constitutes an inherent difficulty, which 
requires proper modeling techniques. In order to reduce 
the complexity of the nonlinear model, a general 
approach to decompose a nonlinear model into a linear 
hydraulic model connected to a mass-spring-damper 
system was introduced in (Choux et al 2009). Figure 10 
is borrowed from reference (Choux and Blanke 2011) 
and depicts a nonlinear hydraulic-mechanical drilling 
pipe that is decomposed according the approach 
presented in (Choux et al 2009). Most of the legacy 
research resort to on-line model based fault detection 
techniques. In this sense, the current techniques are 
concerned with detecting deviation between the 
physical model of the hydraulic system (Choux and 

Proceedings of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2012
ISBN 978-88-97999-12-6; Bruzzone, Dauphin-Tanguy, Junco and Merkuryev Eds. 42



Blanke 2011) and the real time data. To achieve this 
task, different online change detection techniques were 
employed including artificial neural networks 
(Muenchhof 2007), statistical abrupt change detection 
(Choux and Blanke 2011), Kalman filters (Chinniah et 
al 2008) and expert systems (Angeli and Atherton 
2001). 
 
CONCLUSIONS 
Several industrial cases are presented in the paper with 
the focus of condition monitoring of equipment, failure 
prediction techniques and decision support systems. 
Further work will be focused on developing techniques 
for these specific cases with the cooperation of leading 
universities and R&D institutions.  
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