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ABSTRACT 
The cantilever beam is a component widely used in 
numerous engineering systems with its geometric and 
material properties varying depending on the application. 
Calculating the dynamic behavior of a cantilever beam is 
a challenging task since the critical physical phenomena 
and interactions vary significantly based on the geometry 
of the beam. There exist a number of theories/models that 
can be used to predict the transverse motion of a 
cantilever beam of which the two most commonly used 
are the Timoshenko and Euler-Bernoulli theories. The 
Euler-Bernoulli theory is simpler and thus preferred, 
however, depending on the beam’s parameters and 
operating conditions this model can lead to erroneous 
results and thus the more complex Timoshenko theory 
must be used. Currently, selecting the theory to use 
depends on heuristics or rules that are based on 
experience and the accuracy requirements of the 
predictions. It is the purpose of this paper to address the 
model complexity of a cantilever beam through a 
systematic modeling methodology. 

The paper presents a new approach for selecting the 
appropriate theory to use in modeling a cantilever beam. 
The beam is discretized through the finite segment 
approach and modeled using the bond graph formulation. 
The previously developed activity metric is then used to 
determine which of the inertial and stiffness effects, of 
the more complex Timoshenko theory, need to be 
included in the model in order to have accurate 
predictions of its dynamic behavior. An illustrative 
example is provided to demonstrate the new 
methodology. 

Keywords: Cantilever beam, Timoshenko beam theory, 
model reduction, activity metric. 

1. INTRODUCTION 
Modeling and simulation have yet to achieve wide 
utilization as commonplace engineering tools. One reason 
for this is that current modeling and simulation 
techniques are inadequate. Specifically, a major 
disadvantage is that they require sophisticated users who 
are often not domain experts and thus lack the ability to 
effectively utilize the model and simulation tools to 
uncover the important design trade-offs. Another 
drawback is that models are often large and complicated 
with many parameters, making the physical interpretation 
of the model outputs, even by domain experts, difficult. 
This is particularly true when “unnecessary” features are 
included in the model. 

A variety of algorithms have been developed and 
implemented to help automate the production of proper 
models of dynamic systems. Wilson and Stein (1995) 
developed MODA (Model Order Deduction Algorithm) 
that deduces the required system model complexity from 
subsystem models of variable complexity using a 
frequency-based metric. They also defined proper models 
as the models with physically meaningful states and 
parameters that are of necessary but sufficient complexity 
to meet the engineering and accuracy objectives. 
Additional work on deduction algorithms for generating 
proper models in an automated fashion, has been reported 
by Ferris et al. (1998), Ferris and Stein (1995) and 
Walker et al. (1996). The above algorithms have also 
been implemented in an automated modeling computer 
environment (Stein and Louca, 1996). 

In an attempt to overcome the limitations of the 
frequency-based metrics, Louca et al. (1997) introduced a 
new model reduction technique that also generates proper 
models. This approach uses an energy-based metric 
(element activity) that in general, can be applied to 
nonlinear systems (Louca et al., 2010), and considers the 
importance of all energetic elements (generalized 
inductance, capacitance and resistance). The contribution 
of each energy element in the model is ranked according 
to the activity metric under specific excitation. Elements 
with small contributions are eliminated in order to 
produce a reduced model using a systematic methodology 
called Model Order Reduction Algorithm (MORA). The 
activity metric was also used as a basis for even further 
reduction, through partitioning the model into smaller and 
decoupled submodels (Rideout et al. 2007). 

Such modeling approaches should be able to handle 
real mechanical systems that typically include distributed 
parameter (continuous) components, e.g. rods, beams, 
plates, etc. Frequently, modeling objectives and 
assumptions allow the lumping of continuous component 
properties into ideal energy elements that lead to a 
dynamic model described by a set of ordinary differential 
equations. However, when property lumping is not 
acceptable, modeling of a continuous component requires 
a different approach since its inertial, compliance and 
resistive properties are spatially distributed and cannot be 
lumped into single equivalent elements. The dynamic 
behavior of continuous components is thus described by 
partial differential equations with derivatives in both time 
and space. Another approach that is considered in this 
work is the modeling of a continuous component with 
finite segments that are spatially distributed. This is an 
approximation for which the accuracy is a function of the 

Proceedings of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2015
ISBN 978-88-97999-63-8; Bruzzone, Dauphin-Tanguy, Junco and Longo Eds.

12



number of segments. The model accuracy improves as the 
number of segments increases. Model accuracy and the 
required number of segments can be addressed using a 
frequency-based metric (Ferris et al., 1998). 

Beyond the physical-based modeling, modal 
decomposition is also used to model and analyze 
continuous and discrete systems (Meirovitch, 1967). One 
of the advantages of modal decomposition is the ability to 
straightforwardly adjust (i.e., reduce) model complexity 
since all modes are orthogonal to each other. The 
reduction of such modal decomposition models is mostly 
based on frequency, and the user defined frequency range 
of interest (FROI) determines the frequencies that are 
important for a specific scenario. In this case, modes with 
frequencies within the FROI are retained in the reduced 
model and modes outside this range are eliminated. As 
expected, mode truncation introduces error in the 
predictions that can be measured and adjusted based on 
the accuracy requirements (Li and Gunter, 1981; Liu 
et al., 2000). 

The element activity is another metric that has more 
flexibility than frequency-based metrics, which address 
the issue of model complexity by only adding compliant 
elements, leaving unaccounted the importance of inertial 
and resistive elements. In contrast, the activity metric 
considers the importance of all energetic elements, and 
therefore, the significance of all energy elements in the 
model can be quantified. It is the purpose of this work to 
develop a new methodology using the activity metric for 
addressing the model complexity of distributed parameter 
systems and specifically cantilever beams. The 
methodology is specifically developed using the finite 
segment approximation and the goal is to identify the 
physical phenomena to be included in each segment in 
order to accurately predict the dynamic behavior. 

This paper is organized as follows: first, background 
about the energy-based activity metric is provided, along 
with the reduction algorithm. Next, the equation 
formulation for a finite segment Timoshenko beam is 
presented along with the closed-form expressions of the 
steady state activities. Then the complexity of a cantilever 
beam is analyzed using MORA.  Finally, in the last 
section, discussion and conclusions are given. 

2. BACKGROUND 
The original work on the energy-based metric for model 
reduction is briefly described here for convenience. More 
details, extensions, and applications of this approach are 
given in previous publications (Louca and Stein, 2002; 
Louca et al., 2004; Louca and Stein, 2009; Louca et al., 
2010). The main idea behind this model reduction 
technique is to evaluate the “element activity” of 
individual energy elements in a full system model under a 
stereotypical set of inputs and initial conditions. The 
activity of each energy element establishes a hierarchy 
for all elements. Those below a user-defined threshold of 
acceptable level of activity are eliminated from the 
model. A reduced model is then generated and a new set 
of governing differential equations is derived. 

The activity metric has been previously formulated 
for systems with nonlinearities in both the element 
constitutive laws and junction structure. In this work, the 
activity metric is applied to linear systems for which 
analytical expressions for the activity can be derived, and 
therefore, avoid the use of numerical time integration that 
could be cumbersome. The analysis is further simplified 
if, in addition to the linearity assumption, the system is 
assumed to have a single sinusoidal excitation, and only 
the steady state response is examined. These assumptions 
are motivated from Fourier analysis where an arbitrary 
function can be decomposed into a series of harmonics. 
Using this frequency decomposition, the activity analysis 
can be performed as a function of frequency in order to 
study the frequency dependency of element activity in a 
dynamic system. 

2.1. Element Activity for Linear Systems 
A measure of the power response of a dynamic 

system, which has physical meaning and a simple 
definition, is used to develop the modeling metric, 
element activity (or simply “activity”). Element activity, 
 A , is defined for each energy element as: 

     
A = P(t)

0

τ

∫ dt  (1) 

where    P(t)  is the element power and  τ  is the time over 
which the model has to predict the system behavior. The 
activity has units of energy, representing the amount of 
energy that flows in and out of the element over the given 
time  τ . The energy that flows in and out of an element is 
a measure of how active this element is (how much 
energy passes through it), and consequently the quantity 
in Eq. (1) is termed activity. Activity can be defined 
independent of the energy domain, type of energy 
element or nonlinearities. 

The activity is calculated for each energy element 
based on the system response. In the case that the system 
is modeled using a bond graph formulation, the state 
equations are derived using the multi-port bond graph 
representation (Borutzky, 2004; Brown, 2006; Karnopp 
et al., 2006; Rosenberg and Karnopp, 1983). In addition, 
when a system has a single input and linear junction 
structure and constitutive laws, the state equations are 
linear time invariant and have the following general form: 

    !x = Ax + bu  (2) 

where,      A ∈ !
m×m,b ∈ !m  are the state space matrices, 

    x ∈ !
m  is the state vector,    u ∈ !  is the input, and  m  is 

the number of independent states. 
For the above system appropriate outputs are defined 

in order to calculate the power of each energy element in 
the model using the constitutive law of each element. For 
convenience, the outputs are selected to be generalized 
flow, effort, and flow for inertial, compliant, and resistive 
elements, respectively. The dual effort or flow needed for 
calculating the power is derived from the output variables 
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and constitutive laws. The output vector for this set of 
variables has the form: 

   

y =

f
I

e
C

f
R

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪

 (3) 

where     y ∈ !
k  and       fI ∈ !

kI ,e
C
∈ !kC ,  and f

R
∈ !kR . The 

variables    kI
, k

C
, and k

R
 represent the number of inertial, 

compliant, and resistive elements, respectively. The total 
number of energy elements is    k = k

I
+ k

C
+k

R
. Using the 

output variables set in Eq. (3), the output equations can 
be written as: 

   y = Cx + du   (4) 

where      C∈ !
k×m,d ∈ !k  are the output state space 

matrices. Note that the output vector is defined such that 
the required variables of the inertial elements are first, 
followed by the variables of compliant and then resistive 
elements. 

Given this set of output variables the missing efforts 
or flows, needed for calculating the element power, are 
computed from the linear constitutive laws of each type 
of energy element as shown below: 

     

I: p
I

= r
I
f
I
⇔ e

I
= !p

I
= r

I
!f
I

C: q
C

= r
C
e

C
⇔ f

C
= !q

C
= r

C
!e
C

R: e
R

= r
R
f
R

 (5) 

where   rI
, r

C
, r

R
 are known constants representing the 

linear constitutive law coefficients of inductance, 
compliance and resistance, respectively. For more 
compact expressions a vector,     r ∈ !

k , with all the linear 
constitutive law coefficients is introduced as shown 
below: 

   

r =

r
I

r
C

r
R

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪

 (6) 

where     rI ∈ !
kI ,     rC ∈ !

kC , and     rR ∈ !
kR . 

Finally, the power needed for calculating the activity 
of each element, as defined in Eq. (1), is computed as the 
product of generalized effort and flow. By using Eq. (5) 
the following expressions for the power of each element 
type are derived: 

       

I: P
I

= e
I
f
I

= r
I
f
I
!f
I

C: P
C

= e
C
f
C

= r
C
e

C
!e
C

R: P
R

= e
R
f
R

= r
R
f
R
f
R

= r
R
f
R
2

 (7) 

The expressions for element power in Eq. (7) are 
generalized with the use of the defined structure of the 
output vector in Eq. (3) and parameter vector in Eq. (6). 
Thus, the power for energy storage elements (inertial and 
compliant) is given by Eq. (8) and for energy dissipation 
elements (resistive) in Eq. (9). 

      Pi
= r

i
y

i
!y
i
,    i = 1,…,k

I
+k

C
 (8) 

      Pi
= r

i
y

i
2 ,   i = k

I
+k

C
+1,…,k  (9) 

The above element power is then used to calculate the 
element activity based on its definition in Eq. (1). 
Element parameters are assumed to be constant thus the 
activity for each element is given by: 

       

A
i

= P
i

0

τ

∫ = r
i

y
i
!y
i
dt

0

τ

∫ ,    i = 1,…,k
I
+k

C

A
i

= P
i

0

τ

∫ = r
i

y
i
2 dt

0

τ

∫ ,   i = k
I
+k

C
+1,…,k

 (10) 

2.2. Activity for Single Harmonic Excitation 
The time response of the output vector,    y(t) , in 

Eq. (3) is required in order to complete the calculation of 
the element power. For nonlinear systems, numerical 
integration is typically used to calculate the system 
response; however, in this case linear system analysis can 
be used to obtain closed form expressions. In addition, 
for the purposes of this work, the excitation is assumed to 
be a single harmonic given by: 

    u(t) =U sin(ωt)  (11) 

where    U ∈ !  is the amplitude of the excitation and  ω  is 
the excitation frequency. The steady state response of the 
linear system in Eq. (2) and (4), and for the excitation in 
Eq. (11), is calculated using linear system analysis theory. 
This gives the following closed form expression: 

      
y

i
t,ω( ) =UY

i
ω( ) ⋅ sin ωt +ϕ

i
ω( )( ), i = 1,…,k  (12) 

where 
   
Y

i
ω( )  and 

   
ϕ

i
ω( )  are the steady state amplitude 

and phase shift, respectively that can be easily calculated 
from the state space matrices using linear systems theory. 

Within the context of this analysis, the output    yi
(t,ω)  

in Eq. (12) is either an effort or a flow that is used to 
calculate the power of each element in Eq. (7). Finally, 
the activity can be calculated by Eq. (1), but first the 
upper bound of this integral must be specified. For this 
case, the steady state and periodicity of the response are 
exploited. A periodic function repeats itself every  T  
seconds, and therefore, a single period of this function 
contains the required information about the response. 
Thus, the upper bound of the integral is set to one period 
of the excitation,     τ =T = 2π ω . Therefore, the steady 
state activity for the energy storage elements is given by: 

     

A
i
ss ω( ) = r

i
y

i
!y
i

0

T

∫ dt

=
1
2
r
i
U 2Y

i
2 ω( )ω sin 2 ωt +ϕ

i
ω( )( )( )

0

T

∫ dt

⇒A
i
ss ω( ) = 2r

i
U 2Y

i
2 ω( )

(13) 

and for energy dissipation elements by: 
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A
i
ss ω( ) = r

i
y

i
2

0

T

∫ dt

= r
i
U 2Y

i
2 ω( ) sin2 ωt +ϕ

i
ω( )( )

0

T

∫ dt

⇒A
i
ss ω( ) =

πr
i
U 2Y

i
2 ω( )
ω

 (14) 

The above simple closed form expressions can be 
used to calculate the activity of energy elements for a 
given single harmonic excitation. These expressions are 
proportional to the square of the amplitude, however, 
they have no dependency on the phase shift that is 
eliminated through the integration. The superscript 'ss' in 
Eq. (13)-(14) denotes the activity under a steady state 
harmonic response. Note that the activity for both energy 
storage and energy dissipation elements is a function of 
the excitation frequency but not the phase shift. 

2.3. Activity Index and MORA 
The activity as defined in Eq. (1) is a measure of the 
absolute importance of an element as it represents the 
amount of energy that flows through the element over a 
given time period. In order to obtain a relative measure of 
the importance, the element activity is compared to a 
quantity that represents the “overall activity” of the 
system. This “overall activity” is defined as the sum of all 
the element activities of the system, is termed total 
activity ( A

Total ) and is given by: 

    
ATotal ω( ) = A

i
ω( )

i=1

k

∑  (15) 

where  Ai  is the activity of the  i
th  element given by 

Eq. (1). Thus a normalized measure of element 
importance, called the element activity index or just 
activity index, is defined as: 

    

AI
i
ss ω( ) =

A
i
ω( )

ATotal ω( )
=

A
i
ω( )

A
i
ω( )

i=1

k

∑
 (16) 

The activity index,    AI
i
ss(ω) , is calculated for each 

element in the model and it represents the portion of the 
total system energy that flows through a specific element. 
The input amplitude,  U , does not appear in any of the 
element activity indices since all element activities are 
proportional to the square of the amplitude. 

With the activity index defined as a relative metric for 
addressing element importance, the Model Order 
Reduction Algorithm (MORA) is constructed. The first 
step of MORA is to calculate the activity index for each 
element in the system for a given system excitation and 
initial conditions. Next, the activity indices are sorted to 
identify the elements with high activity (most important) 
and low activity (least important). With the activity 
indices sorted, the model reduction proceeds given the 
desired engineering specifications. These specifications 
are defined by the modeler who then converts them into a 

threshold  β  of the total activity (e.g., 99%) that he or she 
wants to include in the reduced model. This threshold 
defines the borderline between the retained and 
eliminated model elements. The elimination process is 
shown in Figure 1 where the sorted activity indices are 
summed starting from the most important element until 
the specified threshold is reached. The element which, 
when included, increments the cumulative activity above 
the threshold, is the last element to be included in the 
reduced model. The elements that are above this 
threshold are removed from the model, e.g., when using 
the bond graph formulation delete the corresponding 
energy element and connected bond. 

 
Figure 1: Activity index sorting and elimination. 

3. TIMOSHENKO BEAM MODEL 
The state space representation used in the previous 
section assumes that real components exhibit only 
inertial, compliant, or resistive behavior. This means that 
the dynamic behavior of a component can be lumped and 
modeled as a single inertial, compliant or resistive energy 
element. This can be a valid assumption for many 
components, however, real system components can 
possess all dynamic properties (inertial, compliant, 
resistive) simultaneously. In addition, these properties 
may vary or be distributed spatially. In these cases, a 
lumped parameter modeling approach cannot be used 
since it will produce erroneous predictions. These 
components must be considered as continuous and 
require a different modeling approach. 

Models of continuous systems can be developed using 
solid mechanics techniques, which lead to Partial 
Differential Equations (PDE) with derivatives in both 
space and time (Bauchau and Craig, 2009; Genta, 2009; 
van Rensburg and van der Merwe, 2006; Li, 2008). The 
continuous cantilever beam used in this work is shown in 
Figure 2, where its transverse motion is considered when 
excited with a vertical load at its free end. The motion of 
a given gross section,   w(x,t)  and    ϕ(x,t) , from its 
undeformed state varies with time and location thus 
having PDEs describing its motion. Note that due to the 
rotation  ϕ , a cross section does not remain normal to the 
neutral axis according to the Timoshenko beam theory 
that is used in this work. One method for solving these 
PDEs is separation of variables, which produces a modal 
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expansion solution (Meirovitch, 1967). This approach can 
also be combined with other lumped parameter elements 
in order to model a real system that consists of both 
lumped and distributed parameter components (Karnopp 
et al., 2006). An analysis of the advantages and 
disadvantages of this approach is beyond the scope of this 
work, however, it is safe to say that the solution of PDEs 
is more cumbersome than the solution of ordinary 
differential equations that describe the behavior of 
lumped parameters system. 

 
Figure 2: Cantilever beam transverse vibration. 

A different approach for modeling the transverse 
vibration of a cantilever beam is to divide it into 
segments of equal length. This approach is motivated by 
the procedure for deriving the PDEs describing the 
motion of a beam. Each of these segments has linear 
inertial and compliant properties that can be determined 
from solid mechanics theory. Shear effects and rotational 
inertial effects are also considered, which results in a 
more generic model that is valid for a larger range of 
geometric parameters. This is known as the Timoshenko 
beam model, which is usually used for non-slender beams 
in order to get accurate model predictions. The use of this 
more complex model using the Timoshenko beam theory 
is also mandated from the use of MORA in the process of 
determining the appropriate model complexity. In this 
approach the most complex model is first developed, and 
then MORA is used to identify what is actually needed in 
order to reach a reduced model with accurate predictions. 

The ideal physical model under these assumptions is 
shown in Figure 3 where the beam is divided into  n  
segments. This model approaches the partial differential 
equations of the continuous system, as the number of 
segments approaches infinity. However, it is difficult to 

predict the number of segments required to achieve a 
given level of accuracy. It is well known that a large 
number of segments is required for accurately predicting 
low frequency dynamics. For the purposes of this work 
the number of segments is chosen based on previous 
research, such that the model accurately predicts low 
frequency dynamics that are considered in this work 
(Louca, 2014; Louca, 2015). With the given number of 
segments, the physical phenomena to be included in each 
segment, for the model to accurately predict the dynamic 
behavior, will then be identified using the proposed 
methodology in this paper. 

 
Figure 3: Ideal physical model of a Timoshenko beam. 

For calculating the constitutive law parameters of the 
energy storage elements, the beam is assumed to have 
density  ρ , Young's modulus  E , shear modulus  G , 
length  L , cross sectional area  A  and cross sectional 
moment of inertia  I . Given these physical parameters of 
the beam, the element parameters in the above linear 
model are given by the expressions below: 

     

m
i

= ρAΔx, i = 1,…,n

I
i

= ρIΔx,

c
i

=
Δx
EI

cs
i

=
Δx
κGA

 (17) 

where   Δx = L n  is the length of each segment,  κ  is a 
dimensionless constant that accounts for the non-uniform 
distribution of the shear stress and depends on the shape 

x
F(t)

w(x,t)

ϕ(x,t)

cn-1

wn-2 wn-1 wn

csn-1 csn

cnc1

w1

m1,I1 m2,I2 mn-2,In-2 mn-1,In-1

mn,In

w2

cs1
cs2

c2

...

F(t)

 
Figure 4: Bond graph model of a Timoshenko beam. 
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of the cross-section. The inertial parameters  mi
 and  Ii

 
represent the linear and rotational inertia of each segment, 
respectively.  The parameters  ci

 and  csi
 represent the 

bending and shear compliance between two segments, 
respectively. The beam is assumed to have no energy 
losses therefore there are no damping elements in the 
model. These parameters are used to define the parameter 
vector as defined in Eq. (6). 

For developing the dynamic equations, the bond 
graph formulation is used. Bond graphs provide the 
power topography of the system and it is a natural 
selection for implementing the power-based activity 
metric. The bond graph model of the ideal physical model 
as shown in Figure 3 is developed and given in Figure 4. 
The bond graph has   4n  independent state variables since 
each segment is modeled by 4 independent energy 
storage elements and its state vector has the form 

     x = {p
1
,…,p

n
,p

I1
,…,p

In
,q

1
,…,q

n
,q

s1
,…,q

sn
}T . The 

transverse velocity of the each mass,  vi
, represents the 

velocity at a given location of the continuous beam and 
Eq. (18) expresses the relation between the discrete and 
continuous variables. The other kinematic variable of the 
model,   ωi

, is the rotation at a given location and its 
relation to the continuous variable is given in Eq. (19). 

    
v

i
(t) = !w

i
= !w iΔx,t( )  (18) 

     
ω

i
(t) = !ϕ

i
= !ϕ iΔx,t( )  (19) 

In addition, for easy calculation of the output 
equations that required for calculating power, the state 
equations are derived using the multi-port approach 
(Rosenberg, 1971). According to this approach, the state 
space and input matrices are given by: 

    A = J
SS

S, b = J
SU

 (20) 

The output matrices, as defined in Eq. (4), that are 
required for calculating the power flow into the energy 
elements are given by: 

   C = S, d = 0  (21) 

The output vector according to the analysis in the 
previous section is given by      y = {f

1
,…, f

2n
,e

1
,…,e

2n
}T . 

The dimensions of the state space matrices as defined in 
the previous section are    m = 4n  and    k = 4n . Based on 
this set of state variables, the junction structure matrices, 

  JSS
 and   JSU

, are derived and given in the Appendix. The 
above equations and junction structure matrices are 
simplified since the model has no resistive elements. 

For the above model with  n  segments the steady-
state response is first calculated using Eq. (12) and based 
on the state space equations in Eq. (20)-(21). Then the 
element activity is calculated from Eq. (13) and (14), 
which gives the following expression for the energy 
storage elements of the model: 

     
A

i
ss ω( ) = 2r

i
U 2Y

i
2 ω( ), i = 1,…, 4n  (22) 

The above analysis enables the calculation of the 
element activity for a given single harmonic excitation. 
The activity index that is used by MORA is independent 
of the excitation amplitude, as shown in Eq. (16), and 
therefore can be set to an arbitrary value, e.g., set to 
one (1) for simplicity. Model complexity and which 
physical phenomena need to be included can be 
determined given the element activity in Eq. (22) and 
MORA. The complexity of the beam is investigated in 
the next section in order to identify the significant 
elements based on beam length and element location. A 
series of analyses is performed in order to get more 
insight into the beam dynamics under different scenarios. 

4. BEAM COMPLEXITY BASED ON ACTIVITY 
The activity metric and MORA is applied to a steel 
cantilever beam with parameters   ρ = 7860 kg/m3,  
  E = 210 GPa,   G = 80 GPa,   A = 3 × 10-3 m2,  
  I = 2 × 10-5 m4,   κ = 0.85. The length of the beam is 
varied, L = 0.2-2 m, in order to study the variation of 
element significance. The methodology is easy and 
computationally inexpensive to implement due to the 
simple and closed form expressions used for calculating 
the state space matrices, frequency response and activity.  

First, the beam length is set to 2 m such that the beam 
is considered to be slender. The number of segments is 
set to   n = 30 and therefore there are a total of 120 energy 
storage elements modeling the beam. The modeling target 
is to accurately predict static behavior to low frequency 
dynamics, thus the excitation frequency is set to 95% of 
the first natural frequency (122.68 rad/s). 

 
Figure 4: Element activity indices for slender beam. 

The results of the activity analysis using Eq. (22) and 
under these assumptions are shown in Figure 4 where the 
activity index of all 120 elements is shown. Element 
numbers 1-30 represent the activity index of the linear 
inertia ( mi

) and 31-60 the activity index of the rotational 
inertia ( Ii

) of each segment. Next, element numbers 61-
90 and 91-120 represent the activity index of the bending 
( ci

) and shear ( csi
) compliance, respectively. For each 

range of elements the smallest numbers represent 
elements that are next to the fixed end of the beam. It is 
clear from the activity analysis that the most important 
elements are related to the linear inertia and the bending 
stiffness of the beam. On the contrary, the elements 
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related with the rotary inertia and shear stiffness have 
very low activity and thus are insignificant under these 
conditions. The activity analysis agrees with common 
practice, in which a slender beam is modeled using the 
Euler-Bernoulli theory that neglects rotational inertia and 
shear stress effects. 

Model complexity is systematically addressed using 
MORA as it is described in Section 2.3.  Elements are 
ranked according to their activity index as shown in 
Figure 5 where the sorted activity indices along with the 
cumulative activity index are plotted. According to 
activity analysis, 40 of the 120 elements account for 
almost 99% of the energy the flows through the model. 
This is a significant result verifying that unnecessary 
complexity is included in the model, however, the figure 
does not directly depicts the elements that are 
insignificant and could be eliminated from the model. 

 
Figure 5: Element ranking for slender beam. 

The important elements are next identified using 
MORA. Using a reduction threshold,   β = 99%, MORA 
identifies the elements that have a significant contribution 
to the system dynamic behavior. The results of this 
analysis are shown in Figure 6 where both the activity 
and elimination/inclusion in the reduced model are 
depicted. The '+' symbol identifies the elements with 
significant contribution and must be included, where the 
'o' symbols identifies that an element is insignificant and 
must be eliminated from the full model in order to 
generate the reduced model. Out of the 120 elements 
only 42 are important and the remaining 78 can be 
eliminated. More specifically, MORA identifies that all 
rotational inertia and shear stiffness elements must be 
eliminated from the model. Linear inertia elements that 
are close to the support have low activity and can be 
eliminated from the model, where inertia elements 
towards the free end of the beam have high activity and 
must be retained. The reverse is true for the bending 
stiffness elements, where the elements towards the free 
end can be eliminated and the ones near the support must 
be retained. More specifically, 21 of the linear inertia and 
21 of the bending stiffness elements have high activity 
and must be included in the reduced model. 

 
Figure 6: Model reduction for slender beam,   L = 2 m. 

The same reduction using MORA is performed with 
different beam lengths in order to study how element 
importance changes as the length is reduced. The 
reduction for a beam length of 0.7 m is shown in  
Figure 7. The same trend is observed for the elimination 
of linear inertia and bending stiffness elements. The 
activity index of all rotational inertia elements (31-60) is 
higher than before (  L = 2 m) but still very low, and 
therefore, they are eliminated from the model. The 
activity of shear stiffness (91-120) also increases and 
some of these elements become important. The shear 
stiffness elements that are close to the support have 
higher activity index and have to be included in the 
reduced model, while the ones towards the free end are 
eliminated. A total of 59 elements are included in the 
reduced model with 24 linear inertia, 24 bending stiffness 
and 11 shear stiffness elements. 

 
Figure 7: Model reduction for   L = 0.7 m. 

The beam length is further reduced to 0.2 m in order 
to examine if more elements become important. The 
activity index of the linear inertia and bending stiffness 
remains almost unchanged as shown in Figure 8. 
However, the activity index of the rotational inertia and 
shear stiffness is further increased such that some of the 
rotational inertia elements also become important. More 
specifically the rotational inertia elements that towards 
the free end are important and the ones near the fixed end 
are eliminated. A total of 89 elements out of 120 are 
included in the reduced model with 24 linear inertia, 
17 rotational inertia, 23 bending stiffness and 25 shear 
stiffness elements. 
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Figure 8: Model reduction for   L = 0.2 m. 

The variation of beam length showed that the total 
number of important elements increases as the beam 
length decreases. This variation is investigated in more 
detail by varying the beam length from 0.2 to 2 m with a 
step of 20 mm. The number of included linear and 
rotational inertia, and bending and shear stiffness is 
recorded along with the total number of elements. The 
results of this analysis are shown in Figure 9. The total 
number of elements is monotonically increasing as the 
beam length is decreased. The number of linear inertia 
and bending stiffness remains almost constant as the 
length changes. On the contrary, the number of shear 
stiffness elements is zero until about 0.9 m where it 
becomes important and starts increasing. Further 
reduction in length results in a monotonic increase in the 
number of included shear stiffness element. A similar 
behavior is observed for the number of the rotational 
inertia elements, however, they become important at a 
lower beam length of about 0.5 m. 

 
Figure 9: Model reduction for length variation. 

5. DISCUSSION AND CONCLUSIONS 
A new methodology is developed that reduces the 
complexity of a Timoshenko or Euler-Bernoulli beam 
model by providing more insight into the beam dynamic 
behavior at the same time. The proposed methodology 
provides a systematic modeling procedure for cantilever 
beams that are modeled through the finite segment 
approach. The previously developed activity metric is 
used as the basis for determining the physical phenomena 
that need to be included in each segment in order for the 

model to accurately predict the dynamic behavior of a 
beam. The procedure starts with the most complicated 
model, Timoshenko in this case, and then eliminates 
insignificant elements that do not contribute to the 
dynamic behavior. 

The results presented in this work are in agreement 
with the assumptions of beam theories, which propose 
that the Timoshenko beam model must be used for 
shorter rather than slender beams. The proposed 
methodology can be used when modeling beams, in order 
to decide which of the two models to use, Timoshenko or 
Euler-Bernoulli. In addition, the activity metric can refine 
the modeling assumptions by identifying what physical 
phenomena need to be included in each segment, i.e., 
linear and rotational inertia, bending and shear stiffness. 

The number of segments is a significant parameter 
when it comes to modeling with the finite segment 
approach but it was considered constant in the analyses of 
the presented results. The methodology was also 
performed with various, lower and higher, number of 
segments, however these results are not presented in this 
paper for brevity. The reduced models for different 
number of segments are identical with the ones presented 
in this work. The only difference is the actual number of 
included elements, as shown in Figure 9, however, the 
ratio of included elements to the total number of elements 
remains constant. 

The activity analysis is performed for a given single 
excitation frequency that is lower than the first natural 
frequency. This excitation is chosen since the model is 
expected to be used with low frequency excitations. A 
similar analysis with the one presented in this work can 
be performed for a higher frequency or range of 
frequencies in order to account for more realistic 
excitations. However, this procedure has to be formalized 
and this remains as an item for future research. 

Because this work uses an energy-based modeling 
metric, it is convenient to use a model representation and 
formulation approach from which energy can be easily 
extracted/calculated.  The bond graph approach explicitly 
presents the power topography of a dynamic system, and 
therefore, it is used in this work for calculating the 
necessary variables required for the power calculations.  
To be clear, the use of this methodology is not limited to 
systems represented by bond graphs.  It can also be 
applied when the continuous system is modeled using any 
other modeling methodology, e.g., Lagrange’s equations, 
Newton’s Law, etc.  However, in this case the calculation 
of power that is required for the proposed methodology 
might not be as trivial as using the bond graph 
formulation. 

The results of this paper provide more insight into 
the nature of the reduced ordered models produced by 
MORA, and therefore, demonstrate that MORA is an 
even more useful tool than previously realized for the 
production of proper models of nonlinear systems. The 
activity metric effectively addresses the model 
complexity of distributed parameter components and in 
addition provides physical insight into the model. 
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APPENDIX: JUNCTION STRUCTURE MATRICES 
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