
WELL-FORMED PETRI NET BASED PATTERNS FOR MODELING LOGIC

CONTROLLERS FOR AUTONOMOUS TRAINS

Yuchen Xie, Manel Khlif-Bouassida, Armand Toguyéni

Centrale Lille, CRIStAL, UMR 9189

59650 Villeneuve d’Ascq, France

Univ. Lille Nord de France, F-59650, Lille, France

{yuchen.xie, manel.khlif-bouassida, armand.toguyeni}@centralelille.fr

ABSTRACT

The automation and the adoption of ERTMS (The

European Rail Traffic Management System) are two

solutions for railway systems to satisfy the necessity of

increasing the capacity of railway lines and enhancing

their safety. In this context, this study is to be part of the

contribution to a methodology allowing the development

of discrete event controllers of autonomous train control

system needed for railway automation. This article

emphasizes the modeling stage using Colored Petri Nets

(CPN) and its extensions. While modeling, both the

railway requirements and the necessity to formally verify

some crucial properties (e.g., collision-free system) have

been taken into account. By proposing several modeling

patterns based on Well-Formed Petri Nets (WFN), we

solve several technical problems of modeling railway

train control system and similar complex systems,

making it possible to construct reducible and analyzable

models, before being formally verified.

Keywords: Railway System, Autonomous Train

Control, DES Modeling, Colored Petri Nets

1. INTRODUCTION

The development of autonomous trains logic controllers

has become a priority in railway control system, in order

to increase its safety, and to make railway system more

competitive with regard to the other means of

transportation.

This study is part of a methodology allowing the

systematic and rigorous development of logic controllers

necessary for railway automation. The methodology we

finally develop should formally model the control

functions and make it possible to verify essential

properties (e.g., safety) of an automated system. The

ultimate goal of this methodology is to generate, by

model transformation, the code of these functions, which

could be implemented on the computers of the ground

infrastructure and on the embedded controllers in the

trains. This paper concerns the modeling stage. One

problematic situation is to deal with the compromise

between the modeling power of the selected modeling

approaches and the possibility of making formal

verification. In this study, we decide to use Well-Formed

Petri Nets (WFN) as the modeling formalism to benefit

from all its advantages, and we propose several WFN

modeling patterns and techniques suitable with the

complexity of railway systems.

The paper is structured as follows. In the second section,

we give a state-of-the-art of railway system modeling

using Colored Petri Net (CPN). In the third section, we

discuss the tradeoff between the modeling power and the

verification capacity of CPN and WFN approaches, in

order to finally justify the reason why we choose WFN

as our modeling tool for autonomous train control

system. Section 4 presents a railway system structure and

some main functions used in this paper; several

constrains and assumptions in the modeling stage are

also given in section 4. In section 5, we present a brief

introduction about the main formalism and

characteristics of WFN. In section 6, we propose certain

modeling patterns as solutions to some main modeling

problems of a railway control system. In section 7, we

illustrate the use of these patterns by a case study of

automation of railway system. Finally, we end up with

conclusions and perspectives of this work in section 8.

2. STATE OF THE ART

For about half a century, Petri Nets (PN) have been used

to model concurrent and complex systems. Among its

numerous extensions, CPN is the most widely used

formalism incorporating data, hierarchy, and time (van

der Aalst et al. 2013). This section summarizes some

research works using CPN to model and analyze railway

control system.

In (Janczura 1999), a whole process of modeling and

analyzing a railway network is proposed using CPN. The

network considers two types of trains (i.e., express and

normal) which move in the same direction. A safety

property (each block in the railway line can only be

occupied by exactly one train or empty) and four

operational properties are analyzed. However, this thesis

report only considers a quite simple model and does not

respect the ERTMS/ETCS standard.

In (Jansen et al. 1998; Meyer zu Hörste 1999), a CPN

hierarchical framework is proposed to model

ERTMS/ETCS (mainly in level-2). Several generic

modeling paradigms and techniques (e.g., distributed

Proc. of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2017
ISBN 978-88-97999-88-1; Bruzzone, Dauphin-Tanguy, and Junco Eds.

25

modeling, communication between separate CPNs,

synchronization, etc.) are created to build their CPN

models and formal methods can be used to analyze these

models. This study mainly focus on the hierarchical and

structural problems of modeling ETCS specifications

instead of the implementation of concrete functional

models.

A summary of Petri Nets models of railway stations is

given in (Žarnay 2004). Different models are divided into

four levels (i.e., technical equipment level, movement

level, train processing level and decision-making level)

according to their different objectives and different

abstract levels.

CPN Tools is a tool for editing, simulating and analyzing

CPNs, which is first introduced in (Ratzer et al. 2003;

Jensen et al. 2007). After its wide application, more CPN

models are proposed by benefiting from the features of

this powerful tool.

In (van der Aalst et al. 2013), several CPN design

patterns and strategies are proposed using CPN Tools,

showing some solutions to several typical design

problems in terms of modeling complex processes.

In (Vanit-Anunchai 2009; Vanit-Anunchai 2010; Vanit-

Anunchai 2014), railway interlocking table models are

proposed using CPN Tools. As a main advantage of these

models, the general CPN structure proposed can be

reused regardless of variable structures and sizes of

railway systems. While, these models store too many

data (e.g., geographic information) in colored tokens and

the behavior of the models are greatly affected by the

data instead of the structure of model. In this case,

although we can do some test with the simulation

function in CPN Tools, a formal verification is rather

difficult to performed on this kind of CPN models.

In our previous work (Xie et al. 2016), we have proposed

discrete controller models based on High-level Petri Nets

supported by CPN Tools. Our research concentrates on

the whole railway system (i.e., both the train controller

and the trackside part). In this previous work, these High-

level Petri Nets are unconstrained CPNs, allowing a

powerful modeling ability of the systems. CPN Tools

also offers extra extensions with ML Language to

enhance its modeling power, e.g., the possibility of

defining a “list” datatype. However, one pays for this

capacity of modeling because there are no really, tools or

efficient methods, to help analyze and verify these

unconstrained CPNs with extensions.

3. COMPARISON OF CPN AND WFN

APPROACHES OF MODELING TRAIN

CONTROL SYSTEMS

Figure 1 compares the CPN and WFN approaches of

modeling the railway system and the possible analyzing

methods applicable to the models.

As shown in the left part of Figure 1, the most direct way

of analyzing a CPN is to generate its reachability graph

which enables to check the required properties. Although

it is possible in theory, the application of this method is

generally limited by combinatorial explosion problems.

One way to combat this combinatorial explosion would

be to reduce the initial CPN model before constructing

the reachability graph. However, there is very little work

proposing reduction rules applicable to CPNs and each

of them has their own applicable constrains. For example,

the reduction rules proposed in (Esparza & Hoffmann

2016) are only applicable to free choice workflow nets

with an objective of maintaining the soundness property.

In more general cases, the only solution available is to

first go through an unfolding operation of the CPN before

the application of some existing reduction rules of

ordinary PNs (Berthelot & Lri-Iie 1986; Murata 1989).

However, in this case, for a complex system e.g. railway

system, one is confronted with a combinatorial explosion

problem in the unfolding operation.

To solve the problems above, some High-level Petri Nets

with constrains are proposed, among which the Well-

Formed Petri Nets (Chiola et al. 1991) are of interest to

us. It is proved that WFN have the same expression

power as CPN (Diaz 2013), which means, every CPN can

be transformed into a WFN with the same basic structure,

same color domains (possibly partitioned in static

subclasses), equivalent arc labeling, and the possible

addition of transition predicates (Chiola et al. 1991). It

implies that WFNs have at least an equal modeling power

compared to general (unconstrained) CPNs defined in

(Jensen 1981).

Figure 1 Different Ways of Analysis of Colored Nets

Proc. of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2017
ISBN 978-88-97999-88-1; Bruzzone, Dauphin-Tanguy, and Junco Eds.

26

The right part of Figure 1 describes the possible analysis

methods applicable to WFN models. To avoid the

combinatorial explosion, several reduction rules could

first be applied, e.g. the reduction rules in (Haddad 1991).

Several reduction rules may also need a calculation of

colored invariants (Couvreur & Martínez 1991). Then

the models can be analyzed with help of these invariants

and/or by building a symbolic reachability graph (Chiola

et al. 1991) which will greatly reduce the size of the

reachability graph.

As our final objective is to propose appropriate Petri Net

patterns whose properties can be checked before the

models are implemented, this paper proposes the use of

WFN instead of CPN for modeling autonomous railway

control systems, in order to benefit from the advantages

of analyzing a WFN model.

4. RAILWAY SYSTEM BASIC AND CONTEXT

This study concerns the management of multiple trains

in a railway line based on Movement Authorities (MA,

permission for a train to move to a specific location with

supervision of its speed) generated by trackside

infrastructure. We first present the background of the

railway models.

4.1. Railway Lines and Blocks

Railway lines are connections of different railway

stations. Normally, a single railway line has a fixed

direction and all the trains in this railway line run in this

direction. A railway line is divided into numerous blocks.

Blocks are used to avoid train collisions, ensuring the

safe and efficient operations of railway systems.

Figure 2 Railway Lines and Blocks

Figure 2 shows an example of lines decomposed into

blocks. The railway line from Station 1 to Station 2 and

another railway line from Station 2 to Station 1 are

divided into several blocks respectively (for simplicity,

Figure 2 represents each railway line with 5 blocks). For

safety reasons, each block must contain no more than one

train. Thus, only after the train occupying the current

block (the block is said to be “occupied”) has left (the

block is then “clear”), another train is authorized to enter

this block.

4.2. ETCS-2 Based Train Management in Railway

Lines

European railway systems are nowadays equipped with

the ERTMS and the European Train Control System

(ETCS).

ETCS is specified in four different levels (level 0-3).

Currently, ERTMS/ETCS level 2 (ETCS-2) has been put

into use on several high-speed railway lines in Europe,

which uses Eurobalise to help train locating and uses

continuous radio transmission GSM-R (Global System

for Mobile Communications - Railway) for data

exchanges between trackside infrastructures and onboard

equipment. Our study is based on the infrastructure of

ETCS-2. Figure 3 illustrates the main functions of train

management offered by ETCS-2.

Figure 3 ETCS-2 Based Train Management

Trackside: Radio Block Center (RBC) provides trains

with Movement Authorities (MA), taking into account

the positions of corresponding trains, signals and switch

states as well as the physical line configuration (slopes,

curves, etc.);

Onboard: Each train regularly sends its position to RBC

and receives MA from RBC. The onboard equipment

calculates a speed profile considering the End of

Authority (EOA), which is the last block in the MA, and

the train characteristics (mass, length, etc.).

4.3. System Simplifications and Assumptions

This study considers a set of simplifying assumptions to

manage multiple trains in a railway line. The aim of these

simplifications is to reduce the complexity of the models

so that the models could be represented in a limited

number of pages. The principle assumptions are:

1. Our model does not take into account the length

of a train. We only care whether a train occupies

a block.

2. The MA message is reduced to the list of blocks

that are reserved and assigned to a train. The

exact speed limit and the other parameters in a

MA are not considered here. However, we

assume that a train can always stop at its EOA.

3. A single RBC manages all the trains in the same

railway line between two stations. This means

that the RBC handover function is beyond this

study. The control of railway node/station is not

considered.

4. In this paper, a “railway line” has a fixed

operation direction and is linked with only 2

stations: the departure and the arrival. The

overtaking is not considered. This assumption

simplifies the operations we propose later in the

paper by always maintaining the same order of

the trains as they enter in this railway line.

5. Each time a train enters in a new block, we

assume that it receives its current position from

a Eurobalise and then sends a position report to

the corresponding RBC, instead of considering

the specified report format according to

ERTMS/ETCS-2 standard.

Block Block Block Block Block

Block Block Block Block Block

Speed

End of Authority (EOA)

Block NBlock N-1Block N-2

Radio Block Center (RBC)

Proc. of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2017
ISBN 978-88-97999-88-1; Bruzzone, Dauphin-Tanguy, and Junco Eds.

27

6. Once a RBC receives a position report from a

train, it updates the train’s location in its

database. The RBC also considers the location

report as a MA request. Consequently, it

generates a MA response to the train according

to the following principle: if the train is the first

one in the railway line (there is no preceding

train until the end block), its EOA is set to the

end block in this railway line, otherwise the

EOA is set to the block next to the one occupied

by the preceding train.

5. WELL-FORMED PETRI NETS

5.1. Well-Formed Petri Net and its formalism

Well-Formed Petri Nets (WFN) are Colored Petri Nets

(Jensen 1981) that satisfy a set of syntactical constraints.

In this paper, we only introduce the main features of

WFN. A complete formal definition can be found in

(Chiola et al. 1991).

5.1.1. WFN Color Classes and Color Domains

A color class can be ordered or unordered, and can be

divided into static subclasses. A color class defines the

same nature of the tokens of this type. When a color class

comprise of several static subclasses, the colors within

each static subclass share some similar potential

behaviors (batch operation, symmetry, etc.).

A color domain is a Cartesian product of color classes. A

neutral color is noted as ε, allowing to define uncolored

places or transitions.

Each place and each transition of a WFN is associated

with a color class or with a color domain.

5.1.2. WFN Color Functions

Color functions are formal sums of guarded functions

built by standard operations (linear combination,

composition, etc.) on basic functions.

There are three basic functions: identity function is a

projection which selects an item of a tuple and is always

denoted by a typed variable (e.g. X, Y) in application;

diffusion function is a constant function which returns the

bag composed by all the colors of a class or a subclass

and is denoted All(C) where C is the corresponding

(sub)class; successor function applies on an ordered class

and returns the color following the given color, which is

denoted as .

5.1.3. Guards

Color functions are formal sums of guarded functions

built by standard operations (linear combination,

composition, etc.) on basic functions.

An atomic predicate can identify two variables ([X = Y]),

compare a variable with another using successor function

([]), or restrict a variable to be within a static

subclass D ([X D]).

The constrains above provide WFN with a good structure

and simplify its analysis. The formalism of basic

functions emphasizes the system symmetries. However,

some asymmetric behaviors of objects in a given class

are also supported by subclass divisions or by guards on

transitions or on color functions, which has strengthened

the modeling power of WFN.

5.2. WFN Modeling Tools

CPN-AMI (Kordon & Paviot-Adet 1999) allows users to

build and analyze models of AMI-Nets, which are WFNs

with a specific syntax.

GreatSPN (Chiola et al. 1995) is a friendly framework

allowing the modeling, validation, and performance

evaluation of Generalized Stochastic Petri Nets (GSPN)

and their colored extension: Stochastic Well-Formed

Nets (SWN). This tool also supports timed Petri Net

based modeling and implements several efficient

analysis algorithms to facilitate complex applications.

Besides these tools supporting WFN, one could also

choose from a variety of tools for Colored Petri Nets and

High-level Petri Nets to build their WFN models with

respect to the WFN definition.

6. WFN MODELING PATTERNS FOR TRAIN

CONTROL SYSTEM

In this section, we propose three modeling patterns that

could be useful to build WFN models for railway control

systems.

1. An equivalent structure in WFN to the arcs

using IF-THEN-ELSE expressions defined in

CPN Tool (Jensen et al. 2007);

2. The definition and implementation of a

successor function;

3. A WFN queue structure with its corresponding

management operations (adding item, removing

item, modifying item, query, etc.).

We will define these modeling patterns with respect to a

practical railway train control model. While these

modeling patterns can also be applied to other complex

system models.

6.1. IF-THEN-ELSE Arc in WFN

IF-THEN-ELSE is a common alternative structure that

facilitates the modeling of some system logic functions.

An arc using IF-THEN-ELSE expression is supported by

some tools e.g. CPN Tools. Unfortunately, it is not

supported in WFN. In this section, we propose two

solutions to use IF-THEN-ELSE arc based on guarded

functions and guarded transitions respectively.

6.1.1. IF-THEN-ELSE Arc by Guarded Functions

Consider a transition t and a place p. Let and

.

We define and two unguarded colored functions,

which are sums of tuple of basic functions.

,

.

We define a general IF-THEN-ELSE expression which

labels an arc connecting a transition t and a place p:

, where .

Proc. of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2017
ISBN 978-88-97999-88-1; Bruzzone, Dauphin-Tanguy, and Junco Eds.

28

As such an expression is not supported by

WFN syntax, we define the equivalent function

 :

WE
* p,t = g ¬g

= g f1
t
, f2

t
,…, fk

t

m

+ ¬g f1
f
, f2

f
,…, fk

f

n

 = g f1
t
, f2

t
,…, fk

t

m

+ ¬g f1
f
, f2

f
,…, fk

f

n

where .

Obviously, respects the definition of WFN

standard functions (Chiola et al. 1991) and has the same

semantic as the IF-THEN-ELSE expression .

6.1.2. IF-THEN-ELSE Arc by Guarded Transitions

Some Petri Nets tools do not support the concept of

guarded function. In this case, we can use two guarded

transitions to model the "then" and "else" clause of the

IF-THEN-ELSE arc respectively.

Figure 4 shows an example of an IF-THEN-ELSE arc

and its context. G is the guard of transition t (it is possible

that G=TRUE) and g is the condition in the IF-THEN-

ELSE expression. The other notations will be the same

as defined in section 6.1.1.

Figure 4 IF-THEN-ELSE Arc by Guarded Transitions

We propose an equivalent structure taking into

consideration three cases based on the relationship

between G and g.

Case 1: G is stronger than g ()

In this case,

.

According to the firing principles, transition t is not

enabled with a color .

Consequently, only the function in the THEN-clause

should be considered. Thus, the incidence function

 is then rewritten as

, where .

Case 2: G and g are disjoint ()

In this case,

In opposition to Case1, transition t is not fireable with

any color , so only the

function in the ELSE-clause should be considered.

Thus, the incidence function

 is then rewritten as ,

where .

Case 3: general case not belonging to Case 1 nor Case 2

In this case, we partition the colorset satisfying the guard

G (i.e.) into two sub-

colorsets and :

 ,

,

such that and .

Then one models transition t with two transitions and

 defining ,

where

- ; ; ;

- ;

- ;

- Assume ,

, then ,

,

;

- , ,

;

- , ,

;

- , .

We will give an example later in section 6.3 when

introducing the operation 3 for a train queue structure.

6.2. Predecessor Function and Its WFN Realization

In WFNs the successor function is defined as an

elementary function. While in some modeling cases it is

also necessary to use a predecessor function, which is not

defined in WFNs. This study proposes a method to use

predecessor functions that will be noted as . This

study also gives its application constrains. With respect

to these constrains one could always find an equivalent

WFN structure which behaves as a predecessor function.

Let be an application from

 to the predecessor of in , where is an ordered

class. It is worth noting that like the successor function,

the predecessor of the first item in is the last item.

To benefit from the features of WFN, when analyzing

such a colored net using predecessor functions defined

above, we could transform it to an equivalent WFN.

Figure 5 shows an example of a colored net using

predecessor (Figure 5 (a)) and its equivalent WFN

(Figure 5 (b)). In the example ; X, Y are

two identity functions that , ; (X-1) and

(X+1) are notations of predecessor and successor

functions that (X-1) = , (X+1) = .

Figure 5 (a) uses the predecessor function (X-1) in the

output arc of transition t. In order to replace this structure

using WFN, we do the following two steps:

Figure 5 Predecessor and the Equivalent WFN

DECLARATION C = {1..5}

(a) (b)

t

P1

P2

P3

Cl

Cl

Cl

[X=Y]

X

Y

3

Po
((X-1),Y)

ClxCl

P1'

Cl

P2'

Cl

P3'

Cl

Po'

ClxCl

t'

[(X+1)=Y]
X+1

Y

3

(X,Y)

Proc. of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2017
ISBN 978-88-97999-88-1; Bruzzone, Dauphin-Tanguy, and Junco Eds.

29

Step 1: search for all the instances of the identification

function X in the “context of transition t”, and replace

them with the corresponding successor function (X+1).

It is worth noting that the three atomic predicates defined

in WFN are replaced by the following rules respectively:

1. [X = Y] is replaced by [];

2. [] is replaced by [], which

means [X = Y];

3. [X D] is replaced by [], which is

not a WFN guard. In this case, let

 be a subclass, we define a new

subclass where

and are the predecessors of and

, respectively. Then [] is

transformed to [].

In the example, the two instances are found in the guard

of transition t and on the output arc from the transition t

respectively in Figure 5 (a), which are then replaced by

(X+1) in Figure 5 (b).

Step 2: replace the predecessor function (X-1) (in Figure

5 (a)) with the corresponding successor function X (in

Figure 5 (b)). In the example, the one on the output arc

of transition t is replaced by t’.

Application constrains: In order that the replacement

above can be performed, for a color instance , if the

predecessor function is used, the corresponding

successor function cannot appear in the “context

of the same transition t”, which includes the arcs

connected with transition t and the guard of transition t.

In other words, we cannot use the predecessor and the

successor function of a same color instance

simultaneously and in the “context of a transition”.

6.3. Queue Structure in WFN

While modeling railway control systems, more exactly

the RBC model needs to have a centralized storage of the

trains’ queue, i.e., the information of all the trains in the

railway line it manages. The information includes at least

the trains’ identifications, their positions and the

sequence of these trains.

Using WFN, we can use a token of a product domain (e.g.,

) to illustrate the identification

and position of each train. However, it is difficult to

establish an ordered relation among these tokens.

In some software for modeling high level Petri nets such

as CPN Tools (Ratzer et al. 2003; Jensen et al. 2007), it

is possible to use a “list” type, like that defined in most

programming languages, to realize this queue of trains.

While the use of “list” type color class will lose the

convenience of analyzing a WFN (a colored net using

“list” type is obviously not a WFN).

This section defines a queue structure in WFN. It

establishes an order relation among different elements

and supports several operations e.g. insert, removal,

query, and update. In addition, a colored net using this

WFN-compatible queue structure remains a WFN,

maintaining all its advantages for its analysis.

The proposition of this queue structure is faced with the

requirements of modeling a practical train control system.

Its application will be illustrated with the implementation

of the Movement Authority (MA) function as part of the

RBC model in Section 7. The implementation of the

queue structure (e.g. Operation 3) uses the modeling

patterns proposed in section 6.1 and 6.2.

Some basic declarations used in the queue structure are

defined as follows:

CLASS POS = <0> <1, 2, …, N> <N+1>;

 TID = <T(0), T(1), T(2), … , T(M)>;

DOMAIN TRAINITEM = <POS, TID, POS>.

The color class POS is ordered and is divided into three

sub-classes. Each position in <1, 2, …, N> represents a

particular block in the railway line (which has N blocks;

N is consequently a parameter that is bound to a specific

value for each real line). The other two sub-classes <0>

and <N+1> are for special purposes and will be explained

in the following paragraphs. For convenience, we define

a constant HEAD = N+1 for the following parts of this

paper.

The color class TID enumerates the different identifiers

of trains, in which T(0) is reserved as a special value and

it does not represent a real train. TID could be an

unordered class.

The color domain TRAINITEM is a 3-tuples Cartesian

product and has the following practical meaning, as

shown in Figure 6.

Figure 6 Structure of TrainItem

Each token (except the token TrainQueueRear) of color

domain TRAINITEM represents a particular train

(TrainID) with its current position (Current Block). In

addition, each train is connected to its previous train by

indicating the block where its predecessor is located

(PrevTrain’s block). The following two special values

help to construct the queue structure:

First Train: The first train in the railway line has not a

preceding train regarding the actual state of the line. Let

us give a special value “HEAD: POS” to its third field.

As defined above, the constant HEAD = N+1. The block

“N+1: POS” does not exist in the railway infrastructure.

This value is used to indicate the first train in the queue.

Train Queue Rear: It doesn’t present a real train, but

offers a link to the rear train’s position. The first and

second fields of this item are always “0: POS” and “T0:

TID”, which is used to identify this rear item. It is worth

noting that the block “0:POS” is not a real block, neither

T(0) a real train. Its third field indicates the position of

the rear train in the queue.

Proc. of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2017
ISBN 978-88-97999-88-1; Bruzzone, Dauphin-Tanguy, and Junco Eds.

30

Figure 7 Conceptual List Structure of 3 Trains

The queue structure is then constructed by two places,

i.e., place TrainQueue: TRAINITEM and place
FreeBlock: POS.

In place TrainQueue there are tokens of color domain

“TRAINITEM”. In a special case where there are no

trains in the railway line, the place TrainQueue is not

empty, there still exists a token (Train Queue Rear in

which the third value is “HEAD: POS”): <0: POS, T(0):

TID, HEAD: POS>.

Tokens in Place FreeBlock represents the free blocks that

are not occupied by a train. Each time a train moves, it

will take the new position token from Place FreeBlock

and release the token of its previous position.

To illustrate how to model a practical queue structure of

trains in WFN, here is a general case assuming that there

are 3 trains in the railway line, as shown in Figure 7.

Now it is necessary to define some basic operations to

manage the queue structure.

Operation 1: Insert Operation

A new train is always inserted from the rear of the queue

and it is normally inserted in Block 1. Then the objective

of this operation is to insert a new token with <TrainID

= tr: TID, CurrentBlock = 1: POS> to the queue and to

modify the concerned tokens. This operation is explained

with Figure 8, where tr is the identifier of the train to

insert, and p_last is the position of the last train before

this inserting operation.

Figure 8 Insert Operation

For Operation 1, it is worth noting that:

• If there is already a train in block 1 before the

operation, the token <1: POS> is no longer in

place FreePlace, the new train to be inserted

needs to wait until this block 1 is set free again;

• The operation also considers the case that the

railway line is previously empty, i.e. p_last =

HEAD: POS.

Operation 2: Removal Operation

When a train arrives at the end block (Block N) of the

railway line and then leaves this railway line, its token

<N:POS, tr:TID, HEAD:POS> must be removed from

place TrainQueue and the token of the block <N: POS>

must be released to place FreeBlock.

Figure 9 shows that the two tokens representing the first

train <N, tr, HEAD> and its successor train <p1, t1, N>

are involved. The last train token is removed and the

“PrevTrain” field of train “t1” is updated to “HEAD:

POS” as it becomes the first train in the railway line.

Figure 9 Removal Operation

For Operation 2, it is worth noting that:

• The variable “tr” is in fact, not necessary as it

could be implied by only using its position “N”,

however we still use it to guarantee the right

train we want to remove.

• When the train to be removed is the only train

in the queue, its successor train is the rear item,

i.e. “p1=0” and “t1=T(0)”. In this case the

removal operation will result in the case with a

unique token <0: POS, T(0): TID, HEAD:

POS >, which means there is no more trains in

the railway line.

Operation 3: Request of Movement Authority (MA) for

a train.

In order to avoid the collision of trains, each train must

request the RBC for MA. By receiving the MA requested,

the train knows to which block it can advance safely

without any collision risk. In practice, it can advance

until the anterior block to the current position of its

predecessor train. This authorized position is called the

End of Movement Authority (EOA). Normally the train

needs to request a new MA regularly before reaching its

EOA, in order not to be stopped during its advancement.

• When the considered train is the first train in the

railway line, it can advance until the last block

of this railway line, so its EOA is position N;

• When the considered train is not the first train

on the railway line, and its predecessor train is

currently in block “p_pre”, then its EOA should

be the block “p_pre - 1”.

Therefore, the EOA position for a particular train with

“tid=tr” could be expressed as “IF (p_pre = HEAD)

THEN N ELSE (p_pre - 1)”, which contains an “IF-

Proc. of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2017
ISBN 978-88-97999-88-1; Bruzzone, Dauphin-Tanguy, and Junco Eds.

31

THEN-ELSE” arc and a predecessor function. Such an

arc expression is not supported by WFN. While, after the

application of equivalent structures proposed in section

6.1.2 and 6.2 (considering the definition HEAD = N+1),

the structure of this operation using WFN can be given

in Figure 10.

Figure 10 Request of Movement Authority

Operation 4: Update of Train Position

The update of train position does not affect the order

relation of trains in the queue. Transition Update1

replaces the train’s positon with a new value while

transition Update2 deals with its successor train.

Figure 11 illustrates the WFN implementation of this

operation. When the position value is updated, the

previous position token “p0” is released to place

FreeBlocks and the new position value is taken. We use

two guarded functions with the guard [p<>p0] to avoid

the manipulation to place FreeBlocks when the new

value equals the old one.

The update operation is always triggered when RBC

receives a position report < tr: TID, p: POS > from a train.

After the update in its database, it is necessary to send

back an acknowledgement to the train.

Figure 11 Update of Train Position

7. CASE STUDY

Faced with the practical problem of railway system

controllers design, we have built several control models.

Three models will be explained in this section. They offer

the functions of managing multiple trains in a railway

line, and with respect to WFN definitions.

7.1. System Structural Model

Figure 12 shows the model of the system architecture.

The models are built in a modular way. The rectangles

with double-line borders are modules.

This example model considers two train modules, whose

detail is explained in section 7.2. A RBC module is built

for the railway line management; and its details will be

given in section 7.3.

Place Train2RBC and place RBC2Train represent the

wireless interfaces between trains and the RBC module.

The tokens in them are messages between different

modules. In a similar way, place Balise2T models the

Eurobalise interfaces. In our study, the Eurobalises are

used to inform the trains of their locations.

The places T1info and T2info define the respective

identifier of each train. Bidirectional arcs are used as the

identifier tokens should never be consumed or modified.

This can also be done for RBCs, in case of the modeling

of a line controlled by several RBCs.

As all the train modules are exactly identical (except their

TIDs as initial markings), it is possible to add more train

modules to the architectural model, as long as these train

modules are connected to the suitable interfaces and

assigned with a TrainID.

Figure 12 Structural Model of the Case Study

7.2. Train Model

Figure 13 gives the train model integrated with the

functions to enter a railway line, to advance with respect

to its MA, and finally to pass this railway line.

Figure 13 Train Module of Case Study

Let us suppose that initially the train just arrives on the

first block (place Balise: 1, place Position is empty, place

EOA: 1, place Registered: false). From this initial state,

the following functions describes the behavior of the

train sequentially.

Register function is to register the train itself to the RBC.

To fire the transition Register, the train must be located

in block 1 (token “1: POS” in place Balise) and the state

Proc. of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2017
ISBN 978-88-97999-88-1; Bruzzone, Dauphin-Tanguy, and Junco Eds.

32

Registered is false. When transition Register fires, it will

send a message of type “INSERT” to the RBC, put a

token “1: POS” into place Position, and change the state

Registered to true.

Advance function is to simulate the advancement of a

train already in the blocks. The train can advance as well

as it does not arrive on its EOA position. Each time the

train passes a block, its new position is received via place

Balise so that transition Advance is fired. The token in

place Position is updated, and a position report is also

sent to inform the RBC of its new position.

Transition Receive can be fired when there is a MA

message generated by RBC. Place RBC2T are shared by

all the trains, so only the message for this train (tid) will

be received. After receiving the message, its new EOA

value is then memorized in place EOA.

Disconnect function is to inform the RBC that it has

passed the railway line. After passing the last block

(block N), the transition Disconnect can be fired. Then

the token “N: POS” is removed from place Position, the

train sends a message of type “REMOVE” to the RBC

and changes its state Registered to false.

7.3. RBC Model

Figure 14 represents the RBC model. The four main

functions (e.g., InsertTrain, RemoveTrain, QueryEOA

and PositionUpdate) are well explained as the four

operations of train queue structure in Section 6.3.

What we need to add in this model is the way to fire

different functions. The functions InsertTrain,

RemoveTrain and PositionUpdate can be fired after

receiving a message from a train. A field “Type” (i.e.,

INSERT, REMOVE or UPDATE) in the message helps

to choose the corresponding functions to fire.

For convenience, the RBC model regards a position

report as a MA request. So, each time it receives a

position report, the trainID is then put into place Request

in order to generate a MA for it. The RBC also generates

a MA for a train that is just registered (after transition

InsertTrain is fired).

8. CONCLUSIONS AND PERSPECTIVES

In this paper, we have shown that it is possible to use

WFN to model complex systems such as railway systems

by using several modeling patterns and techniques that

we propose. These modeling patterns also make it

possible to model some structures and extensions of

other types of colored Petri nets such as the CPNs defined

in (Jensen, 81), based on the WFN rules (e.g., elementary

colored functions). We illustrate our propositions by

applying them to the Movement Authority (MA)

function modeled in the ECTS-2 context.

The prospects for this work are of course to continue the

modeling of other functions of a railway system with a

view to its complete automation. We are thinking in

particular about the routing function of a train inside a

node, which is implemented today in a semi-automatic

mode, which requires a man-machine cooperation.

Beyond the modeling stage, it will be necessary to

complete this work by the development of a method

allowing the formal verification of our models while

controlling their combinatory explosion. On the other

hand, we want to use the techniques of reductions

applicable to the WFN for our developed models. We

also plan to directly use the calculation of colored

invariants on reduced models but also the construction if

necessary of symbolic reachability graph. All these

mentioned methods may be complemented by the

proposal of a formal model verification such as the

assume-guarantee reasoning (Nguyen Huu 2013) in

order to ensure that the global model inherits the

properties verified on its component modules.

ACKNOWLEDGMENTS

This study is carried out within the framework of the

CompRAIL project of ELSAT2020. The ELSAT2020

research program is co-financed by the European Union

with the European Regional Development Fund, the

French state and the Hauts de France Region Council.

Figure 14 RBC Module of Case Study

Proc. of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2017
ISBN 978-88-97999-88-1; Bruzzone, Dauphin-Tanguy, and Junco Eds.

33

Evans W.A., 1994. Approaches to intelligent information

retrieval. Information Processing and Management,

7 (2), 147–168.

van der Aalst, W.M.P., Stahl, C. & Westergaard, M.,

2013. Strategies for Modeling Complex Processes

Using Colored Petri Nets. In K. Jensen et al., eds.

Transactions on Petri Nets and Other Models of

Concurrency VII. Berlin, Heidelberg: Springer

Berlin Heidelberg, pp. 6–55.

Berthelot, G. & Lri-Iie, 1986. Checking properties of

nets using transformations. In G. Rozenberg, ed.

Advances in Petri Nets 1985. Berlin, Heidelberg:

Springer Berlin Heidelberg, pp. 19–40.

Chiola, G. et al., 1995. GreatSPN 1.7: GRaphical Editor

and Analyzer for Timed and Stochastic Petri Nets. ,

24, pp.47–68.

Chiola, G. et al., 1991. On Well-Formed Coloured Nets

and Their Symbolic Reachability Graph. In High-

level Petri Nets SE - 13. Springer, pp. 373–396.

Couvreur, J.M. & Martínez, J., 1991. Linear invariants in

commutative high level nets. In G. Rozenberg, ed.

Advances in Petri Nets 1990. Springer Berlin

Heidelberg, pp. 146–164.

Diaz, M., 2013. Petri Nets: Fundamental Models,

Verification and Applications M. Diaz, ed.,

London, UK: John Wiley & Sons.

Esparza, J. & Hoffmann, P., 2016. Reduction Rules for

Colored Workflow Nets. In Fundamental

Approaches to Software Engineering: 19th

International Conference (FASE 2016). pp. 342–

358.

Haddad, S., 1991. A Reduction Theory for Coloured

Nets. In K. Jensen & G. Rozenberg, eds. High-level

Petri Nets: Theory and Application. Berlin,

Heidelberg: Springer Berlin Heidelberg, pp. 399–

425.

Janczura, C.W., 1999. Modelling and Analysis of

Railway Network Control Logic using Coloured

Petri Nets. University of South Australia.

Jansen, L., Meyer zu Hörste, M. & Schnieder, E., 1998.

Technical Issues in Modelling the European Train

Control System (ETCS) Using Coloured Petri Nets

and the Design/CPN Tools. In K. Jensen, ed.

Workshop on Practical Use of Coloured Petri Nets

and Design. Daimi PB-532, Aarhus, Denmark:

Aarhus University, pp. 103–115.

Jensen, K., 1981. Coloured Petri Nets and the Invariant-

Method. Theoretical Computer Science, 14(3),

pp.317–336.

Jensen, K., Kristensen, L.M. & Wells, L., 2007.

Coloured Petri Nets and CPN Tools for modelling

and validation of concurrent systems. International

Journal on Software Tools for Technology

Transfer, 9(3–4), pp.213–254.

Kordon, F. & Paviot-Adet, E., 1999. Using CPN-AMI to

Validate a Safe Channel Protocol. In Proceedings

of the International Conference on Theory and

Applications of Petri Nets - Tool presentation part.

Williamsburg, USA.

Meyer zu Hörste, M., 1999. Modelling and Simulation of

Train Control Systems Using Petri Nets. In FMRail

Workshop.

Murata, T., 1989. Petri Nets: Properties, Analysis and

Applications. Proceedings of the IEEE, 77(4),

pp.541–580.

Nguyen Huu, V., 2013. Modular Verification of Petri

nets. UNIVERSITY OF BORDEAUX 1.

Ratzer, A.V. et al., 2003. CPN Tools for Editing,

Simulating, and Analysing Coloured Petri Nets. In

Proceedings of the 24th international conference on

Applications and theory of Petri nets (ICATPN’03).

pp. 450–462.

Vanit-Anunchai, S., 2014. Experience using Coloured

Petri Nets to Model Railway Interlocking Tables. In

2nd French Singaporean Workshop on Formal

Methods and Applications (FSFMA’2014).

Singapore, pp. 17–28.

Vanit-Anunchai, S., 2010. Modelling Railway

Interlocking Tables Using Coloured Petri Nets. In

D. Clarke & G. Agha, eds. Coordination Models

and Languages: 12th International Conference

(COORDINATION’2010). Amsterdam, The

Netherlands: Springer Berlin Heidelberg, pp. 137–

151.

Vanit-Anunchai, S., 2009. Verification of Railway

Interlocking Tables using Coloured. In The 10th

Workshop and Tutorial on Practical Use of

Coloured Petri Nets and the CPN Tools. DAIMI PB

590, Department of Computer Science, University

of Aarhus, pp. 139–158.

Xie, Y., Khlif-bouassida, M. & Toguyeni, A., 2016.

Modeling Of Automatic Train Operation Control

Using Colored Petri Nets. In 11th International

Conference on Modeling, Optimization &

Simulation (MOSIM 2016). Montréal, Canada.

Žarnay, M., 2004. Use of Petri Net for Modelling of

Traffic in Railway Stations. In Proceedings of

international conference Infotrans. Pardubice.

REFERENCES

Proc. of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2017
ISBN 978-88-97999-88-1; Bruzzone, Dauphin-Tanguy, and Junco Eds.

34

