
WELL-FORMED PETRI NET BASED PATTERNS FOR MODELING LOGIC 

CONTROLLERS FOR AUTONOMOUS TRAINS 
 

 

Yuchen Xie, Manel Khlif-Bouassida, Armand Toguyéni 

 

 

Centrale Lille, CRIStAL, UMR 9189 

59650 Villeneuve d’Ascq, France 

Univ. Lille Nord de France, F-59650, Lille, France 

 

{yuchen.xie, manel.khlif-bouassida, armand.toguyeni}@centralelille.fr 

 

 

 

 

ABSTRACT 

The automation and the adoption of ERTMS (The 

European Rail Traffic Management System) are two 

solutions for railway systems to satisfy the necessity of 

increasing the capacity of railway lines and enhancing 

their safety. In this context, this study is to be part of the 

contribution to a methodology allowing the development 

of discrete event controllers of autonomous train control 

system needed for railway automation. This article 

emphasizes the modeling stage using Colored Petri Nets 

(CPN) and its extensions. While modeling, both the 

railway requirements and the necessity to formally verify 

some crucial properties (e.g., collision-free system) have 

been taken into account. By proposing several modeling 

patterns based on Well-Formed Petri Nets (WFN), we 

solve several technical problems of modeling railway 

train control system and similar complex systems, 

making it possible to construct reducible and analyzable 

models, before being formally verified. 

 

Keywords: Railway System, Autonomous Train 

Control, DES Modeling, Colored Petri Nets 

 

1. INTRODUCTION 

The development of autonomous trains logic controllers 

has become a priority in railway control system, in order 

to increase its safety, and to make railway system more 

competitive with regard to the other means of 

transportation. 

This study is part of a methodology allowing the 

systematic and rigorous development of logic controllers 

necessary for railway automation. The methodology we 

finally develop should formally model the control 

functions and make it possible to verify essential 

properties (e.g., safety) of an automated system. The 

ultimate goal of this methodology is to generate, by 

model transformation, the code of these functions, which 

could be implemented on the computers of the ground 

infrastructure and on the embedded controllers in the 

trains. This paper concerns the modeling stage. One 

problematic situation is to deal with the compromise 

between the modeling power of the selected modeling 

approaches and the possibility of making formal 

verification. In this study, we decide to use Well-Formed 

Petri Nets (WFN) as the modeling formalism to benefit 

from all its advantages, and we propose several WFN 

modeling patterns and techniques suitable with the 

complexity of railway systems. 

The paper is structured as follows. In the second section, 

we give a state-of-the-art of railway system modeling 

using Colored Petri Net (CPN). In the third section, we 

discuss the tradeoff between the modeling power and the 

verification capacity of CPN and WFN approaches, in 

order to finally justify the reason why we choose WFN 

as our modeling tool for autonomous train control 

system. Section 4 presents a railway system structure and 

some main functions used in this paper; several 

constrains and assumptions in the modeling stage are 

also given in section 4. In section 5, we present a brief 

introduction about the main formalism and 

characteristics of WFN. In section 6, we propose certain 

modeling patterns as solutions to some main modeling 

problems of a railway control system. In section 7, we 

illustrate the use of these patterns by a case study of 

automation of railway system. Finally, we end up with 

conclusions and perspectives of this work in section 8. 

 

2. STATE OF THE ART 

For about half a century, Petri Nets (PN) have been used 

to model concurrent and complex systems. Among its 

numerous extensions, CPN is the most widely used 

formalism incorporating data, hierarchy, and time (van 

der Aalst et al. 2013). This section summarizes some 

research works using CPN to model and analyze railway 

control system. 

In (Janczura 1999), a whole process of modeling and 

analyzing a railway network is proposed using CPN. The 

network considers two types of trains (i.e., express and 

normal) which move in the same direction. A safety 

property (each block in the railway line can only be 

occupied by exactly one train or empty) and four 

operational properties are analyzed. However, this thesis 

report only considers a quite simple model and does not 

respect the ERTMS/ETCS standard. 

In (Jansen et al. 1998; Meyer zu Hörste 1999), a CPN 

hierarchical framework is proposed to model 

ERTMS/ETCS (mainly in level-2). Several generic 

modeling paradigms and techniques (e.g., distributed 
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modeling, communication between separate CPNs, 

synchronization, etc.) are created to build their CPN 

models and formal methods can be used to analyze these 

models. This study mainly focus on the hierarchical and 

structural problems of modeling ETCS specifications 

instead of the implementation of concrete functional 

models. 

A summary of Petri Nets models of railway stations is 

given in (Žarnay 2004). Different models are divided into 

four levels (i.e., technical equipment level, movement 

level, train processing level and decision-making level) 

according to their different objectives and different 

abstract levels. 

CPN Tools is a tool for editing, simulating and analyzing 

CPNs, which is first introduced in (Ratzer et al. 2003; 

Jensen et al. 2007). After its wide application, more CPN 

models are proposed by benefiting from the features of 

this powerful tool. 

In (van der Aalst et al. 2013), several CPN design 

patterns and strategies are proposed using CPN Tools, 

showing some solutions to several typical design 

problems in terms of modeling complex processes. 

In (Vanit-Anunchai 2009; Vanit-Anunchai 2010; Vanit-

Anunchai 2014), railway interlocking table models are 

proposed using CPN Tools. As a main advantage of these 

models, the general CPN structure proposed can be 

reused regardless of variable structures and sizes of 

railway systems. While, these models store too many 

data (e.g., geographic information) in colored tokens and 

the behavior of the models are greatly affected by the 

data instead of the structure of model. In this case, 

although we can do some test with the simulation 

function in CPN Tools, a formal verification is rather 

difficult to performed on this kind of CPN models. 

In our previous work (Xie et al. 2016), we have proposed 

discrete controller models based on High-level Petri Nets 

supported by CPN Tools. Our research concentrates on 

the whole railway system (i.e., both the train controller 

and the trackside part). In this previous work, these High-

level Petri Nets are unconstrained CPNs, allowing a 

powerful modeling ability of the systems. CPN Tools 

also offers extra extensions with ML Language to 

enhance its modeling power, e.g., the possibility of 

defining a “list” datatype. However, one pays for this 

capacity of modeling because there are no really, tools or 

efficient methods, to help analyze and verify these 

unconstrained CPNs with extensions. 

 

3. COMPARISON OF CPN AND WFN 

APPROACHES OF MODELING TRAIN 

CONTROL SYSTEMS 

Figure 1 compares the CPN and WFN approaches of 

modeling the railway system and the possible analyzing 

methods applicable to the models. 

As shown in the left part of Figure 1, the most direct way 

of analyzing a CPN is to generate its reachability graph 

which enables to check the required properties. Although 

it is possible in theory, the application of this method is 

generally limited by combinatorial explosion problems. 

One way to combat this combinatorial explosion would 

be to reduce the initial CPN model before constructing 

the reachability graph. However, there is very little work 

proposing reduction rules applicable to CPNs and each 

of them has their own applicable constrains. For example, 

the reduction rules proposed in (Esparza & Hoffmann 

2016) are only applicable to free choice workflow nets 

with an objective of maintaining the soundness property. 

In more general cases, the only solution available is to 

first go through an unfolding operation of the CPN before 

the application of some existing reduction rules of 

ordinary PNs (Berthelot & Lri-Iie 1986; Murata 1989). 

However, in this case, for a complex system e.g. railway 

system, one is confronted with a combinatorial explosion 

problem in the unfolding operation. 

To solve the problems above, some High-level Petri Nets 

with constrains are proposed, among which the Well-

Formed Petri Nets (Chiola et al. 1991) are of interest to 

us. It is proved that WFN have the same expression 

power as CPN (Diaz 2013), which means, every CPN can 

be transformed into a WFN with the same basic structure, 

same color domains (possibly partitioned in static 

subclasses), equivalent arc labeling, and the possible 

addition of transition predicates (Chiola et al. 1991). It 

implies that WFNs have at least an equal modeling power 

compared to general (unconstrained) CPNs defined in 

(Jensen 1981). 

 

 
Figure 1 Different Ways of Analysis of Colored Nets 

Proc. of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2017 
ISBN 978-88-97999-88-1; Bruzzone, Dauphin-Tanguy, and Junco Eds.                                                  

26



The right part of Figure 1 describes the possible analysis 

methods applicable to WFN models. To avoid the 

combinatorial explosion, several reduction rules could 

first be applied, e.g. the reduction rules in (Haddad 1991). 

Several reduction rules may also need a calculation of 

colored invariants (Couvreur & Martínez 1991). Then 

the models can be analyzed with help of these invariants 

and/or by building a symbolic reachability graph (Chiola 

et al. 1991) which will greatly reduce the size of the 

reachability graph. 

As our final objective is to propose appropriate Petri Net 

patterns whose properties can be checked before the 

models are implemented, this paper proposes the use of 

WFN instead of CPN for modeling autonomous railway 

control systems, in order to benefit from the advantages 

of analyzing a WFN model. 

 

4. RAILWAY SYSTEM BASIC AND CONTEXT 

This study concerns the management of multiple trains 

in a railway line based on Movement Authorities (MA, 

permission for a train to move to a specific location with 

supervision of its speed) generated by trackside 

infrastructure. We first present the background of the 

railway models. 

 

4.1. Railway Lines and Blocks 

Railway lines are connections of different railway 

stations. Normally, a single railway line has a fixed 

direction and all the trains in this railway line run in this 

direction. A railway line is divided into numerous blocks. 

Blocks are used to avoid train collisions, ensuring the 

safe and efficient operations of railway systems. 

 

 
Figure 2 Railway Lines and Blocks 

 

Figure 2 shows an example of lines decomposed into 

blocks. The railway line from Station 1 to Station 2 and 

another railway line from Station 2 to Station 1 are 

divided into several blocks respectively (for simplicity, 

Figure 2 represents each railway line with 5 blocks). For 

safety reasons, each block must contain no more than one 

train. Thus, only after the train occupying the current 

block (the block is said to be “occupied”) has left (the 

block is then “clear”), another train is authorized to enter 

this block. 

 

4.2. ETCS-2 Based Train Management in Railway 

Lines 

European railway systems are nowadays equipped with 

the ERTMS and the European Train Control System 

(ETCS). 

ETCS is specified in four different levels (level 0-3). 

Currently, ERTMS/ETCS level 2 (ETCS-2) has been put 

into use on several high-speed railway lines in Europe, 

which uses Eurobalise to help train locating and uses 

continuous radio transmission GSM-R (Global System 

for Mobile Communications - Railway) for data 

exchanges between trackside infrastructures and onboard 

equipment. Our study is based on the infrastructure of 

ETCS-2. Figure 3 illustrates the main functions of train 

management offered by ETCS-2. 

 

 
Figure 3 ETCS-2 Based Train Management 

 

Trackside: Radio Block Center (RBC) provides trains 

with Movement Authorities (MA), taking into account 

the positions of corresponding trains, signals and switch 

states as well as the physical line configuration (slopes, 

curves, etc.); 

Onboard: Each train regularly sends its position to RBC 

and receives MA from RBC. The onboard equipment 

calculates a speed profile considering the End of 

Authority (EOA), which is the last block in the MA, and 

the train characteristics (mass, length, etc.). 

 

4.3. System Simplifications and Assumptions 

This study considers a set of simplifying assumptions to 

manage multiple trains in a railway line. The aim of these 

simplifications is to reduce the complexity of the models 

so that the models could be represented in a limited 

number of pages. The principle assumptions are: 

1. Our model does not take into account the length 

of a train. We only care whether a train occupies 

a block. 

2. The MA message is reduced to the list of blocks 

that are reserved and assigned to a train. The 

exact speed limit and the other parameters in a 

MA are not considered here. However, we 

assume that a train can always stop at its EOA. 

3. A single RBC manages all the trains in the same 

railway line between two stations. This means 

that the RBC handover function is beyond this 

study. The control of railway node/station is not 

considered. 

4. In this paper, a “railway line” has a fixed 

operation direction and is linked with only 2 

stations: the departure and the arrival. The 

overtaking is not considered. This assumption 

simplifies the operations we propose later in the 

paper by always maintaining the same order of 

the trains as they enter in this railway line. 

5. Each time a train enters in a new block, we 

assume that it receives its current position from 

a Eurobalise and then sends a position report to 

the corresponding RBC, instead of considering 

the specified report format according to 

ERTMS/ETCS-2 standard. 

Block Block Block Block Block

Block Block Block Block Block

Speed

End of Authority (EOA)

Block NBlock N-1Block N-2

Radio Block Center (RBC)
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6. Once a RBC receives a position report from a 

train, it updates the train’s location in its 

database. The RBC also considers the location 

report as a MA request. Consequently, it 

generates a MA response to the train according 

to the following principle: if the train is the first 

one in the railway line (there is no preceding 

train until the end block), its EOA is set to the 

end block in this railway line, otherwise the 

EOA is set to the block next to the one occupied 

by the preceding train. 

 

5. WELL-FORMED PETRI NETS 

 

5.1. Well-Formed Petri Net and its formalism 

Well-Formed Petri Nets (WFN) are Colored Petri Nets 

(Jensen 1981) that satisfy a set of syntactical constraints. 

In this paper, we only introduce the main features of 

WFN. A complete formal definition can be found in 

(Chiola et al. 1991). 

 

5.1.1. WFN Color Classes and Color Domains 

A color class can be ordered or unordered, and can be 

divided into static subclasses. A color class defines the 

same nature of the tokens of this type. When a color class 

comprise of several static subclasses, the colors within 

each static subclass share some similar potential 

behaviors (batch operation, symmetry, etc.). 

A color domain is a Cartesian product of color classes. A 

neutral color is noted as ε, allowing to define uncolored 

places or transitions. 

Each place and each transition of a WFN is associated 

with a color class or with a color domain. 

 

5.1.2. WFN Color Functions 

Color functions are formal sums of guarded functions 

built by standard operations (linear combination, 

composition, etc.) on basic functions. 

There are three basic functions: identity function is a 

projection which selects an item of a tuple and is always 

denoted by a typed variable (e.g. X, Y) in application; 

diffusion function is a constant function which returns the 

bag composed by all the colors of a class or a subclass 

and is denoted All(C) where C is the corresponding 

(sub)class; successor function applies on an ordered class 

and returns the color following the given color, which is 

denoted as . 

 

5.1.3. Guards 

Color functions are formal sums of guarded functions 

built by standard operations (linear combination, 

composition, etc.) on basic functions. 

An atomic predicate can identify two variables ([X = Y]), 

compare a variable with another using successor function 

([ ]), or restrict a variable to be within a static 

subclass D ([X  D]). 

The constrains above provide WFN with a good structure 

and simplify its analysis. The formalism of basic 

functions emphasizes the system symmetries. However, 

some asymmetric behaviors of objects in a given class 

are also supported by subclass divisions or by guards on 

transitions or on color functions, which has strengthened 

the modeling power of WFN. 

 

5.2. WFN Modeling Tools 

CPN-AMI (Kordon & Paviot-Adet 1999) allows users to 

build and analyze models of AMI-Nets, which are WFNs 

with a specific syntax. 

GreatSPN (Chiola et al. 1995) is a friendly framework 

allowing the modeling, validation, and performance 

evaluation of Generalized Stochastic Petri Nets (GSPN) 

and their colored extension: Stochastic Well-Formed 

Nets (SWN). This tool also supports timed Petri Net 

based modeling and implements several efficient 

analysis algorithms to facilitate complex applications. 

Besides these tools supporting WFN, one could also 

choose from a variety of tools for Colored Petri Nets and 

High-level Petri Nets to build their WFN models with 

respect to the WFN definition. 

 

6. WFN MODELING PATTERNS FOR TRAIN 

CONTROL SYSTEM 

In this section, we propose three modeling patterns that 

could be useful to build WFN models for railway control 

systems. 

1. An equivalent structure in WFN to the arcs 

using IF-THEN-ELSE expressions defined in 

CPN Tool (Jensen et al. 2007); 

2. The definition and implementation of a 

successor function; 

3. A WFN queue structure with its corresponding 

management operations (adding item, removing 

item, modifying item, query, etc.). 

We will define these modeling patterns with respect to a 

practical railway train control model. While these 

modeling patterns can also be applied to other complex 

system models. 

 

6.1. IF-THEN-ELSE Arc in WFN 

IF-THEN-ELSE is a common alternative structure that 

facilitates the modeling of some system logic functions. 

An arc using IF-THEN-ELSE expression is supported by 

some tools e.g. CPN Tools. Unfortunately, it is not 

supported in WFN. In this section, we propose two 

solutions to use IF-THEN-ELSE arc based on guarded 

functions and guarded transitions respectively. 

 

6.1.1. IF-THEN-ELSE Arc by Guarded Functions 

Consider a transition t and a place p. Let  and 

. 

We define  and  two unguarded colored functions, 

which are sums of tuple of basic functions. 

 

, 

. 

 

We define a general IF-THEN-ELSE expression which 

labels an arc connecting a transition t and a place p: 

 

, where . 
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As such an expression  is not supported by 

WFN syntax, we define the equivalent function 

 : 

 

WE
* p,t  = g  ¬g

= g  f1
t
, f2

t
,…, fk

t

m

+ ¬g f1
f
, f2

f
,…, fk

f

n

 

              = g f1
t
, f2

t
,…, fk

t

m

+ ¬g f1
f
, f2

f
,…, fk

f

n

where . 

 

Obviously,  respects the definition of WFN 

standard functions (Chiola et al. 1991) and has the same 

semantic as the IF-THEN-ELSE expression . 

 

6.1.2. IF-THEN-ELSE Arc by Guarded Transitions 

Some Petri Nets tools do not support the concept of 

guarded function. In this case, we can use two guarded 

transitions to model the "then" and "else" clause of the 

IF-THEN-ELSE arc respectively. 

Figure 4 shows an example of an IF-THEN-ELSE arc 

and its context. G is the guard of transition t (it is possible 

that G=TRUE) and g is the condition in the IF-THEN-

ELSE expression. The other notations will be the same 

as defined in section 6.1.1. 

 

 
Figure 4 IF-THEN-ELSE Arc by Guarded Transitions 

 

We propose an equivalent structure taking into 

consideration three cases based on the relationship 

between G and g. 

 

Case 1: G is stronger than g ( ) 

In this case, 

. 

According to the firing principles, transition t is not 

enabled with a color . 

Consequently, only the function  in the THEN-clause 

should be considered. Thus, the incidence function 

 is then rewritten as 

, where . 

 

Case 2: G and g are disjoint ( ) 

In this case, 

 

In opposition to Case1, transition t is not fireable with 

any color , so only the 

function  in the ELSE-clause should be considered. 

Thus, the incidence function 

 is then rewritten as , 

where . 

 

Case 3: general case not belonging to Case 1 nor Case 2 

In this case, we partition the colorset satisfying the guard 

G (i.e. ) into two sub-

colorsets  and  : 

 , 

,  

such that  and . 

Then one models transition t with two transitions  and 

 defining , 

where 

- ; ; ; 

- ; 

- ; 

- Assume ,

, then , 

, 

; 

- , , 

; 

- , , 

; 

- , . 

We will give an example later in section 6.3 when 

introducing the operation 3 for a train queue structure. 

 

6.2. Predecessor Function and Its WFN Realization 

In WFNs the successor function  is defined as an 

elementary function. While in some modeling cases it is 

also necessary to use a predecessor function, which is not 

defined in WFNs. This study proposes a method to use 

predecessor functions that will be noted as . This 

study also gives its application constrains. With respect 

to these constrains one could always find an equivalent 

WFN structure which behaves as a predecessor function. 

Let  be an application from 

 to the predecessor of  in , where  is an ordered 

class. It is worth noting that like the successor function, 

the predecessor of the first item in  is the last item. 

To benefit from the features of WFN, when analyzing 

such a colored net using predecessor functions defined 

above, we could transform it to an equivalent WFN.   

Figure 5 shows an example of a colored net using 

predecessor (Figure 5 (a)) and its equivalent WFN 

(Figure 5 (b)). In the example ; X, Y are 

two identity functions that , ; (X-1) and 

(X+1) are notations of predecessor and successor 

functions that (X-1) = , (X+1) = . 

Figure 5 (a) uses the predecessor function (X-1) in the 

output arc of transition t. In order to replace this structure 

using WFN, we do the following two steps: 

 

 
Figure 5 Predecessor and the Equivalent WFN 

DECLARATION C = {1..5}

(a) (b)

t

P1

P2

P3

Cl

Cl

Cl

[X=Y]

X

Y

3

Po
((X-1),Y)

ClxCl

P1'

Cl

P2'

Cl

P3'

Cl

Po'

ClxCl

t'

[(X+1)=Y]
X+1

Y

3

(X,Y)
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Step 1: search for all the instances of the identification 

function X in the “context of transition t”, and replace 

them with the corresponding successor function (X+1). 

It is worth noting that the three atomic predicates defined 

in WFN are replaced by the following rules respectively: 

1. [X = Y] is replaced by [ ]; 

2. [ ] is replaced by [ ], which 

means [X = Y]; 

3. [X  D] is replaced by [ ], which is 

not a WFN guard. In this case, let 

 be a subclass, we define a new 

subclass  where 

and  are the predecessors of  and 

, respectively. Then [ ] is 

transformed to [ ]. 

In the example, the two instances are found in the guard 

of transition t and on the output arc from the transition t 

respectively in Figure 5 (a), which are then replaced by 

(X+1) in Figure 5 (b). 

 

Step 2: replace the predecessor function (X-1) (in Figure 

5 (a)) with the corresponding successor function X (in 

Figure 5 (b)). In the example, the one on the output arc 

of transition t is replaced by t’. 

 

Application constrains: In order that the replacement 

above can be performed, for a color instance , if the 

predecessor function  is used, the corresponding 

successor function  cannot appear in the “context 

of the same transition t”, which includes the arcs 

connected with transition t and the guard of transition t. 

In other words, we cannot use the predecessor and the 

successor function of a same color instance  

simultaneously and in the “context of a transition”. 

 

6.3. Queue Structure in WFN 

While modeling railway control systems, more exactly 

the RBC model needs to have a centralized storage of the 

trains’ queue, i.e., the information of all the trains in the 

railway line it manages. The information includes at least 

the trains’ identifications, their positions and the 

sequence of these trains. 

Using WFN, we can use a token of a product domain (e.g., 

) to illustrate the identification 

and position of each train. However, it is difficult to 

establish an ordered relation among these tokens. 

In some software for modeling high level Petri nets such 

as CPN Tools (Ratzer et al. 2003; Jensen et al. 2007), it 

is possible to use a “list” type, like that defined in most 

programming languages, to realize this queue of trains. 

While the use of “list” type color class will lose the 

convenience of analyzing a WFN (a colored net using 

“list” type is obviously not a WFN). 

This section defines a queue structure in WFN. It 

establishes an order relation among different elements 

and supports several operations e.g. insert, removal, 

query, and update. In addition, a colored net using this 

WFN-compatible queue structure remains a WFN, 

maintaining all its advantages for its analysis. 

The proposition of this queue structure is faced with the 

requirements of modeling a practical train control system. 

Its application will be illustrated with the implementation 

of the Movement Authority (MA) function as part of the 

RBC model in Section 7. The implementation of the 

queue structure (e.g. Operation 3) uses the modeling 

patterns proposed in section 6.1 and 6.2. 

Some basic declarations used in the queue structure are 

defined as follows: 

 

CLASS POS = <0> <1, 2, …, N> <N+1>; 

 TID = <T(0), T(1), T(2), … , T(M)>; 

DOMAIN TRAINITEM = <POS, TID, POS>. 

 

The color class POS is ordered and is divided into three 

sub-classes. Each position in <1, 2, …, N> represents a 

particular block in the railway line (which has N blocks; 

N is consequently a parameter that is bound to a specific 

value for each real line). The other two sub-classes <0> 

and <N+1> are for special purposes and will be explained 

in the following paragraphs. For convenience, we define 

a constant HEAD = N+1 for the following parts of this 

paper. 

The color class TID enumerates the different identifiers 

of trains, in which T(0) is reserved as a special value and 

it does not represent a real train. TID could be an 

unordered class. 

The color domain TRAINITEM is a 3-tuples Cartesian 

product and has the following practical meaning, as 

shown in Figure 6. 

 

 
Figure 6 Structure of TrainItem 

 

Each token (except the token TrainQueueRear) of color 

domain TRAINITEM represents a particular train 

(TrainID) with its current position (Current Block). In 

addition, each train is connected to its previous train by 

indicating the block where its predecessor is located 

(PrevTrain’s block). The following two special values 

help to construct the queue structure: 

 

First Train: The first train in the railway line has not a 

preceding train regarding the actual state of the line. Let 

us give a special value “HEAD: POS” to its third field. 

As defined above, the constant HEAD = N+1. The block 

“N+1: POS” does not exist in the railway infrastructure. 

This value is used to indicate the first train in the queue. 

 

Train Queue Rear: It doesn’t present a real train, but 

offers a link to the rear train’s position. The first and 

second fields of this item are always “0: POS” and “T0: 

TID”, which is used to identify this rear item. It is worth 

noting that the block “0:POS” is not a real block, neither 

T(0) a real train. Its third field indicates the position of 

the rear train in the queue. 
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Figure 7 Conceptual List Structure of 3 Trains 

 

The queue structure is then constructed by two places, 

i.e., place TrainQueue: TRAINITEM and place 
FreeBlock: POS. 

In place TrainQueue there are tokens of color domain 

“TRAINITEM”. In a special case where there are no 

trains in the railway line, the place TrainQueue is not 

empty, there still exists a token (Train Queue Rear in 

which the third value is “HEAD: POS”): <0: POS, T(0): 

TID, HEAD: POS>. 

Tokens in Place FreeBlock represents the free blocks that 

are not occupied by a train. Each time a train moves, it 

will take the new position token from Place FreeBlock 

and release the token of its previous position. 

To illustrate how to model a practical queue structure of 

trains in WFN, here is a general case assuming that there 

are 3 trains in the railway line, as shown in Figure 7. 

Now it is necessary to define some basic operations to 

manage the queue structure. 

 

Operation 1: Insert Operation 

A new train is always inserted from the rear of the queue 

and it is normally inserted in Block 1. Then the objective 

of this operation is to insert a new token with <TrainID 

= tr: TID, CurrentBlock = 1: POS> to the queue and to 

modify the concerned tokens. This operation is explained 

with Figure 8, where tr is the identifier of the train to 

insert, and p_last is the position of the last train before 

this inserting operation. 

 

 
Figure 8 Insert Operation 

 

For Operation 1, it is worth noting that: 

• If there is already a train in block 1 before the 

operation, the token <1: POS> is no longer in 

place FreePlace, the new train to be inserted 

needs to wait until this block 1 is set free again; 

• The operation also considers the case that the 

railway line is previously empty, i.e. p_last = 

HEAD: POS. 

 

Operation 2: Removal Operation 

When a train arrives at the end block (Block N) of the 

railway line and then leaves this railway line, its token 

<N:POS, tr:TID, HEAD:POS> must be removed from 

place TrainQueue and the token of the block <N: POS> 

must be released to place FreeBlock. 

Figure 9 shows that the two tokens representing the first 

train <N, tr, HEAD> and its successor train <p1, t1, N> 

are involved. The last train token is removed and the 

“PrevTrain” field of train “t1” is updated to “HEAD: 

POS” as it becomes the first train in the railway line.  

 

 
Figure 9 Removal Operation 

 

For Operation 2, it is worth noting that:  

• The variable “tr” is in fact, not necessary as it 

could be implied by only using its position “N”, 

however we still use it to guarantee the right 

train we want to remove.  

• When the train to be removed is the only train 

in the queue, its successor train is the rear item, 

i.e. “p1=0” and “t1=T(0)”. In this case the 

removal operation will result in the case with a 

unique token <0: POS, T(0): TID, HEAD: 

POS >, which means there is no more trains in 

the railway line. 

 

Operation 3: Request of Movement Authority (MA) for 

a train. 

In order to avoid the collision of trains, each train must 

request the RBC for MA. By receiving the MA requested, 

the train knows to which block it can advance safely 

without any collision risk. In practice, it can advance 

until the anterior block to the current position of its 

predecessor train. This authorized position is called the 

End of Movement Authority (EOA). Normally the train 

needs to request a new MA regularly before reaching its 

EOA, in order not to be stopped during its advancement. 

• When the considered train is the first train in the 

railway line, it can advance until the last block 

of this railway line, so its EOA is position N; 

• When the considered train is not the first train 

on the railway line, and its predecessor train is 

currently in block “p_pre”, then its EOA should 

be the block “p_pre - 1”. 

Therefore, the EOA position for a particular train with 

“tid=tr” could be expressed as “IF (p_pre = HEAD) 

THEN N ELSE (p_pre - 1)”, which contains an “IF-
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THEN-ELSE” arc and a predecessor function. Such an 

arc expression is not supported by WFN. While, after the 

application of equivalent structures proposed in section 

6.1.2 and 6.2 (considering the definition HEAD = N+1), 

the structure of this operation using WFN can be given 

in Figure 10. 

 

 
Figure 10 Request of Movement Authority 

 

Operation 4: Update of Train Position 

The update of train position does not affect the order 

relation of trains in the queue. Transition Update1 

replaces the train’s positon with a new value while 

transition Update2 deals with its successor train. 

Figure 11 illustrates the WFN implementation of this 

operation. When the position value is updated, the 

previous position token “p0” is released to place 

FreeBlocks and the new position value is taken. We  use 

two guarded functions with the guard [p<>p0] to avoid 

the manipulation to place FreeBlocks when the new 

value equals the old one. 

The update operation is always triggered when RBC 

receives a position report < tr: TID, p: POS > from a train. 

After the update in its database, it is necessary to send 

back an acknowledgement to the train. 

 

 
Figure 11 Update of Train Position 

 

7. CASE STUDY 

Faced with the practical problem of railway system 

controllers design, we have built several control models. 

Three models will be explained in this section. They offer 

the functions of managing multiple trains in a railway 

line, and with respect to WFN definitions. 

 

7.1. System Structural Model 

Figure 12 shows the model of the system architecture. 

The models are built in a modular way. The rectangles 

with double-line borders are modules. 

This example model considers two train modules, whose 

detail is explained in section 7.2. A RBC module is built 

for the railway line management; and its details will be 

given in section 7.3.  

Place Train2RBC and place RBC2Train represent the 

wireless interfaces between trains and the RBC module. 

The tokens in them are messages between different 

modules. In a similar way, place Balise2T models the 

Eurobalise interfaces. In our study, the Eurobalises are 

used to inform the trains of their locations. 

The places T1info and T2info define the respective 

identifier of each train. Bidirectional arcs are used as the 

identifier tokens should never be consumed or modified. 

This can also be done for RBCs, in case of the modeling 

of a line controlled by several RBCs. 

As all the train modules are exactly identical (except their 

TIDs as initial markings), it is possible to add more train 

modules to the architectural model, as long as these train 

modules are connected to the suitable interfaces and 

assigned with a TrainID. 

 

 
Figure 12 Structural Model of the Case Study 

 

7.2. Train Model 

Figure 13 gives the train model integrated with the 

functions to enter a railway line, to advance with respect 

to its MA, and finally to pass this railway line.  

 

 
Figure 13 Train Module of Case Study 

 

Let us suppose that initially the train just arrives on the 

first block (place Balise: 1, place Position is empty, place 

EOA: 1, place Registered: false). From this initial state, 

the following functions describes the behavior of the 

train sequentially. 

 

Register function is to register the train itself to the RBC. 

To fire the transition Register, the train must be located 

in block 1 (token “1: POS” in place Balise) and the state 
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Registered is false. When transition Register fires, it will 

send a message of type “INSERT” to the RBC, put a 

token “1: POS” into place Position, and change the state 

Registered to true.  

Advance function is to simulate the advancement of a 

train already in the blocks. The train can advance as well 

as it does not arrive on its EOA position. Each time the 

train passes a block, its new position is received via place 

Balise so that transition Advance is fired. The token in 

place Position is updated, and a position report is also 

sent to inform the RBC of its new position. 

Transition Receive can be fired when there is a MA 

message generated by RBC. Place RBC2T are shared by 

all the trains, so only the message for this train (tid) will 

be received. After receiving the message, its new EOA 

value is then memorized in place EOA. 

Disconnect function is to inform the RBC that it has 

passed the railway line. After passing the last block 

(block N), the transition Disconnect can be fired. Then 

the token “N: POS” is removed from place Position, the 

train sends a message of type “REMOVE” to the RBC 

and changes its state Registered to false. 

7.3. RBC Model 

Figure 14 represents the RBC model. The four main 

functions (e.g., InsertTrain, RemoveTrain, QueryEOA 

and PositionUpdate) are well explained as the four 

operations of train queue structure in Section 6.3. 

What we need to add in this model is the way to fire 

different functions. The functions InsertTrain, 

RemoveTrain and PositionUpdate can be fired after 

receiving a message from a train. A field “Type” (i.e., 

INSERT, REMOVE or UPDATE) in the message helps 

to choose the corresponding functions to fire. 

For convenience, the RBC model regards a position 

report as a MA request. So, each time it receives a 

position report, the trainID is then put into place Request 

in order to generate a MA for it. The RBC also generates 

a MA for a train that is just registered (after transition 

InsertTrain is fired). 

8. CONCLUSIONS AND PERSPECTIVES

In this paper, we have shown that it is possible to use 

WFN to model complex systems such as railway systems 

by using several modeling patterns and techniques that 

we propose. These modeling patterns also make it 

possible to model some structures and extensions of 

other types of colored Petri nets such as the CPNs defined 

in (Jensen, 81), based on the WFN rules (e.g., elementary 

colored functions). We illustrate our propositions by 

applying them to the Movement Authority (MA) 

function modeled in the ECTS-2 context. 

The prospects for this work are of course to continue the 

modeling of other functions of a railway system with a 

view to its complete automation. We are thinking in 

particular about the routing function of a train inside a 

node, which is implemented today in a semi-automatic 

mode, which requires a man-machine cooperation. 

Beyond the modeling stage, it will be necessary to 

complete this work by the development of a method 

allowing the formal verification of our models while 

controlling their combinatory explosion. On the other 

hand, we want to use the techniques of reductions 

applicable to the WFN for our developed models. We 

also plan to directly use the calculation of colored 

invariants on reduced models but also the construction if 

necessary of symbolic reachability graph. All these 

mentioned methods may be complemented by the 

proposal of a formal model verification such as the 

assume-guarantee reasoning (Nguyen Huu 2013) in 

order to ensure that the global model inherits the 

properties verified on its component modules. 

ACKNOWLEDGMENTS 

This study is carried out within the framework of the 

CompRAIL project of ELSAT2020. The ELSAT2020 

research program is co-financed by the European Union 

with the European Regional Development Fund, the 

French state and the Hauts de France Region Council. 

Figure 14 RBC Module of Case Study 

Proc. of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2017 
ISBN 978-88-97999-88-1; Bruzzone, Dauphin-Tanguy, and Junco Eds.                                                  

33



Evans W.A., 1994. Approaches to intelligent information 

retrieval. Information Processing and Management, 

7 (2), 147–168. 

van der Aalst, W.M.P., Stahl, C. & Westergaard, M., 

2013. Strategies for Modeling Complex Processes 

Using Colored Petri Nets. In K. Jensen et al., eds. 

Transactions on Petri Nets and Other Models of 

Concurrency VII. Berlin, Heidelberg: Springer 

Berlin Heidelberg, pp. 6–55. 

Berthelot, G. & Lri-Iie, 1986. Checking properties of 

nets using transformations. In G. Rozenberg, ed. 

Advances in Petri Nets 1985. Berlin, Heidelberg: 

Springer Berlin Heidelberg, pp. 19–40. 

Chiola, G. et al., 1995. GreatSPN 1.7: GRaphical Editor 

and Analyzer for Timed and Stochastic Petri Nets. , 

24, pp.47–68. 

Chiola, G. et al., 1991. On Well-Formed Coloured Nets 

and Their Symbolic Reachability Graph. In High-

level Petri Nets SE - 13. Springer, pp. 373–396. 

Couvreur, J.M. & Martínez, J., 1991. Linear invariants in 

commutative high level nets. In G. Rozenberg, ed. 

Advances in Petri Nets 1990. Springer Berlin 

Heidelberg, pp. 146–164. 

Diaz, M., 2013. Petri Nets: Fundamental Models, 

Verification and Applications M. Diaz, ed., 

London, UK: John Wiley & Sons. 

Esparza, J. & Hoffmann, P., 2016. Reduction Rules for 

Colored Workflow Nets. In Fundamental 

Approaches to Software Engineering: 19th 

International Conference (FASE 2016). pp. 342–

358. 

Haddad, S., 1991. A Reduction Theory for Coloured 

Nets. In K. Jensen & G. Rozenberg, eds. High-level 

Petri Nets: Theory and Application. Berlin, 

Heidelberg: Springer Berlin Heidelberg, pp. 399–

425. 

Janczura, C.W., 1999. Modelling and Analysis of 

Railway Network Control Logic using Coloured 

Petri Nets. University of South Australia. 

Jansen, L., Meyer zu Hörste, M. & Schnieder, E., 1998. 

Technical Issues in Modelling the European Train 

Control System (ETCS) Using Coloured Petri Nets 

and the Design/CPN Tools. In K. Jensen, ed. 

Workshop on Practical Use of Coloured Petri Nets 

and Design. Daimi PB-532, Aarhus, Denmark: 

Aarhus University, pp. 103–115. 

Jensen, K., 1981. Coloured Petri Nets and the Invariant-

Method. Theoretical Computer Science, 14(3), 

pp.317–336. 

Jensen, K., Kristensen, L.M. & Wells, L., 2007. 

Coloured Petri Nets and CPN Tools for modelling 

and validation of concurrent systems. International 

Journal on Software Tools for Technology 

Transfer, 9(3–4), pp.213–254. 

Kordon, F. & Paviot-Adet, E., 1999. Using CPN-AMI to 

Validate a Safe Channel Protocol. In Proceedings 

of the International Conference on Theory and 

Applications of Petri Nets - Tool presentation part. 

Williamsburg, USA. 

Meyer zu Hörste, M., 1999. Modelling and Simulation of 

Train Control Systems Using Petri Nets. In FMRail 

Workshop. 

Murata, T., 1989. Petri Nets: Properties, Analysis and 

Applications. Proceedings of the IEEE, 77(4), 

pp.541–580. 

Nguyen Huu, V., 2013. Modular Verification of Petri 

nets. UNIVERSITY OF BORDEAUX 1. 

Ratzer, A.V. et al., 2003. CPN Tools for Editing, 

Simulating, and Analysing Coloured Petri Nets. In 

Proceedings of the 24th international conference on 

Applications and theory of Petri nets (ICATPN’03). 

pp. 450–462. 

Vanit-Anunchai, S., 2014. Experience using Coloured 

Petri Nets to Model Railway Interlocking Tables. In 

2nd French Singaporean Workshop on Formal 

Methods and Applications (FSFMA’2014). 

Singapore, pp. 17–28. 

Vanit-Anunchai, S., 2010. Modelling Railway 

Interlocking Tables Using Coloured Petri Nets. In 

D. Clarke & G. Agha, eds. Coordination Models 

and Languages: 12th International Conference 

(COORDINATION’2010). Amsterdam, The 

Netherlands: Springer Berlin Heidelberg, pp. 137–

151. 

Vanit-Anunchai, S., 2009. Verification of Railway 

Interlocking Tables using Coloured. In The 10th 

Workshop and Tutorial on Practical Use of 

Coloured Petri Nets and the CPN Tools. DAIMI PB 

590, Department of Computer Science, University 

of Aarhus, pp. 139–158. 

Xie, Y., Khlif-bouassida, M. & Toguyeni, A., 2016. 

Modeling Of Automatic Train Operation Control 

Using Colored Petri Nets. In 11th International 

Conference on Modeling, Optimization & 

Simulation (MOSIM 2016). Montréal, Canada. 

Žarnay, M., 2004. Use of Petri Net for Modelling of 

Traffic in Railway Stations. In Proceedings of 

international conference Infotrans. Pardubice. 

REFERENCES 

Proc. of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2017 
ISBN 978-88-97999-88-1; Bruzzone, Dauphin-Tanguy, and Junco Eds.                                                  

34


