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ABSTRACT 
Short-term cardiovascular responses to orthostatic stress 
involve complex interactions among various 
mechanisms of short-term cardiovascular and 
respiratory blood flow and blood pressure control. 
Clinical procedures such as sit-to-stand and head-up-tilt 
(HUT) are often used to assess a patient’s ability to 
regulate blood pressure. In this paper, we present a 
cardiovascular regulation model capable of predicting 
blood flow, volumes, and pressures in the systemic 
circulation during HUT. The cardiovascular regulation 
model adjusts cardiac contractility, vascular resistance 
and arterial compliance in response to changes in blood 
pressure. In previous studies, these control variables 
were modeled using a piecewise linear function 
parameterization. In this paper, we present an on-line 
estimation procedure based on the ensemble transform 
Kalman filter (ETKF) to estimate these dynamic control 
variables. 
 
Keywords: cardiovascular regulation system, head-up-
tilt, ensemble transform Kalman filter, parameter 
estimation 
 
1. INTRODUCTION 
The main role of the cardiovascular system is to 
maintain a set level of oxygen and nutrients in tissues as 
well as to ensure continuous removal of carbon dioxide 
and other metabolites. This is accomplished through 
tightly regulated control mechanisms. One of the main 
control systems promoting this regulation is the 
baroreflex system, which is part of the autonomic 
nervous system. Quantities being controlled by 
baroreflex regulation include blood flow and blood 
pressure. These quantities are kept close to their 
reference levels by a complex feedback control system 
regulating heart rate and vascular tone. Failure of this 
system has clinically significant consequences including 
dizziness, falls and reflex mediated syncope (Zaqqa and 
Massuni 2000), in particular for the elderly and for 
patients with hypertension and diabetes. The underlying 
pathophysiology lead to regulatory failure, which can be 
difficult to analyze since the detailed physiology 
involved with blood flow and pressure control is not 
well understood, and it is difficult to study the complex 
regulatory responses experimentally. These facts 

suggest that there is a need for development of more 
advanced methodologies to predict blood flow and 
pressure regulation. 

Sit-to-stand as well as the more commonly used 
head-up-tilt (HUT) (Lanier, Mote and Clay 2011) tests 
are often used to assess patient’s ability to regulate 
blood pressure, in particular for patients who suffer 
from frequent episodes of syncope, lightheadedness, or 
dizziness (Miller and Kruse 2005). During HUT test, 
the patient rests on a tilt-table in supine position. After 
steady values for pressure and heart rate are achieved 
the table is tilted to angle of 60-70 degrees. Upon 
tilting, gravity causes pooling of 500-1000 ml of blood 
in the lower extremities reducing venous return, which 
induces a reduction in cardiac filling, pressure and 
volume. As a response blood pressure in the upper body 
decreases, while blood pressure in the lower body 
increases. Baroreceptors located in the carotid sinuses 
sense the drop in blood pressure causing sympathetic 
activation and parasympathetic withdrawal, which in 
turn lead to an increase in heart rate, cardiac 
contractility, vascular resistance, and vessel tone 
(Robertson, Low and Polinsky 2004).  

In this paper we consider the development of a 
cardiovascular model capable of predicting blood flow, 
volumes, and pressures in the systemic circulation 
during HUT. In essence, the mathematical model 
consists of three principle components: a lumped 
cardiovascular model predicting dynamics while the 
subject is resting in supine position; a model predicting 
dynamic changes in response to HUT; and a model 
predicting the impact of the baroreflex and other 
regulating systems on heart rate, cardiac contractility, 
arterial compliance, and vessel resistance. In this model, 
heart rate is used as an input, thus the parasympathetic 
heart rate regulation is implicitly accounted for in the 
model. For the other three control variables; cardiac 
contractility, arterial compliance and vascular 
resistance, we modeled them in our previous studies by 
a piecewise linear function parameterization approach 
(Olufsen, et al. 2005). However, since these control 
variables, in general, do not vary significantly around 
some baseline values, an alternative and very promising 
approach to model them is by using the nonlinear 
Kalman filtering. The Kalman filter, which was 
introduced in the 1960’s, is a recursive algorithm that 
calculates the optimal state of the system by taking a 
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weighted average of the probability distribution from 
the model and the probability distribution from the 
measurement (Kalman 1960). It is deterministic in 
nature and characterizes the entire optimal estimate 
through the propagation of the mean and covariance of 
the estimate at each step. The filter is very powerful in 
several aspects: it takes explicitly into account the 
measurement errors, it takes measurement data into 
account incrementally, and it is an efficient and simple 
to implement computational tool. It is recursive in the 
sense that at each step, the updated estimate is found 
through the previously estimated state and the 
observation data at that step. The Kalman filter is useful 
for estimating both system dynamics and time-varying 
or constant parameters. 

In the Kalman filter, the model dynamics are 
assumed to be linear and that the errors in both the 
model and the observations are Gaussian. However, if 
these restrictive assumptions do not hold, the Kalman 
filter fails and adjustments have to be made to account 
for them (Grewal and Andrews 2008). One approach to 
deal with the nonlinear model dynamics is by using 
sampling techniques to characterize the probability 
distributions of the state. In this paper, we consider the 
ensemble transform Kalman filter (ETKF) (Evensen 
2009a, Evensen 2009b), which belongs to a broader 
category of filters known as particle filters, for both 
state and parameter estimation.  
 
2. A CARDIOVASCULAR REGULATION MO-

DEL 
In essence, the cardiovascular regulation model consists 
of three principle components: a lumped cardiovascular 
model predicting dynamics while the subject is resting 
in supine position; a model predicting dynamic changes 
in response to HUT; and a model predicting the effects 
of cardiovascular regulation. 
 
2.1. A lumped cardiovascular model 
The basic cardiovascular model comprises 5 
compartments (see Fig. 1) representing arteries and 
veins in the upper and lower body of the systemic 
circulation, respectively, and the left ventricle. Here, the 
upper body compartments represent arteries and veins 
in the head, thorax, and abdomen, while the lower body 
compartments represent all vessels in the legs. The 
model mimics an electrical RC-circuit with voltage 
analogous to pressure, current analogous to flow, charge 
analogous to volume, compliance analogous to 
capacitance, while resistance is the same in both 
formulations. Note that with this model, it can predict 
blood pressure and flow in the various compartments, 
while it cannot predict the actual wave-propagation in 
the arterial network. Therefore, the model is well suited 
for predicting systolic and diastolic pressure values. 
Abbreviations (subscripts) in Fig. 1 are given in Table 
1. 

For each compartment, a pressure-volume relation is 
defined as  

 V −Vun = C(p − pext ),   (1) 

 

 
 

Figure 1: Compartmental model of systemic circulation. 
The model consists of 5 compartments with resistances 
in between compartments. The two heart valves, the 
mitral valve and the aortic valve, are modeled as time-
varying resistors Rmv  and Rav , respectively. In addition, 
the resistance between the lower and upper body veins 
Vvl  is also modeled as time-varying function to prevent 
retrograde flow into the lower-body during the HUT 
 

Abbreviation Name 
av   aortic valve 
au   upper body arteries 
al   lower body arteries 
aup   upper body “peripheral” vascular bed 
alp   lower body “peripheral” vascular bed 
vu   upper body veins 
vl   lower body veins 
lh  left ventricle 

 

Table 1: Abbreviations (subscripts) used in the 
cardiovascular regulation model 
 
where V  is the compartment volume, Vun  is the 
unstressed volume, C  is compartment compliance, p  
is instantaneous pressure, and pext  is the pressure in the 
surrounding tissue. Using Ohm’s law, the volumetric 
flow q  and the pressure p  are related by the relation 
 

 q = pin − pout
R

,   (2) 

where pin  and pout  are the pressure in and out of the 
resistor R , respectively. Differentiating (1) and using 
Ohm’s law (2) yields the following system of 
differential equations for the pressure in the four arterial 
and venous compartments 

 dpi
dt

= 1
C
dV
dt

= pi−1 − pi
Ri−1

− pi − pi+1
Ri

.   (3) 

For the heart compartment, the change in the volume is 
given by 

 dVlh
dt

= qin − qout .   (4) 

Here, the heart pressure is predicted from the volume 
using the pressure-volume relation 

qvl
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 plh =
1
Clh

(Vlh −Vun ) = Elh (Vlh −Vun ),   (5) 

where Elh  is the elastance (the reciprocal of the 
compliance). Pumping is modeled by introducing a 
variable elastance function of the form (Ellwein 2008) 

 

Elh (t ) =

Emax − Emin
2

1− cos π t
TM

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ + Emin , t ∈ 0,TM[ ]

Emax − Emin
2

1+ cos π (t −TM )
TR

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ + Emin , t ∈ TM ,TM +TR[ ]

Emin , t ∈ TM +TR ,T[ ],

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

  

where  t  is the time within a cardiac cycle, Emin  and 
Emax  denote the maximum and minimum elastance, 
respectively. Values for the cardiac cycle T  (which is 
the reciprocal of the heart rate) and TM  are obtained 
from data, while TR  is a model parameter. Finally, heart 
valves are modeled using time-varying resistors for 
which a large resistance Rcl  represents a closed valve 
and a small resistance Rop  represents an open valve. 
These time-varying resistors have the forms 

 Rv = Rcl −
Rcl − Rop

1+ e−β ( pin−pout )
,   

where pin  and pout  denote the pressure in and out of the 
valve, respectively.  

In summary, the five differential equations 
representing the five compartments are given by 

dpau
dt

= (qav − qal − qaup ) /Cau ,

dpal
dt

= (qal − qalp ) /Cal ,

dpvl
dt

= (qalp − qvl ) /Cvl ,

dpvu
dt

= (qaup + qvl − qmv ) /Cvu ,

dVlh
dt

= qmv − qav ,

 

where the volumetric flow qi  is written in terms of the 
pressure and resistance as in equation (2) (e.g., 
qav = (plh − pau ) / Rav ). 
 
2.2. Modeling HUT 
The response to HUT is modeled by accounting for 
hydrostatic pressure acting on the affected 
compartment. During supine position, gravity does not 
influence the system. Upon HUT, blood is pooled in the 
lower extremities leading to an increase in pressure in 
the lower body, while pressure in the upper body 
decreases. To account for gravity, the pressure at the 
level of the carotid arteries were used as a reference 
pressure, so an extra term is added to the flows to ( qal ) 
and from ( qvl ) the lower body compartments. In 
particular, the modified flow equations are calculated as 
follows (Olufsen, et al. 2005) 

q = ρghsin(θ (t))+ pin − pout
R

,  
where 

 θ (t) = π
180

0,   t < tst
vt (t − tst ),   tst ≤ t ≤ tst + ted
60,   t > tst + ted .

⎧
⎨
⎪

⎩⎪
  

 
Here, ρ  is the blood density, g  is the gravitational 
constant, h  is the distance between the lower and upper 
compartments, θ = 600  is the tilt angle, vt = 15  is the tilt 
speed, and tst  and ted  are the starting and ending times 
of the tilt, respectively. 
 
2.3. Modeling effects of cardiovascular regulation 
Upon HUT blood pressure decreases, leading to 
sympathetic activation and parasympathetic withdrawal. 
Parasympathetic withdrawal elicits increase in heart rate 
and cardiac contractility, while the sympathetic 
response elicits increase in vascular resistance and 
compliance. The model developed in this paper does not 
describe in detail sympathetic and parasympathetic 
afferents, but predicts the impact of the baroreflex and 
other systems regulating heart rate, cardiac contractility, 
arterial compliance, and vessel resistance. Heart rate is 
used as an input, thus the parasympathetic heart rate 
regulation is implicitly accounted for in the model. 
Increase of cardiac contractility is modeled by 
controlling the minimum elastance function of the left 
heart ( Emin ), while the decrease of arterial compliance 
was incorporated in the upper body through regulation 
of (Cau ). Finally, regulation of vascular resistance is 
included in both the upper and lower body. The upper 
body compartment includes abdominal and intestinal 
vessels, while the lower body compartment lumps 
vessels in the lower extremities. Consequently, both 
Raup  and Ralp  are regulated. However, the compartments 
representing the upper and lower body arteries appear in 
parallel; hence, both resistances are not identifiable. In 
this paper, we controlled Raup directly and let Ralp = kRaup
with k  denotes the ratio of the optimized rest values of 
Raup  and Ralp . 

As discussed above, three quantities (Emin ,Cau ,Raup )  
are controlled to counteract the effect of the tilt. 
However, since the development of an accurate 
physiologically based model for these control variables 
is a rather nontrivial task, we utilize ensemble transform 
Kalman filter to estimate these time varying control 
functions by treating them as unknown parameters in 
the model. 
 
3. THE ENSEMBLE TRANSFORM KALMAN 

FILTER 
To begin the discussion on the ETKF, we consider a 
state space model of the form 

 xi+1 = f (i, xi ,θ )+wi ,
yi+1 = h(i +1, xi+1,θ )+ vi+1
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where f  is a nonlinear function of the state   xi+1 ∈ℜn
x , 

and  h  is a nonlinear function relating the observation, 

  yi+1 ∈ℜ
ny , to the state.  wi  and   vi+1  are independent 

and identically distributed (i.i.d.) noise processes, and 
θ  are the model parameters. The problem is to find the 
optimal parameter estimates to give the state the best fit 
to the data. Classically, parameter estimation is carried 
out by using an optimization technique to minimize a 
cost functional, which, in general, is the sum of the 
squares of the difference between the model observation 
and the data. Utilizing the filtering technique to estimate 
parameters, there are multiple methods in which we can 
achieve our goal. First, and most direct, is to modify the 
state space representation to accommodate our 
objective. Since we are assuming the observations are 
coming from our model and the parameters are our 
main focus, we can proceed by assuming that the 
parameters have zero dynamics 

 θi+1 = θi + ri
yi+1 = h(i +1, xi+1,θi+1)+ vi+1,

  

where ri  is i.i.d. noise process for the model parameter. 
However, our goal is to not only estimate the 
parameters, but also to fit the states as accurately as 
possible. This methodology is known as dual 
estimation. There are two methodologies that directly 
achieve this. First is joint estimation. This is achieved 
by concatenating the parameters into the state-space as 
follows 

 
z = [x;θ ]
zi+1 = f (i,zi )+wi
θi+1 = θi + ri .

  

A second approach is called the dual filter. This is done 
by concurrently running a state filter and parameter 
filter in parallel. The state filter estimates the state, xi , 
using the parameter value from the parameter filter at 
time, i −1 . While, the parameter filter estimates the 
parameter, θi , using the state estimate at time, i −1 . 
These both propagate forward in time and obtain 
estimates at each time step. 

The main idea around the ensemble Kalman filter is 
to approximate the error statistics of our estimate by a 
set of particles sampled from the probability 
distribution. That is, we calculate the prior and posterior 
error covariances by the ensemble covariance matrices 
around the corresponding ensemble mean 

 
Pxi+1|i =

1
K −1

Ui+1|iUi+1|i
T

Pxi+1|i+1 =
1

K −1
Ui+1|i+1Ui+1|i+1

T ,
             (6) 

where
Ui+1|i = [xi+1|i

1 − x̂i+1|i;xi+1|i
2 − x̂i+1|i;...;xi+1|i

K − x̂i+1|i ]

Ui+1|i+1 = [xi+1|i+1
1 − x̂i+1|i+1;xi+1|i+1

2 − x̂i+1|i+1;...;xi+1|i+1
K − x̂i+1|i+1]

 

with 
  
xi+1|i

j  being the  j
th  particle being propagated 

through the model, and 
  
xi+1|i+1

j  is the update of each 

particle.  With this, we define  K  to be the number of 
particles in which to approximate the distribution and 

  
x̂ = K −1 x j

j=1

K

∑ .  From now on, we shall define  U  to be 

the ensemble perturbation matrix as it gives us the 
deviation of each particle from the mean.  The essence 
of this methodology is that we just integrate each 
ensemble member in time through our dynamical 
model. 

To obtain the update equations, we first compute the 
Kalman gain as follows 

 
Ki+1 = Pxi+1|i H

T (HPxi+1|i H
T + R)−1

= (K −1)−1UUTHT (H (K −1)−1UUTHT + R)−1

= (K −1)−1U(HU )T ((K −1)−1(HU )(HU )T + R)−1.

  

From the above equation, it is noted that anywhere the 
linear operator H  appears, it is coupled to the 
ensemble perturbation matrix,  U . Due to this 
consequence, given a nonlinear observation function  h , 
we can take advantage by replacing HU  with the 
following approximation 

V =[h(xi+11 )− ŷi+1;h(xi+12 )− ŷi+1;...;h(xi+1K )− ŷi+1],   
where   ŷi+1  is the mean of the observation function 

given each sample, 
  
ŷi+1 = h

j=1

K

∑ (xi+1
j ) .   

To obtain our final estimates, we apply the classical 
Kalman filter update equations to each ensemble 
member 

 xi+1|i+1
j = xi+1|i

j + Ki+1(yi+1
k − h(xi+1|i

j )),   
where   Ki+1  is the Kalman gain defined as above, and 

the observation,   yi+1 , is perturbed accordingly 

yi+1
k = yi+1 +ψ i+1

k ,  

where   ψ i+1
k  is a Gaussian random variable with mean 

zero and covariance  R .  This perturbation is a Monte 
Carlo method applied to the Kalman filter formula that 
yields an asymptotically correct analysis error 
covariance estimate for large ensemble sizes (Majda 
and Harlim 2012). In practice, to keep these 
perturbations unbiased, we generate these random 
perturbations by first randomly drawing a M × K
matrix A , where K  is the number of particles and M  
is dimension of the data, and take the singular value 
decomposition of (K −1)−1AAT = FΣFT .  Therefore, we 
have unbiased random vectors of yt+1

k , which are just 
the column vectors of the matrix (Majda and Harlim 
2012) T = ((K −1)R)1/2FΣ−1/2FT A . Since we are 
perturbing the measurements, we can define the 
measurement error covariance matrix to be 
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 R = (K −1)−1EET ,   
where   E = [e1,e2,...,eK ]  are the ensemble measurement 
perturbations, with mean zero. Other alternative 
implementation of the ensemble Kalman filter also 
exists (Evensen 2009b). 

The main idea of the ensemble transform Kalman 
filter (ETKF) is to take the square root of the covariance 
matrix, and transform it to a space where it is more 
robust and well conditioned (Evensen 2009a). There are 
multiple methods for taking the square root, the one we 
utilized in this paper is the ETKF as derived in (Bishop 
2001). The basic idea is to find a transformation matrix 
T  so that 

 Ui+1|i+1Ui+1|iT =UT   
and 

 UT (UT )T = (K −1)Ri+1|i+1,   
where 

  
Ri+1|i+1  is the sample posterior covariance matrix 

as previously defined.  The posterior ensemble is then 
generated by taking the posterior mean and adding each 
column vector from  U . Using the identity 

 AT (AAT + R)−1 = (I + AT (R−1)A)−1AT R−1,   
and letting V = A , we apply this to the Kalman gain 
and arrive at the following expression 

Ki+1 = (K −1)−1U(I + (K −1)−1VT R−1V )−1VT R−1. 
Substituting the above expression and (6) into the 
posterior covariance formula, we obtain 

Pxi+1|i+1 = (I −
U
K −1

(I + (K −1)−1VT R−1V )−1VT R−1H )UU
T

K −1
.  

Factoring out U / (K −1)  yields 

Pxi+1|i+1 =
U
K −1
(I −(I + VT R−1V

K −1
)−1VT R−1V

K −1
)UT .   

Therefore, we finally obtain 

 Pxi+1|i+1 =
1

K −1
U(I − (I + B)−1B)UT ,   

where B =VT R−1V / (K −1) . Using the identity 
 I − (I + B)−1B = (I + B)−1   

we obtain 

 
Pxi+1|i+1 =U((K −1)I +VT R−1V)−1UT

=UΣUT =U TTT

K −1
UT .

  

Applying this to the above analysis for the ensemble 
Kalman filter, we obtain the algorithm for the ensemble 
transform Kalman filter. 
 
4. APPLICATIONS OF ETKF 
The performance and feasibility of using the ensemble 
transform Kalman filtering based approach for 
modeling the cardiovascular regulation system will be 
illustrated using HUT data collected from a healthy 
young male volunteer age 37 who was fit and had no 
known heart or vascular diseases at the Coordinating 
Research Center (Frederiksberg Hospital, Copenhagen, 
Denmark). After resting for 10 minutes in supine 
position, the subject was tilted to an angle of 60 degrees 

at a speed of 15 degrees per second measured by way of 
an electronic marker. The subject remained tilted for 
five minutes, and was then returned to supine position 
at the same tilt speed. For the model based analysis, we 
extracted a total of 690 seconds of data: including a 180 
seconds segment recorded while the subject was resting 
in supine position and a 180 second segment recorded 
during HUT. 

Literature values and subject specific information 
were integrated to identify nominal values for all model 
parameters (resistances, capacitors, heart, and tilt 
parameters) as well as to predict initial conditions for all 
state variables. Nominal parameter values were 
obtained by considering mean values for all pressures, 
flows, and volumes in the system obtained while the 
subject was in supine position (before the tilt). Then, 
using heart rate as an input, we estimate the three 
unknown model parameters (Emin,Cau ,Raup )  from 
measurements of arterial blood pressure in supine 
position and during HUT. The parameter estimation is 
carried out using the ensemble transform Kalman filter 
methodology discussed in Section 3. It should be noted 
that the cardiovascular regulation model presented in 
Section 2 predicts blood pressure and flow as pulsatile 
quantities, but since the model is analogous to an RC-
circuit it does not allow for prediction of wave-
propagation, consequently direct comparison of 
computed and measured values of blood pressure is not 
valid. To obtain adequate pulsatility, we identify model 
parameters that allow prediction of systolic and 
diastolic values of blood pressure. These values can be 
obtained from computing the maximum and minimum 
pressure within each cardiac cycle.  

In the following, we picked noise covariances wi  
and vi  to be Q = 0.01I  and V = 0.01 , respectively. The 
noise covariance ri  for the parameter model is 
R = 1.0 ×10−8 I . The estimated blood pressure obtained 
from the ETKF using 50 ensemble members is depicted 
in Fig. 2 against the actual data. The figure shows very 
good agreement between the state estimate and the data. 

 
Figure 2: Blood pressure from the state estimates 
obtained using the ensemble transformed Kalman filter 
and the actual systolic and diastolic values of blood 
pressure are shown 
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Using the joint estimation, the estimates for the 
regulating parameters  are depicted in 
Figures 3, 4 and 5, respectively.  
 

 
Figure 3: Profile of the time varying parameter Emin  
obtained from the ETKF with 3 standard deviations 
(dashed) 
 

 
Figure 4: Profile of the time varying parameter Cau  
obtained from the ETKF with 3 standard deviations 
(dashed) 

 

Figure 5: Profile of the time varying parameter Raup  
obtained from the ETKF with 3 standard deviations 
(dashed) 

5. CONCLUSION 
In this paper we illustrate the feasibility of using the 
ensemble transform Kalman filter algorithm for the dual 
estimation problem of estimating both the state and 
unknown time-varying parameters in a cardiovascular 
regulation model. The ETKF is widely used in weather 
forecasting applications. Our initial efforts to apply the 
ETKF to biological applications such as the 
cardiovascular problem considered in this paper are 
very promising. 
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