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ABSTRACT 

Numerous mathematical models have been proposed for 
prediction of baroreflex regulation of heart rate. Most 
models have been designed to provide qualitative pre-
dictions of the phenomena, though some recent models 
have been developed to predict observed data. In this 
study we show how sensitivity and correlation analysis 
can be used for model reduction and for obtaining a set 
of identifiable parameters that can be estimated reliably 
given a model and an associated set of data. We show 
that the model developed by Bugenhagen et al. to 
predict heart rate dynamics in the Dahl SS rat can be 
simplified significantly, without loss of its ability to 
predict measured data.  
 
Keywords: Parameter estimation; Inverse problems; 
Model reduction; Subset selection; Simulation and mo-
deling; Non-linear heart rate model; Patient specific 
modelling. 

 
1. INTRODUCTION 

Most models (including the one analysed here) have 
been developed with the aim of estimating dynamics of 
the system studied. Often models are developed in steps 
with the aim of including all known properties, rather 
than with the aim of obtaining the simplest self-con-
tained model. The former is essential for gaining under-
standing of how various mechanical or physical proper-
ties impact the system dynamics, but may not be practi-
cal if the objective is to study how model parameters 
change within and between groups of subjects. For the 
latter, a simpler self-contained model may be better. 
This type of model often has fewer states and parame-
ters. Estimation of reliable model parameters requires 
that sufficient data is available to identify all model 
parameters. Typically that is not the case, since experi-
mental data often is sparse since they may be difficult 
and/or expensive to obtain. Consequently, as discussed 
in previous studies (Pope et al. 2009, Olufsen and Otte-
sen 2012) only a subset of parameters may be identifia-
ble. In this study we show how sensitivity analysis and 
correlation analysis can be used for identifying model 
redundancies, which in turn can be used for model 

reduction. Furthermore, (as in previous studies) we 
show how reliable parameters can be estimated in a re-
duced model.  

Based on (Houk et al. 1966, Scrinivasan-Nudelman 
1972, Hasan 1983, Alfrey 1987, Ottesen 1997, Olufsen 
et al. 2006, Ottesen and Olufsen 2011) Bugenhagen et 
al. [2010] presented a nonlinear differential equations 
model developed to predict baroreflex regulation of 
heart rate as a function of blood pressure for Dahl SS 
rats. This model contains complex nonlinear dynamics 
and a large number of parameters. Data for this model is 
considered sparse since only one output quantity is 
measured (heart rate), though it is sampled at a high 
frequency. The model is complex since it contains 
nonlinear dynamics as well as several time scales 
including fast inter-beat dynamics and slow dynamics 
associated with baroreflex regulation. It contains more 
than 30 parameters characterizing all known properties 
of the system. The model is developed from first 
principles describing the underlying mechanisms, with 
model parameters representing physiological quantities 
including arterial wall deformation, deformation of the 
baroreceptor nerve-endings, firing of afferent neurons, 
prediction of neurotransmitter dynamics (acetylcholine 
and noradrenaline) and the impact on heart rate. 
Although, the model was able to predict measured data 
no attempts were made to simplify the model or to ana-
lyse the reliability of the estimated parameters.  

In this study we show how to simplify the heart rate 
model developed by Bugenhagen et al. [2010] by redu-
cing the number of adjustable parameters. Then, for the 
reduced model, we demonstrate how to identify a subset 
of its parameters and estimate these so the model is able 
to predict measured heart rate. 
 
2. MATHEMATICAL MODEL 

In this section we first discuss concepts needed for pre-
diction of sensitivities and correlations; second we ap-
ply these methods to analyse the heart rate model deve-
loped by Bugenhagen et al. [2010]. 
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Sensitivity, correlation analysis, and parameter esti-
mation 

To predict sensitivities and pairwise correlations, we as-
sume that the model can be formulated as a system of 
nonlinear differential equations of the form 

��
�� = ���, �; 	
, 

where �: ℝ���� → ℝ�, � ∈ ℝ denotes time, � ∈ ℝ� 
denotes the state vector, and 	 ∈ ℝ� denotes he parame-
ter vector. Associated with the states we assume an out-
put vector � ∈ ℝ� corresponding to the available data 
(heart rate). We assume that this output can be compu-
ted algebraically as a function of the time �, the states �, 
and the model parameters 	, i.e. 

� = ���, �; 	
, 
where �: ℝ���� → ℝ�. By construction the model out-
put � is associated with data � sampled at times ��, 
where the sampling rate may vary between output com-
ponents.  

Sensitivities predict how much the model output 
changes with a change in the parameters. Classically 
(Frank 1978), the sensitivity matrix � of order � × � × � 
(where � is the sampling cardinality) is defined by 

� = ��
�	. 

If model parameters vary significantly in magnitude, it 
may be advantageous to use relative sensitivities defin-
ed by 

�� = ��
�	

	
� ,				� ≠ 0. 

Rank of the sensitivities (either classical or relative) can 
be computed as 

�# = ‖�‖%.	 
Pairwise parameter correlations can be predicted from 
the sensitivity matrix using the structured analysis dis-
cussed in (Olufsen and Ottesen 2012). As a point of de-
parture, this method uses the model Hessian (a positive 
definite symmetric matrix sometimes denoted the Fisher 
information matrix, (Cintron-Arias et al. 2009)), which 
for problems with constant variance &%, can be defined 
by ℋ = &(%�)�	�Yue et al. 2006). Using ℋ, the corre-
lation matrix * can be computed from the covariance 
matrix + = ℋ( as 

*�,, = C�,,
C�,�C,,, . 

Notice that the matrix +	only exists if the determinant of 
is ℋ is non-vanishing. The matrix * is symmetric with 
elements -*�,,- ≤ 1. Parameter pairs �0, 1
 are considered 
correlated, if -*�,,- ≥ 3 for some value of 3. We denote 
such pairs as practically correlated parameters. 

In this study we used the following structured ap-
proach to identify a set of sensitive and uncorrelated pa-
rameters. Assuming ℋ is non-singular, 

1. Compute the correlation matrix * and identify all 
correlated parameter pairs, i.e., identify parameter 
pairs for which -*�,,- ≥ 3. 

2. Sort correlated parameters according to their sensi-
tivity. List all parameters ordered from the least to 
the most sensitive. 

3. Remove the least sensitive correlated parameter 
from 	 and recompute * for the reduced parameter 
set (this set can easily be done by deleting the cor-
responding column of �). The parameters removed 
from 	 should be kept fixed at their a priori value. 

4. Continue from 1 until -*�,,- < 3 for all �0, 1
. 

For some models, the Hessian is singular. This follows 
if two or more parameters are conditionally identifiable 
(perfectly correlated) giving rise to redundancy. For this 
case, it is often possible to reduce the model eliminating 
either a parameter or an equation. Moreover, some 
equations may be superfluous in the sense that they 
hardly influence the model output. Thus we may per-
form an additional model reduction by removing or 
simplifying such model equations. Model reduction as 
part of the identification of a set of sensitive and uncor-
related parameters is an iterative process alternating be-
tween numerical and analytical considerations.  
 Once a reduced model and a set of identifiable 
parameters have been identified, parameter estimation 
methods can be employed to estimate the identifiable 
parameters. Assuming that the error between the model 
output and data are normally distributed, parameters can 
be estimated via solution of the inverse problem. In this 
study, parameters are estimated using the Levenberg-
Marquart gradient-based method, which estimates para-
meters that minimize the least squares error between 
computed and measured values of the model output 
(Kelley 1999). 

 
Heart rate model 

Heart rate is one of the most important quantities con-
trolled by the body to maintain homeostasis. The con-
trol of heart rate is mainly achieved by the autonomic 
nervous system involving a number of subsystems that 
operate on several time and length scales. One of the 
major contributors to autonomic regulation of heart rate 
is the baroreflex system, which operates on a fast time-
scale (seconds). Baroreflex control consists of three 
parts: an affector part, a control center, and an effector 
part (Ottesen 1997, Ottesen and Olufsen 2011). The fir-
ing rate of the afferent baroreceptor neurons is modula-
ted by changes in the viscoelastic stretch of the nerve-
endings terminating in the arterial wall of the aorta and 
carotid sinuses. It is assumed that the deformation of the 
nerve-endings is modulated relative to the deformation 
of the arterial wall, which is imposed via changes in 
arterial pressure. The afferent neurons terminate in the 
nucleus solitary tract (NTS) within the medulla. The ef-
fector part consists of sympathetic and parasympathetic 
outflows, generated in NTS. The parasympathetic out-
flow travel along the vagal nerve, whereas sympathetic 
outflow travel via a network of interconnected neurons. 
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The main neurotransmitters involved with modulating 
heart rate regulation are acetylcholine, which is released 
by the vagal nerves, and noradrenaline released from 
the postganglionic sympathetic nerves. The model com-
ponents are summarized in Figure 1.  

 
Figure. 1. Model components. CC denotes the control center, 
the nucleus solitary tract, which integrates all sensory inputs. 
 
It is commonly assumed that the wall strain can be 
defined as 

56 = 7 8 7979 , 
which can be rewritten as 

: � ;79%�56 < 1
%. 
The approach suggested by Srinivasen and Nudelman 
[1972] is adopted assuming that stress is proportional to 
pressure. The latter is reasonable for a thin-walled tube 
(Valdez-Jasso, 2011). Bugenhagen et al. [2010] 
assumed a first order transient toward such static 
relation predicting the change in area : as  

�:
�� � 1

	=6 >? 8 @:/; 8 79*6 B, 
where :9 � ;79% and : � ;7%.	 In contrast to 
Bugenhagen [2011]  these equations may be combined 
in a single differential equation for that relates wall 
stretch and pressure  

�56�� � 1
2;79%=6

1
56 < 1 D? 8 7956*6 E. 

Note ?���
 is obtained from the pressure data.  
 Using the idea originally put forward by Houk et al. 
[1966] and Hasan [1983] and later used by Alfrey 
[1987] inspiring Bugenhagen et al. [2010] the stretch of 
the baroreceptor nerve endings can be predicted 
assuming that the cells embedded in the wall respond 
viscoelasticly to the vessel strain 56. The deformation 
of the baroreceptor nerve endings is predicted using 
Fung’s (Fung, 1993), mechanical model with three 
Voigt bodies (see Figure 2) in series, given by 

�5�� � F��56 8 5
 8 F�5 8 5%

= 8 �5%��  

�5%�� � F�5 8 5%
 8 F%�5% 8 5G

= < =% < =

�5�� <=%
�5G��  

�5G�� � F%�5% 8 5G
 8 FG5G < =% �5%��=% < =G . 

 

 
Figure 2: Three Voigt bodies in series. F� denotes the spring 
constants and =� the dashpots characterizing the viscoelastic 
cell and wall components. Finally, the spring in series with the 
dashpots is denoted by F� .  
For clarity these equations are rewritten in explicit form 
as 

�5�� � 8�H < I < I% < IG
5 < �H 8 J
5%
< �J 8 *
5G < �I < I% < IG
56 

�5%�� � 8�I% < IG
5 8 J5% < �J 8 *
5G
< �I% < IG
56 

�5G�� � 8IG5 8 *5G < IG56 

where 

H � F= , J � F%=% ,								* � FG=G 

I � F�= , I% � F�=% ,							IG � F�=G . 
Notice that the rewritten equation involves six para-
meters, whereas the original equations in Bugenhagen 
[2011] involved 7 parameters. By combining two 
algebraic equations stated in (Bugenhagen et al. 2010) 
the firing rate model can be written as  

� � K�56 8 5
. 
The afferent firing rate f is integrated in the NTS, where 
the sympathetic LM and the parasympathetic LN		outflows 
are generated. We emphasize that the representation and 
interpretation of the rest of the model deviate slightly 
from what Bugenhagen [2011] did. Assuming satu-
ration, these have been described using Hill functions as 
(Olufsen et al. 2006, Ottesen and Olufsen 2011) 

LM � LMO 8 �LMO 8 LM�
 �P
�P < �MP 

LN � LN� < �LNO 8 LN�
 �Q
�Q < �NQ , 

where subscript R refers to the minimum and subscript K refers to the maximum outflows, whereas S and T are 
constants predicting the steepness of the sigmoid. The 
next step involves prediction of the concentration of 
neurotransmitters acetylcholine +U and +V noradrena-
line, which can be obtained from 

�+U�� � 8 +UWU < �NLN 

�+V�� � 8 +VWV < �MLM, 
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where �� and W�	 are time scales for build-up and decay 
of the neurotransmitter concentrations. Changes in the 
concentration of neurotransmitters impact the ionic sti-
mulation of the heart. Acetylcholine binds to muscarinic 
receptors and noradrenaline binds to β-receptors con-
trolling ion-channels. At least two channels pathways 
are affected in response to acetylcholine a slow sodium 
channel pathway and a fast potassium channel pathway, 
while noradrenaline mainly is associated with slower 
potassium and calcium channel pathways (Pyetan et al  
2003, DiFrancesco 2006, Lyashkov et al 2009, 
Vinogradova TM and Lakatta 2009). In general about 
75% of available acetylcholine stimulates the fast 
channel pathways while about 25% stimulates the 
slower channel pathways. For Noradrenaline, the full 
amount contributes to stimulating slower channel 
pathways. Common for all neurotransmitters sti-
mulating the system is that the effect saturate at high 
concentrations. The actual complexity of ion-channels 
taking place in building up an action potential and herby 
regulating the heart rate is huge. Thus we simplify this 
complex mechanism by assuming a quasi-steady state 
of the occupied muscarinic and β-receptors and lumping 
all subsequent pathways into three hypothetical substan-
ces. For details see appendix A. Consequently, for nor-
adrenaline we have 

�+VM�� � 1
WVM > +V%+V% + FV%

8 +VMB 

while for acetylcholine we get 

�+UX�� = 1
WUX >Y +U%+U% + FU%

8 +UXB 

�+UM�� = 1
WUM >�1 8 Y
 +UM%

+UM% + FU%
8 +UMB, 

where W� are time-scales, F and S denote a fast and slow 
response (i.e., WVM, WUM ≫ WUX
,	 Y is  a weighting pa-
rameter, and Ki denotes half the max response. As-
suming the fast cholinergic process is almost instantane-
ous, the first equation can be replaced by 

+UX = Y +U%+U% + FUX% . 
Assuming that fast and slow responses are additive, the 
overall contribution gives  

+U) = +UM + +UX ,				+V) = +VM. 
Finally, we computed heart rate as 

ℎ = ℎ9 + �ℎO 8 ℎ9
+V) 8 �ℎ9 8 ℎ�
+U)
8 1

ℎ9
�ℎO 8 ℎ9
�ℎ9 8 ℎ�
+V)+U) , 

where ℎ9	is the intrinsic heart rate, ℎO and	ℎ� denotes 
the maximal and minimal heart rate weighting, and the 
neurotransmitters are defined by +V) and +U). In terms 
of the general theory outlined, � = 8	denotes the num-
ber of differential equations in the model. These are 
� = ]56,5,5%,5G,+V, +U, +VM, +UM^, where R = 1 denotes 

the model output (heart rate), given by � = ℎ. The 
model presented above has 30 parameters  

	 = �79, *6 , =6 , H, J, *, I, I%, IG, K, S, T, LM� , LMO,LN�, LNO,�M, �N, WV , WU, �M, �N , WVM , WUM , FV , FU, Y, ℎ9, ℎ�, ℎO
. 
 

Model reduction and analysis  

Sensitivity analysis (as defined by Frank [1978]) reveals 
that the sensitivity matrix � = �ℎ/�	 is singular indica-
ting that the model contains parameters that are perfect-
ly correlated. Analysis of the equations reveals two cor-
relations. First, the equation for 56 can be simplified as 

�56�� = ? 8 F656F6%�56 + 1
 

where F6 = 79/*6 and F6% = 2;79%=6 , i.e. *6 and =6 are conditionally identifiable with respect to 79. Se-
cond, substituting the expression for � into the expre-
sions for LM and LN 	shows that M is redundant. Thus the 
gain M may be incorporated into �M	and �N, i.e. they are 
conditionally identifiable with respect to K. Hence this 
equation reduces to � = 56 8 5. 
With these simplifications the model can be formulated 
using the following 28 parameters: 

	 = �F6, F6% , H, J, *, I, I%, IG, S, T, LM� , LMO,LN� , LNO,�M, �N, WV , WU, �M, �N , WVM , WUM , FV , FU, Y, ℎ9, ℎ�, ℎO
. 
 
We emphasize that the resulting reduced model has an 
non-singular Hessian in contrast to the former model. 

 
3. RESULTS 

For the reduced model, ranked sensitivities (see Figure 
3) were calculated. 

 

 

 

Figure 3: Sensitivity ranking, parameters below the horizontal 
line are considered insensitive. 

Parameters (T, WVM, WUM , Y) with a sensitivity-norm lower 
than 0.01 were considered insensitive, and parameters 
(*, IG
 representing long time-scales compared to 
available data were kept at a priori values. Correlations 
among the remaining parameters were identified, 
leaving the following 17 parameters identifiable:  

	 = �F6, F6%, H, J, I, I%, �M, �N , LM� , LMO,LN�, LNO , WV , WU, �U, FV , ℎ�
.	 
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Table 1 compares parameter values from (Bugenhagen 
et al. 2010) with those used in the simplified model, and 
Figure 4 shows measured and optimized blood pressure 
and heart rate values. 
 

Parameter Bugenhagen Simplified  model 
�M  0.125* 0.123 
�N  0.138* 0.133 
S 15.2 15.2 
T 23.3 23.3 

LM� 0.487 0.635 
LMO 4.20 3.62 
LN� 0.910 1.21 
LNO 2.31 2.10 
F6 267# 180 
F6% 2.56# 1.89 

H 1.5# 1.86 
J 0.375# 0.364 
* 0.0156# 0.0156 

I 1# 0.710 
I% 0.1# 0.0856 
IG 0.0149# 0.0149 
WV  9.1 4.78 
WU 0.2 0.137 
�V 0.11 0.110 
�U 5 5.93 
FV  1.12 0.628 
FU 0.65 0.650 
WV_ 2.1 2.10 
WU_ 2.5 2.50 
3 0.75 0.750 

[9 347 347 
[O 648 1117 
[� 253 253 

Table 1: Comparison of parameter values from Bugenhagen et 
al. [2010] (left) with those obtained by the simplified model 
(right). Estimated (by optimization) parameters are marked in 
bold. Values marked by * are predicted to make Bugenh-
agen’s formulation for LM, LN match our formulation. Values 
marked by # are calculated to convert the equations in 
Bugenhagen to formulation used in the simplified model. 

 
4. CONCLUSION 

In this study we used sensitivity and structural corre-
lation analysis to simplify an existing model for heart 
rate regulation developed by Bugenhagen et al. [2010]. 
We also showed how to identify a subset of parameters 
that can be estimated given a model and a given set of 
experimental data. Results showed that the model con-
tains several parameters that are not identifiable given 
the heart-rate data. If the objective is to estimate some 
of these parameters additional data from the same rat is 
needed.  
 
APPENDIX A 

Acetylcholine binds to muscarinic receptors and nora-
drenaline binds to ̀-receptors at the sinus node con-
trolling the ion-channels of the cell membranes. The ac-
tual complexity of ion-channels, taking into account the  
building up of an action potential and subsequently  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Top: Measured and predicted blood pressure (blue) 
and heart rate (red). Bottom: Measured (blue) and predicted 
(red and cyan) heart rate. The red trace shows results with the 
reduced model and cyan trace shows results from 
(Bugenhagen et al. 2010).  
 
regulating heart rate is immense: At least six ion-
channels are important for the generation of the action 
potential and hence for the heart rate, f-channels 
(sodium channels If), cholinergic calcium channels 
(IK;ACh), non-transmitter dependent potassium channels 
(IK), L-type (long lasting) calcium channels (ICa;L) T-
type (transient) calcium channels (ICa;T), and calcium-
sodium exchange channels (INCX) as illustrated in Figure 
5. All of these ion-channels are regulated through 
(either inhibitory or stimulating) G-proteins: 
Acetylcholine binds to muscarinic receptors, down 
regulating cyclic AMP (cAMP) and phosphokinase A 
(PKA), which upregulates Na+ (If) and down regulates 
K+ (IK;ACh) and Ca++ (ICa;L) whereas noradrenaline binds 
to ̀ -receptors upregulating cAMP and PKA (Pyetan et 
al  2003, DiFrancesco 2006, Lyashkov et al 2009, 
Vinogradova TM and Lakatta 2009).  

 
Figure 5. Ion-channels and pathways of greatest importance 
for the generation of the action potential and thus for the heart 
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rate: f-channel (sodium channels If), cholinergic calcium 
channel (IK;ACh), non-transmitter dependent potassium channel 
(IK), L-type (long lasting) calcium channel (ICa;L) T-type 
(transient) calcium channel (ICa;T), calcium-sodium exchange 
channel (INCX), inhibitory G-protein (Gi), stimulating G-
protein (Gs), muscarinic receptor (M2), ̀-receptor, cyclic 
AMP (cAMP), phosphokinase A (PKA), and 
phosphodiesterase (PDE). 

Common for all neurotransmitters stimulating such 
systems is that the effect saturate at high concentrations, 
which may be explained by simplifying the complex 
mechanism underlying it, e.g., by assuming a quasi-
steady state for the occupied receptors. For simplicity 
we imagine that two molecules of the neural transmitter 
(C) binds to an receptor (R) forming an occupied 
receptor complex in a reversible reaction with rates *� 
and *( and that the occupied receptor in addition may 
undergo another transition to the free state producing 
some substance (A) with rate *, 

2+ + 7abcc 	
*�⇌*(

	7eff 	 fg→ 	 7abcc < :. 

We also assume conservation of the receptor type, i.e., 

7abcc + 7eff = 79. 

Hence the number of occupied receptor is govern by 

�7eff

��
= 	 *�+%79 8 �* < *( < *�+%
7eff . 

In the quasi-steady state approximation this gives 

7eff = 79

+%

+% + h#
%

, 
where h#% = �* + *(
/*�. It is further assumed that the 
occupied receptors control the states of the ion-channels 
and thus the relevant intercellular pathways in building 
up the action potential. To omit this complexity we 
simply lump these path-ways into one or two substrates 
for each of the neurotransmitters, i.e., two for acetylcho-
line (+UX or +UM) and one for noradrenaline (+VM), two 
channels are affected in response to acetylcholine a 
slow sodium channel and a fast potassium channel, 
while noradrenaline mainly is associated with slower 
channels. We assume that 75% of the occupied recep-
tors stimulate the synthesis of the substance +UX corre-
sponding to the fast K+-channels while about 25% sti-
mulates the synthesis of the substance +UM  corre-
sponding to the slower Na+-channel. For noradrenaline, 
the full amount stimulates the synthesis of the substance +V) corresponding to slow Na+ and Ca++-channels. 
Hence, for all three substances a fraction of the amount 
of occupied receptors serves as a production rate while 
the elimination are assumed proportional to the amount 
of the substance itself, thus the elimination rates are 
assumed constant (r), 

�+ij�� = 79 >Yij
+i%+i% + h#%

8 k
79 +ijB, 

where we use index � = :, l (denoting acetylcholine 
and noradrenaline) and � = m, � (denoting fast and slow 

if necessary). Normalizing +ij by k 79⁄  and substituting 
Wij = 1 k⁄  gives 

�+ij�� = 1
Wij >Yij

+i%+i% + h#%
8 +ijB. 
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