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ABSTRACT

Numerous mathematical models have been proposed for
prediction of baroreflex regulation of heart rakéost
models have been designed to provide qualitatiee pr
dictions of the phenomena, though some recent rmodel
have been developed to predict observed data.i$n th
study we show how sensitivity and correlation asialy
can be used for model reduction and for obtainisgta

of identifiable parameters that can be estimaté&dhiy
given a model and an associated set of data. W& sho
that the model developed by Bugenhagen et al. to
predict heart rate dynamics in the Dahl SS rat lban
simplified significantly, without loss of its abi to
predict measured data.

Keywords: Parameter estimation; Inverse problems;
Model reduction; Subset selection; Simulation arat m
deling; Non-linear heart rate model; Patient specif
modelling.

1. INTRODUCTION

Most models (including the one analysed here) have
been developed with the aim of estimating dynarafcs
the system studied. Often models are developetépss
with the aim of including all known properties, hat
than with the aim of obtaining the simplest selfrco
tained model. The former is essential for gainingar-
standing of how various mechanical or physical prep
ties impact the system dynamics, but may not betipra
cal if the objective is to study how model paramete
change within and between groups of subjects. @r t
latter, a simpler self-contained model may be bette
This type of model often has fewer states and param
ters. Estimation of reliable model parameters nmegui
that sufficient data is available to identify allodel
parameters. Typically that is not the case, singeg-
mental data often is sparse since they may becdiffi
and/or expensive to obtain. Consequently, as discls
in previous studies (Pope et al. 2009, Olufsen@tid-
sen 2012) only a subset of parameters may be fidenti
ble. In this study we show how sensitivity analyasisl
correlation analysis can be used for identifyingdelo
redundancies, which in turn can be used for model

reduction. Furthermore, (as in previous studies) we
show how reliable parameters can be estimatedr@ a
duced model.

Based on (Houk et al. 1966, Scrinivasan-Nudelman
1972, Hasan 1983, Alfrey 1987, Ottesen 1997, Ofufse
et al. 2006, Ottesen and Olufsen 20Bl)genhagen et
al. [2010] presented a nonlinear differential eopures
model developed to predict baroreflex regulation of
heart rate as a function of blood pressure for [zl
rats. This model contains complex nonlinear dynamic
and a large number of parameters. Data for thisetied
considered sparse since only one output quantity is
measured (heart rate), though it is sampled atgh hi
frequency. The model is complex since it contains
nonlinear dynamics as well as several time scales
including fast inter-beat dynamics and slow dynamic
associated with baroreflex regulation. It containgsre
than 30 parameters characterizing all known progeert
of the system. The model is developed from first
principles describing the underlying mechanismsh wi
model parameters representing physiological questit
including arterial wall deformation, deformation thfe
baroreceptor nerve-endings, firing of afferent oegry
prediction of neurotransmitter dynamics (acetylaiel
and noradrenaline) and the impact on heart rate.
Although, the model was able to predict measurdd da
no attempts were made to simplify the model orrnta-a
lyse the reliability of the estimated parameters.

In this study we show how to simplify the hearerat
model developed by Bugenhagen et al. [2010] by-+edu
cing the number of adjustable parameters. Thenthfor
reduced model, we demonstrate how to identify aesub
of its parameters and estimate these so the meddlé
to predict measured heart rate.

2. MATHEMATICAL MODEL

In this section we first discuss concepts needegbiie-
diction of sensitivities and correlations; second ap-
ply these methods to analyse the heart rate maxle-d
loped by Bugenhagen et al. [2010].
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Sensitivity, correlation analysis, and parameter esti-
mation

To predict sensitivities and pairwise correlations, as-
sume that the model can be formulated as a system o
nonlinear differential equations of the form

dx

dt - f(t,x, 9)’
where f:R*"*9  R", t € R denotes timex € R"
denotes the state vector, ah& R? denotes he parame-
ter vector. Associated with the states we assunwuan
put vectory € R™ corresponding to the available data
(heart rate). We assume that this output can bgaem
ted algebraically as a function of the timehe states,
and the model parametétsi.e.

y=g(x;0),

whereg: R1*"+4 — R™, By construction the model out-
put y is associated with datd sampled at times;,
where the sampling rateay vary between output com-
ponents.

Sensitivities predict how much the model output
changes with a change in the parameters. Clagsicall
(Frank 1978), the sensitivity matrixof ordern x [ X g
(wherel is the sampling cardinality) is defined by

_ Oy
B
If model parameters vary significantly in magnitude

may be advantageous to use relative sensitivitxdis-d
ed by

S

Rank of the sensitivities (either classical or tigl can
be computed as

Sr = IISll2.

Pairwise parameter correlations can be predictenh fr
the sensitivity matrix using the structured anaygis-
cussed in (Olufsen and Ottesen 2012). As a poideef
parture, this method uses the model Hessian (diy®si
definite symmetric matrix sometimes denoted thééiis
information matrix, Cintron-Arias et al. 2009, which
for problems with constant varianeg, can be defined
by # = 072STS (Yue et al. 20086 Using#, the corre-
lation matrixc can be computed from the covariance
matrixC = %! as
__Cuy
CiiC)

Notice that the matrix only exists if the determinant of
is £ is non-vanishing. The matrix is symmetric with
eIementsjci,j| < 1. Parameter pair§, j) are considered
correlated, if|cl-_,-| >y for some value of. We denote
such pairs as practically correlated parameters.

In this study we used the following structured ap-

proach to identify a set of sensitive and uncoteglga-
rametersAssuming is non-singular,

Cij

1. Compute the correlation matrix and identify all
correlated parameter pairs, i.e., identify paramete
pairs for which|c; ;| > y.

Sort correlated parameters according to their sensi

tivity. List all parameters ordered from the letst

the most sensitive.

3. Remove the least sensitive correlated parameter
from 6 and recompute for the reduced parameter
set (this set can easily be done by deleting the co
responding column aof). The parameters removed
from 8 should be kept fixed at theirpriori value.

4. Continue from 1 unti|c; ;| <y for all (i, j).

N

For some models, the Hessian is singular. ThigVil

if two or more parameters are conditionally idaabfe
(perfectly correlated) giving rise to redundancgr Ehis
case, it is often possible to reduce the modelipéiting
either a parameter or an equation. Moreover, some
equations may be superfluous in the sense that they
hardly influence the model output. Thus we may per-
form an additional model reduction by removing or
simplifying such model equations. Model reductien a
part of the identification of a set of sensitivadlamcor-
related parameters is an iterative process alieghae-
tween numerical and analytical considerations.

Once a reduced model and a set of identifiable
parameters have been identified, parameter estimati
methods can be employed to estimate the identiabl
parameters. Assuming thidite error between the model
output and data are normally distributed, paransetan
be estimated via solution of the inverse problemthis
study, parameters are estimated using the Levenberg
Marquart gradient-based method, which estimatea-par
meters that minimize the least squares error betwee
computed and measured values of the model output
(Kelley 1999).

Heart rate model

Heart rate is one of the most important quantities-
trolled by the body to maintain homeostasis. The-co
trol of heart rate is mainly achieved by the autoim
nervous system involving a number of subsystems tha
operate on several time and length scales. Oné&eof t
major contributors to autonomic regulation of heate

is the baroreflex system, which operates on atfias-
scale (seconds). Baroreflex control consists oéehr
parts: an affector part, a control center, and féector
part (Ottesen 1997, Ottesen and Olufsen 20THhe fir-
ing rate of the afferent baroreceptawurons is modula-
ted by changes in the viscoelastic stretch of ey
endings terminating in the arterial wall of the tacaind
carotid sinuses. It is assumed that the deformatighe
nerve-endings is modulated relative to the defoionat
of the arterial wall, which is imposed via changes
arterial pressure. The afferent neurons terminatthe
nucleus solitary tract (NTS) within the medulla.eTéf-
fector part consists of sympathetic and parasyngiath
outflows, generated in NTS. The parasympathetiec out
flow travel along the vagal nerve, whereas symgathe
outflow travel via a network of interconnected rens.
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The main neurotransmitters involved with modulating
heart rate regulation are acetylcholine, whictelseased
by the vagal nerves, and noradrenaline released fro
the postganglionic sympathetic nerves. The modeil-co
ponents are summarized in Figure 1.

1
- ™

Afferent Pathways Afferent Pathways “

Figure. 1. Model components. CC denotes the conaoter,
the nucleus solitary tract, which integrates atissgy inputs.

It is commonly assumed that the wall strain can be
defined as

which can be rewritten as
A =nR3(g, + 1)2

The approach suggested by Srinivasen and Nudelman
[1972] is adopted assuming that stress is propmatito
pressure. The latter is reasonable for a thin-wailde
(Valdez-Jasso, 2011). Bugenhagen et al. [2010]
assumed a first order transient toward such static
relation predicting the change in aas

da 1 JA/T =R,
dt B, p Cu ’

where 4, =mR2 and A =mR? In contrast to
Bugenhagen [2011] these equations may be combined
in a single differential equation for that relatesll
stretch and pressure

de, 1 1 Ry,
dt ~ 2mR2B, &, + 1 (p Cw )
Notep(t;) is obtained from the pressure data.

Using the idea originally put forward by Houk et al
[1966] and Hasan [1983] and later used by Alfrey
[1987] inspiring Bugenhagen et al. [2010] the stnedf
the baroreceptor nerve endings can be predicted
assuming that the cells embedded in the wall respon
viscoelasticly to the vessel straip. The deformation
of the baroreceptor nerve endings is predicted gusin
Fung’'s (Fung, 1993), mechanical model with three
Voigt bodies (see Figure 2) in series, given by

E _ Kn(‘gw B 51) B Kl(gl B 52) _E

dt B; dt
de Ki(e, —&,) — K,(e, — € de de
@& _ 1(e1— &) 2(& 3)+Bl_1+BZ_3
dt B, + B, dt dt
de
des Ky (&2 — &3) — Kze5 + Bzd_tz
dt B, + B, '

Figure 2: Three Voigt bodies in serid§. denotes the spring
constants an®; the dashpots characterizing the viscoelastic
cell and wall components. Finally, the spring ineswith the
dashpots is denoted By,.

For clarity these equations are rewritten in expfarm
as

de;
s —(a+a; +a, +az)e; +(a—b)e,
+ (b —-c)eg+ (a +a, + az)e,
de,
T —(ay + az)e; —bey + (b —c)es
+ (az + az)ey,
deg
qr = %8 e + ase,
where
K, K, K3
a= B—l, b= B—Z, c= B_3
Kn Kn Kn
alzB—l, azzB—z, a3=B—3.

Notice that the rewritten equation involvesx para-
meters, whereas the original equationsBugenhagen
[2011] involved 7 parameters. By combining two
algebraic equations stated in (Bugenhagen et 410)20
the firing rate model can be written as

f = M(sw - 81)-
The afferent firing ratéis integrated in the NTS, where
the sympatheti@; and the parasympathefig outflows
are generatedVe emphasize that the representation and
interpretation of the rest of the model deviatgltsly
from what Bugenhagen [2011] didAssuming satu-
ration, these have been described using Hill fonstias
(Olufsen et al. 2006, Ottesen and Olufsen 2011)

&
Ts = Tsyy — (Tsm — Tsm)
fr+f
ff
Tp = Tpm + (Toy — Tpm) TG
fe+1

where subscripin refers to the minimum and subscript
M refers to the maximum outflows, wherepandé are
constants predicting the steepness of the signidid.
next step involves prediction of the concentratimhn
neurotransmitters acetylcholing, and C, noradrena-
line, which can be obtained from

dC, (o

A __ 4 T

dt TA+qP P
ZN__ZN T,
at TN+CIS s
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wheregq; andt; are time scales for build-up and decay
of the neurotransmitter concentrations. Changethén
concentration of neurotransmitters impact the iatie
mulation of the heart. Acetylcholine binds to musua
receptors and noradrenaline bindsptoeceptors con-
trolling ion-channelsAt least two channels pathways
are affected in response to acetylcholine a slodiuso
channel pathway and a fast potassium channel pgthwa
while noradrenaline mainly is associated with slowe
potassium and calcium channel pathways (Pyetah et a
2003, DiFrancesco 2006, Lyashkov et al 2009,
Vinogradova TM and Lakatta 2009). In general about
75% of available acetylcholine stimulates the fast
channel pathways while about 25% stimulates the
slower channel pathways. For Noradrenaline, thé ful
amount contributes to stimulating slower channel
pathways. Common for all neurotransmitters sti-
mulating the system is that the effect saturatéigih
concentrationsThe actual complexity of ion-channels
taking place in building up an action potential dredby
regulating the heart rate is huge. Thus we simplifg
complex mechanism by assuming a quasi-steady state
of the occupied muscarinic afiereceptors and lumping
all subsequent pathways into three hypotheticastsuis
ces. For details see appendix A. Consequentlyndor
adrenaline we have

dCys 1 Ci
=—\rz %z Cus
dt  tys \Cy + Ky
while for acetylcholine we get
dCyp 1 C}? c
dt e \NCZrKZ AT

AS
=—|AQ-pw)=—"—-Cs)
dt Ty <( 2 C% + K2 AS)
wherer; are time-scales; andS denote a fast and slow
response (i.€.Tys, Tas > Tar), U IS a weighting pa-
rameter, andK; denotes half the max response. As-
suming the fast cholinergic process is almost irtstae-
ous, the first equation can be replaced by
Cyr = G
AF — .uCAz + KAZF
Assuming that fast and slow responses are additiee,
overall contribution gives

Car = Cas + Cap, Cyy = Cys.

Finally, we computed heart rate as
h =ho+ (hy — hO)(l:NT — (ho = hp) Car
- h_ (hM - hO)(hO - hm)CNTCAT'
0

whereh, is the intrinsic heart ratéy,, andh,, denotes
the maximal and minimal heart rate weighting, amel t
neurotransmitters are defined By, andC,;. In terms
of the general theory outlined, = 8 denotes the num-
ber of differential equations in the model. These a
x = (&y,€1,62,63 Cy, Ca, Cys, Cas), Wherem = 1 denotes

the model output (heart rate), given lpy=h. The
model presented above has 30 parameters

0 = (ROI CW: Bw; a, b: c, al: 0(2, a3: M,
T]l E: TS‘H‘L‘ TSM,TPm' TPM,fS! fp, TN' TA' qS' qP‘
TNS’ TAS’ KN! KA; #I h(], hm, h’M)'

Model reduction and analysis

Sensitivity analysis (as defined by Frank [1978}eals
that the sensitivity matri = dh/d6 is singular indica-
ting that the model contains parameters that arfeqte
ly correlated. Analysis of the equations reveals tor-
relations. First, the equation fef, can be simplified as

dﬂ — b— legw
dt  K,,(, +1)

where K,,; = Ry/c,, and K,,, = 2nR2B,,, i.e. ¢, and
B,, are conditionally identifiable with respectRg. Se-
cond, substituting the expression ffrinto the expre-
sions forTg andT, shows thatM is redundant. Thus the
gain M may be incorporated intfy and f;, i.e. they are
conditionally identifiable with respect #. Hence this
equation reduces to

f=¢e,— &
With these simplifications the model can be fornedia
using the following 28 parameters:

0 = (lei KWZ' a, bl c, all az: a3:
1,¢, Tsm, TSM,TP‘m' TPM,fS' o Tns Tar Gs, Gps
TNS’ TAS’ KN! KA; #I h(], hm, h’M)'

We emphasize that the resulting reduced model has a
non-singular Hessian in contrast to the former rhode
3. RESULTS

For the reduced model, ranked sensitivities (sgerEi
3) were calculated.

10

x

X x

x
X X % 5

sensitivities

<5 S : & A% ;
BIBLE %0 S BAGROW R

Figure 3: Sensitivity ranking, parameters below tibezontal
line are considered insensitive.

Parametersé( tys, T4s, 1) With a sensitivity-norm lower
than 0.01 were considered insensitive, and paramete
(c,a3) representing long time-scales compared to
available data were kept afpriori values. Correlations
among the remaining parameters were identified,
leaving the following 17 parameters identifiable:

0 = (Ky1, Kyp, a, b, ay, a5, fs, fp,
TSm' TSM,TPm: TPM! TNy Tarqa, KN! hm)
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Table 1 compares parameter values from (Bugenhagen
et al. 2010) with those used in the simplified mpdad
Figure 4 shows measured and optimized blood pressur
and heart rate values.

Parameterl Bugenhagen Simplified model
fs 0.125' 0.123
fo 0.138" 0.133
n 152 15.2
& 233 23.3

Tom 0.487 0.635
Tom 4.20 3.62
Tpm 0.910 121
Tom 231 2.10
K1 267 180
Koz 2.5¢' 1.89
a 1.5 1.86
b 0.378 0.364
c 0.0156" 0.0156
a, 1# 0.710
a, 0.7% 0.0856
as 0.0149* 0.0149
Ty 9.1 4.78
7, 0.2 0.137
qy 0.11 0.110
qa 5 5.93
Ky 1.12 0.628
K, 0.65 0.650
Tys 2.1 2.10
Tys 2.5 2.50
Y 0.75 0.750
ho 347 347
hy 648 1117
R 253 253

Table 1: Comparison of parameter values from Bugeziag
al. [2010] (left) with those obtained by the sinfieli model
(right). Estimated (by optimization) parameters mra&ked in
bold. Values marked by * are predicted to make Bhgen
agen’s formulation foffs, T, match our formulation. Values
marked by # are calculated to convert the equations
Bugenhagen to formulation used in the simplified slod

4. CONCLUSION

In this study we used sensitivity and structuralreo
lation analysis to simplify an existing model foednt
rate regulation developed by Bugenhagen et al.JR01
We also showed how to identify a subset of pararsete
that can be estimated given a model and a giveonfset
experimental data. Results showed that the model co
tains several parameters that are not identifigiblen
the heart-rate data. If the objective is to estaraime
of these parameters additional data from the satnis r
needed.

APPENDIX A

Acetylcholine binds to muscarinic receptors andanor
drenaline binds tg;-receptors at the sinus node con-
trolling the ion-channels of the cell membranese k-
tual complexity of ion-channels, taking into accbthe
building up of an action potential and subsequently
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Figure 4. Top: Measured and predicted blood pres¢ulue)
and heart rate (red). Bottom: Measured (blue) predlicted
(red and cyan) heart rate. The red trace showdsesith the
reduced model and cyan trace shows results from
(Bugenhagen et al. 2010).

regulating heart rate is immense: At least six ion-
channels are important for the generation of th@®mac
potential and hence for the heart rafechannels
(sodium channels ¢l cholinergic calcium channels
(Ik:acn), non-transmitter dependent potassium channels
(Ix), L-type (long lasting) calcium channelsA{l) T-
type (transient) calcium channelg(}), and calcium-
sodium exchange channelgd)) as illustrated in Figure

5. All of these ion-channels are regulated through
(either inhibitory or stimulating) G-proteins:
Acetylcholine binds to muscarinic receptors, down
regulating cyclic AMP (cAMP) angbhosphokinase A
(PKA), which upregulates N&(l;) and down regulates
K" (Ik.acr) and C&" (Icq) Whereas noradrenaline binds
to B, -receptors upregulating cAMP and PKRyetan et

al 2003, DiFrancesco 2006, Lyashkov et al 2009,
Vinogradova TM and Lakatta 20Q9)

Acetylcholinee 0) W Noradrenaiine

B4-receptor

Figure 5.lon-channels and pathways of greatest importance
for the generation of the action potential and tfaughe heart
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rate: f-channel (sodium channels),l cholinergic calcium
channel (k.acn), non-transmitter dependent potassium channel
(I), L-type (long lasting) calcium channelcf|) T-type
(transient) calcium channelcly), calcium-sodium exchange
channel (lcx), inhibitory G-protein (@, stimulating G-
protein (G), muscarinic receptor (WM p;-receptor, cyclic
AMP  (cAMP), phosphokinase A (PKA), and
phosphodiesterase (PDE)

Common for all neurotransmitters stimulating such
systems is that the effect saturate at high coratons,
which may be explained by simplifying the complex
mechanism underlying it, e.g., by assuming a quasi-
steady state for the occupied receptors. For saitpli
we imagine that two molecules of the neural trattemi
(C) binds to an receptor (R) forming an occupied
receptor complex in a reversible reaction with sate
and c_ and that the occupied receptor in addition may
undergo another transition to the free state prioduc
some substance (A) with radg,

Cy o

2C + Rfree = Roce = Rpree + A
c_

We also assume conservation of the receptor type, i
Rf‘ree + Roce = Ry

Hence the number of occupied receptor is govern by

dR
d(;cc = ¢,C?Ry — (c; + c_ + ¢, C?)Ryee-
In the quasi-steady state approximation this gives
CZ
Rocc = RO m,

wherek3 = (¢; + ¢_)/c,. It is further assumed that the
occupied receptors control the states of the i@nnkls
and thus the relevant intercellular pathways iridog
up the action potential. To omit this complexity we
simply lump these path-ways into one or two sulstra
for each of the neurotransmitters, i.e., two fagtgicho-
line (C4r or C45) and one for noradrenalin€,(s), two
channels are affected in response to acetylchdine
slow sodium channel and a fast potassium channel,
while noradrenaline mainly is associated with slowe
channels. We assume that 75% of the occupied recep-
tors stimulate the synthesis of the substaf)gecorre-
sponding to the fast Kchannels while about 25% sti-
mulates the synthesis of the substantg corre-
sponding to the slower Riwhannel. For noradrenaline,
the full amount stimulates the synthesis of thestlce
Cyr corresponding to slow Naand C&'-channels.
Hence, for all three substances a fraction of theumnt
of occupied receptors serves as a production rhtke w
the elimination are assumed proportional to the w@arho
of the substance itself, thus the elimination reades
C? T

assumed constam)(
# > . 12 5 C )I
Y24k Ry, Y

dCyy
=R
dt 0 <
where we use index = A, N (denoting acetylcholine
and noradrenaline) and= F, S (denoting fast and slow

if necessary). Normalizing,,, byr/R, and substituting
Tyy = 1/7 gives

dCyy 1 (

A
it o, \Mczekg )
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